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Abstract
In this paper, we prove the demiclosed principle for total asymptotically
nonexpansive nonself mappings in hyperbolic spaces. Then we obtain convergence
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1 Introduction
One of the fundamental and celebrated results in the theory of nonexpansive mappings
is Browder’s demiclosed principle [] which states that if X is a uniformly convex Banach
space,C is a nonempty closed convex subset of X, and if T : C → X is a nonexpansive non-
self mapping, then I – T is demiclosed at , that is, for any sequence {xn} in C if xn → x
weakly and ‖(I –T)xn‖ → , then (I –T)x =  (where I is the identity mapping in X). Later,
Chidume et al. [] proved the demiclosed principle for asymptotically nonexpansive non-
self mappings in uniformly convex Banach spaces. Recently, Chang et al. [] proved the
demiclosed principle for total asymptotically nonexpansive nonself mappings in CAT()
spaces. It is well known that the demiclosed principle plays an important role in study-
ing the asymptotic behavior for nonexpansive mappings. The purpose of this paper is
to extend Chang’s result from CAT() spaces to the general setup of uniformly convex
hyperbolic spaces. We also apply our result to approximate common fixed points of to-
tal asymptotically nonexpansive nonself mappings in hyperbolic spaces, using the mixed
Agarwal-O’Regan-Sahu type iterative scheme []. Our results extend and improve the cor-
responding results of Chang et al. [], Nanjaras and Panyanak [], Chang et al. [], Zhao
et al. [], Khan et al. [] and many other recent results.
In this paper, we work in the setting of hyperbolic spaces introduced by Kohlenbach

[]. Concretely, (X,d,W ) is called a hyperbolic space if (X,d) is a metric space and W :
X ×X × [, ]→ X a function satisfying

(I) ∀x, y, z ∈ X , ∀λ ∈ [, ], d(z,W (x, y,λ))≤ ( – λ)d(z,x) + λd(z, y);
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(II) ∀x, y ∈ X , ∀λ,λ ∈ [, ], d(W (x, y,λ),W (x, y,λ)) = |λ – λ| · d(x, y);
(III) ∀x, y ∈ X , ∀λ ∈ [, ],W (x, y,λ) =W (y,x, ( – λ));
(IV) ∀x, y, z,w ∈ X , ∀λ ∈ [, ], d(W (x, z,λ),W (y,w,λ))≤ ( – λ)d(x, y) + λd(z,w).

If a space satisfies only (I), it coincides with the convex metric space introduced by Taka-
hashi []. The concept of hyperbolic spaces in [] is more restrictive than the hyperbolic
type introduced by Goebel and Kirk [] since (I)-(III) together are equivalent to (X,d,W )
being a space of hyperbolic type in []. But it is slightly more general than the hyperbolic
space defined in Reich and Shafrir [] (see []). This class of metric spaces in [] covers
all normed linear spaces, R-trees in the sense of Tits, the Hilbert ball with the hyperbolic
metric (see []), Cartesian products of Hilbert balls, Hadamard manifolds (see [, ]),
and CAT() spaces in the sense of Gromov (see []). A thorough discussion of hyperbolic
spaces and a detailed treatment of examples can be found in [] (see also [–]).
A hyperbolic space is uniformly convex [] if for u,x, y ∈ X, r > , and ε ∈ (, ] there

exists a δ ∈ (, ] such that

d
(
W

(
x, y,




)
,u

)
≤ ( – δ)r,

provided that d(x,u)≤ r, d(y,u) ≤ r, and d(x, y)≥ εr.
A map η : (,∞)× (, ] → (, ] is calledmodulus of uniform convexity if δ = η(r, ε) for

given r > . The function η ismonotone if it decreases with r (for a fixed ε), that is,

η(r, ε) ≤ η(r, ε), ∀r ≥ r > .

A subsetC of a hyperbolic spaceX is convex ifW (x, y,λ) ∈ C for all x, y ∈ C and λ ∈ [, ].
Let (X,d) be a metric space and let C be a nonempty subset of X. C is said to be a retract

ofX, if there exists a continuousmap P : X → C such that Px = x, ∀x ∈ C. Amap P : X → C
is said to be a retraction, if P = P. If P is a retraction, then Py = y for all y in the range of P.
Recall that a nonself mapping T : C → X is said to be a ({νn}, {μn}, ζ )-total asymptotically
nonexpansive nonselfmapping if there exist nonnegative sequences {νn}, {μn}with νn → ,
μn → , and a strictly increasing continuous function ζ : [,∞) → [,∞) with ζ () = 
such that

d
(
T(PT)n–x,T(PT)n–y

) ≤ d(x, y) + νnζ
(
d(x, y)

)
+μn, ∀n≥ ,x, y ∈ C, ()

where P is a nonexpansive retraction of X onto C. It is well known that each nonexpansive
mapping is an asymptotically nonexpansive mapping and each asymptotically nonexpan-
sive mapping is a ({νn}, {μn}, ζ )-total asymptotically nonexpansive mapping.
T : C → X is said to be uniformly L-Lipschitzian if there exists a constant L >  such that

d
(
T(PT)n–x,T(PT)n–y

) ≤ Ld(x, y), ∀n≥ ,x, y ∈ C.

2 Preliminaries
We now give the concept of �-convergence and collect some of its properties. Let {xn} be
a bounded sequence in a hyperbolic space X. For x ∈ X, we define

r
(
x, {xn}

)
= lim sup

n→∞
d(x,xn).
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The asymptotic radius r({xn}) of {xn} is given by

r
({xn}) = inf

{
r
(
x, {xn}

)
: x ∈ X

}
.

The asymptotic radius rC({xn}) of {xn} with respect to C ⊂ X is given by

rC
({xn}) = inf

{
r
(
x, {xn}

)
: x ∈ C

}
.

The asymptotic center A({xn}) of {xn} is the set

A
({xn}) = {

x ∈ X : r
(
x, {xn}

)
= r

({xn})}.
The asymptotic center AC({xn}) of {xn} with respect to C ⊂ X is the set

AC
({xn}) = {

x ∈ C : r
(
x, {xn}

)
= rC

({xn})}.
Recall that a sequence {xn} in X is said to �-converge to x ∈ X if x is the unique asymptotic
center of {un} for every subsequence {un} of {xn}. In this case we call x the �-limit of {xn}.

Lemma  [, ] Let (X,d,W ) be a complete uniformly convex hyperbolic space with
monotonemodulus of uniform convexity and C a nonempty closed convex subset of X.Then
every bounded sequence {xn} in X has a unique asymptotic center with respect to C.

Lemma  [] Let (X,d,W ) be a uniformly convex hyperbolic space withmonotone modu-
lus of uniform convexity η. Let x ∈ X and {αn} be a sequence in [a,b] for some a,b ∈ (, ). If
{xn} and {yn} are sequences in X such that lim supn→∞ d(xn,x)≤ c, lim supn→∞ d(yn,x)≤ c,
and limn→∞ d(W (xn, yn,αn),x) = c for some c ≥ . Then

lim
n→∞d(xn, yn) = .

Lemma  [] Let {an}, {bn}, and {cn} be sequences of nonnegative numbers such that

an+ ≤ ( + bn)an + cn, ∀n≥ .

If
∑∞

n= bn < ∞ and
∑∞

n= cn < ∞, then limn→∞ an exists.

3 Main results
We shall prove that a total asymptotically nonexpansive nonself mapping in a complete
uniformly convex hyperbolic space X with monotone modulus of uniform convexity is
demiclosed. We need the following notation:

{xn} ⇀ ω if and only if �(ω) = inf
x∈C �(x),

where C is a closed convex subset which contains the bounded sequence {xn} and �(x) :=
lim supn→∞ d(xn,x).
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Theorem  (Demiclosed principle for total asymptotically nonexpansive nonself map-
pings in hyperbolic spaces) Let (X,d,W ) be a complete uniformly convex hyperbolic space
with monotone modulus of uniform convexity η. Let C be a nonempty closed and convex
subset of X. Let T : C → X be a uniformly L-Lipschitzian and ({μn}, {νn}, ζ )-total asymp-
totically nonexpansive nonself mapping. P is a nonexpansive retraction of X onto C. Let
{xn} ⊂ C be a bounded approximate fixed point sequence, i.e., limn→∞ d(xn,Txn) =  and
{xn} ⇀ p. Then we have T(p) = p.

Proof By the definition, {xn} ⇀ p if and only if AC({xn}) = {p}. By Lemma , we have
A({xn}) = {p}. Since limn→∞ d(xn,Txn) = , by induction we can prove that

lim
n→∞d

(
xn,T(PT)m–xn

)
=  for eachm ≥ . ()

In fact, it is obvious that the conclusion is true for m = . Suppose the conclusion holds
for m ≥ , now we prove that it is also true for m + . Indeed, since T is uniformly L-
Lipschitzian, we have

d
(
xn,T(PT)mxn

) ≤ d
(
xn,T(PT)m–xn

)
+ d

(
T(PT)m–xn,T(PT)mxn

)
≤ d

(
xn,T(PT)m–xn

)
+ Ld(xn,PTxn)

≤ d
(
xn,T(PT)m–xn

)
+ Ld(xn,Txn) →  as n→ ∞.

Equation () is proved. Hence for each x ∈ X andm ≥ , from () we have

�(x) := lim sup
n→∞

d(xn,x) = lim sup
n→∞

d
(
T(PT)m–xn,x

)
. ()

Taking x = T(PT)m–p,m ≥  in (), then by () we get

�
(
T(PT)m–p

)
= lim sup

n→∞
d
(
T(PT)m–xn,T(PT)m–p

)
≤ lim sup

n→∞
{
d(xn,p) + νmζ

(
d(xn,p)

)
+μm

}
.

Letting m → ∞ and taking superior limit on the both sides, we have

lim sup
m→∞

�
(
T(PT)m–p

) ≤ �(p). ()

Assume that Tp �= p. Then {T(PT)m–p} does not converge to p, so we can find ε > ,
for any k ∈ N, that there exists m ≥ k such that d(T(PT)m–p,p) ≥ ε. We can assume
ε ∈ (, ]. Then ε

�(p)+ ∈ (, ] and there exist θ ∈ (, ] such that

 – η

(
�(p) + ,

ε

�(p) + 

)
≤ �(p) – θ

�(p) + θ
. ()

By the definition of � and (), for the above θ , there exists N ,M ∈ N such that

d(p,xn) ≤ �(p) + θ , ∀n≥N ;
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d
(
T(PT)m–p,xn

) ≤ �(p) + θ , ∀n≥N ,m≥M.

ForM, there existsm ≥M such that

d
(
T(PT)m–p,p

) ≥ ε =
ε

�(p) + θ
· (�(p) + θ

) ≥ ε

�(p) + 
· (�(p) + θ

)
.

Since X is uniformly convex and η is monotone, applying () we have

d
(
W

(
p,T(PT)m–p,




)
,xn

)
≤

(
 – η

(
�(p) + θ ,

ε

�(p) + 

))
· (�(p) + θ

)

≤ �(p) – θ

�(p) + θ
· (�(p) + θ

)
= �(p) – θ .

Since z :=W (p,T(PT)m–p,  ) �= p, we have got a contradiction with A({xn}) = {p}. It fol-
lows that Tp = p and the proof is completed. �

Theorem  Let C be a nonempty closed and convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η. Let Ti : C → X, i = , ,
be uniformly L-Lipschitzian and ({νn}, {μn}, ζ )-total asymptotically nonexpansive nonself
mappings. For arbitrarily chosen x ∈ C, {xn} is defined as follows:

⎧⎨
⎩xn+ = PW (xn,T(PT)n–yn,αn), n≥ ,

yn = PW (xn,T(PT)n–xn,βn),
()

where P is a nonexpansive retraction of X onto C. Assume that F =:
⋂

i= F(Ti) �= ∅ and the
following conditions are satisfied:

(i)
∑∞

n= νn <∞ and
∑∞

n= μn < ∞;
(ii) there exist constants a,b ∈ (, ) such that {αn}, {βn} ⊂ [a,b];
(iii) there exists a constantM >  such that ζ (r)≤Mr, r ≥ ,

then the sequence {xn} defined by () �-converges to a point in F .

Proof We divide our proof into three steps.
Step . In the sequel, we shall show that

lim
n→∞d(xn,p) exists for each p ∈F . ()

In fact, by conditions (), (I), and (iii), we get

d(yn,p) = d
(
PW

(
xn,T(PT)n–xn,βn

)
,p

)
≤ d

(
W

(
xn,T(PT)n–xn,βn

)
,p

)
≤ ( – βn)d(xn,p) + βnd

(
T(PT)n–xn,p

)
≤ ( – βn)d(xn,p) + βn

[
d(xn,p) + νnζ

(
d(xn,p)

)
+μn

]
≤ ( + νnM)d(xn,p) +μn ()

http://www.fixedpointtheoryandapplications.com/content/2015/1/4
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and

d(xn+,p) = d
(
PW

(
xn,T(PT)n–yn,αn

)
,p

)
≤ d

(
W

(
xn,T(PT)n–yn,αn

)
,p

)
≤ ( – αn)d(xn,p) + αnd

(
T(PT)n–yn,p

)
≤ ( – αn)d(xn,p) + αn

[
d(yn,p) + νnζ

(
d(yn,p)

)
+μn

]
≤ ( – αn)d(xn,p) + αn( + νnM)

[
( + νnM)d(xn,p) +μn

]
+ αnμn

≤ [
 +

(
νnM + ν

nM
)]d(xn,p) + ( + νnM)μn. ()

Combining () and (), we have

d(xn+,p) ≤ ( + σn)d(xn,p) + ξn, ∀n≥ , ()

where σn = νnM + ν
nM, ξn = ( + νnM)μn. Furthermore, using the condition (i), we have

∞∑
n=

σn < ∞ and
∞∑
n=

ξn < ∞. ()

Consequently, a combination of (), (), and Lemma  shows that () is proved.
Step . We claim that

lim
n→∞d(xn,Tixn) = , i = , . ()

In fact, it follows from () that limn→∞ d(xn,p) exists for each given p ∈ F . Without loss
of generality, we assume that

lim
n→∞d(xn,p) = c≥ . ()

By () and (), we have

lim inf
n→∞ d(yn,p) ≤ lim sup

n→∞
d(yn,p) ≤ lim

n→∞
{
( + νnM)d(xn,p) +μn

}
= c. ()

Noting

d
(
T(PT)n–yn,p

) ≤ d(yn,p) + νnζ
(
d(yn,p)

)
+μn

≤ ( + νnM)d(yn,p) +μn, ∀n≥ ,

by () we have

lim sup
n→∞

d
(
T(PT)n–yn,p

) ≤ c. ()

Besides, by () we get

d(xn+,p) = d
(
PW

(
xn,T(PT)n–yn,αn

)
,p

) ≤ ( + σn)d(xn,p) + ξn,

http://www.fixedpointtheoryandapplications.com/content/2015/1/4
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which yields

lim
n→∞d

(
W

(
xn,T(PT)n–yn,αn

)
,p

)
= c. ()

Now by (), (), (), and Lemma , we have

lim
n→∞d

(
xn,T(PT)n–yn

)
= . ()

Using the same method, we also have

lim
n→∞d

(
xn,T(PT)n–xn

)
= . ()

By virtue of (), we get

d(yn,xn) = d
(
PW

(
xn,T(PT)n–xn,βn

)
,xn

)
≤ d

(
W

(
xn,T(PT)n–xn,βn

)
,xn

)
≤ βnd

(
T(PT)n–xn,xn

) →  as n→ ∞. ()

Combining () and (), we obtain

d
(
xn,T(PT)n–xn

) ≤ d
(
xn,T(PT)n–yn

)
+ d

(
T(PT)n–yn,T(PT)n–xn

)
≤ d

(
xn,T(PT)n–yn

)
+ Ld(yn,xn) →  as n→ ∞. ()

Moreover, it follows from () that

d(xn+,xn) = d
(
PW

(
xn,T(PT)n–yn,αn

)
,xn

)
≤ d

(
W

(
xn,T(PT)n–yn,αn

)
,xn

)
≤ αnd

(
T(PT)n–yn,xn

) →  as n→ ∞. ()

Now by (), (), and (), for each i = , , we get

d(xn,Tixn) ≤ d(xn,xn+) + d
(
xn+,Ti(PTi)nxn+

)
+ d

(
Ti(PTi)nxn+,Ti(PTi)nxn

)
+ d

(
Ti(PTi)nxn,Tixn

)
= d(xn,xn+) + d

(
Ti(PTi)nxn+,Ti(PTi)nxn

)
+ d

(
xn+,Ti(PTi)nxn+

)
+ d

(
Ti(PTi)nxn,Tixn

)
≤ ( + L)d(xn,xn+) + d

(
xn+,Ti(PTi)nxn+

)
+ Ld

(
Ti(PTi)n–xn,xn

) →  as n→ ∞.

Therefore, () holds.
Step . Now we are in a position to prove the �-convergence of {xn}. Since {xn} is

bounded, by Lemma , it has a unique asymptotic center AC({xn}) = {x∗}. Let {un} be any
subsequence of {xn} with AC({un}) = {u}. Since limn→∞ d(xn,Txn) = limn→∞ d(xn,Txn) =

http://www.fixedpointtheoryandapplications.com/content/2015/1/4
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, it follow from Theorem  that u ∈ F . By the uniqueness of asymptotic centers, we get
x∗ = u. It implies that x∗ is the unique asymptotic center of {un} for each subsequence {un}
of {xn}, that is, {xn} �-converges to x∗ ∈F . The proof is completed. �

Example  Let R be the real line with the usual norm | · | and let C = [–, ]. Define two
mappings T,T : C → C by

Tx =

{
– sin x

 , x ∈ [, ],
 sin x

 , x ∈ [–, ),

and

Tx =

{
x, x ∈ [, ],
–x, x ∈ [–, ).

It is proved in [, Example .] that both T and T are asymptotically nonexpansivemap-
pings with kn = , ∀n≥ . Therefore, they are total asymptotically nonexpansive mappings
with νn = μn = , ∀n ≥ , ζ (r) = r, ∀r ≥ . Additionally, they are uniformly L-Lipschitzian
mappings with L = . F(T) = {} and F(T) = {≤ x ≤ }. Let

αn =
n

n + 
, βn =

n
n + 

, ∀n≥ . ()

Therefore, the conditions of Theorem  are fulfilled.

Example  Let R be the real line with the usual norm | · | and let C = [,∞). Define two
mappings T,T : C → C by

Tx = sinx and Tx = x.

It is proved in [, Example ] that both T and T are total asymptotically nonexpan-
sive mappings with νn = 

n , μn = 
n , ∀n≥ . Moreover, they are uniformly L-Lipschitzian

mappings with L = . F(T) = {} and F(T) = { ≤ x < ∞}. Let {αn}, {βn} be the same as in
(). Therefore, the conditions of Theorem  are fulfilled.

Theorem  Under the assumptions of Theorem , if one of T and T is demi-compact,
then the sequence defined by () converges strongly (i.e., in themetric topology) to a common
fixed point in F .

Proof By () and the assumption that one of T and T is demi-compact, there exists a
subsequence {xni} ⊂ {xn} such that {xni} converges strongly to some point p ∈ C. Then by
the continuity of T and T, we get

d(p,Tip) = lim
n→∞d(xni ,Tixni ) = , i = , ,

which implies that p ∈ F . It follows from () that limn→∞ d(xn,p) exists and thus
limn→∞ d(xn,p) = . The proof is completed. �

http://www.fixedpointtheoryandapplications.com/content/2015/1/4
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Theorem  Under the assumptions of Theorem , if there exists a nondecreasing function
f : [,∞)→ [,∞) with f () = , f (r) > , ∀r >  such that

f
(
d(x,F )

) ≤ d(x,Tx) + d(x,Tx), ∀x ∈ C, ()

then the sequence defined by () converges strongly (i.e., in themetric topology) to a common
fixed point in F .

Proof By () and () we obtain limn→∞ f (d(xn,F )) = . Since f is nondecreasing with
f () = , f (r) > , ∀r > , we have

lim
n→∞d(xn,F ) = . ()

Now we prove that {xn} is a Cauchy sequence in C. In fact, it follows from () that, for
any p ∈F ,

d(xn+,p) ≤ ( + σn)d(xn,p) + ξn, ∀n≥ ,

where
∑∞

n= σn <∞ and
∑∞

n= ξn < ∞. Then, for any p ∈F and any positive integers n,m,
we get

d(xn+m,xn) ≤ d(xn+m,p) + d(xn,p)

≤ ( + σn+m–)d(xn+m–,p) + ξn+m– + d(xn,p).

Since for each x≥ ,  + x ≤ ex, we obtain

d(xn+m,xn) ≤ eσn+m–d(xn+m–,p) + ξn+m– + d(xn,p)

≤ eσn+m–+σn+m–d(xn+m–,p) + eσn+m–ξn+m– + ξn+m– + d(xn,p)

≤ · · ·
≤ e

∑n+m–
i=n σid(xn,p) + e

∑n+m–
i=n+ σiξn + e

∑n+m–
i=n+ σiξn+ + · · ·

+ eσn+m–ξn+m– + ξn+m– + d(xn,p)

≤ ( +K )d(xn,p) +K
n+m–∑
i=n

ξi,

where K = e
∑∞

i= σi < ∞. It follows from () that

d(xn+m,xn) ≤ ( +K )d(xn,F ) +K
n+m–∑
i=n

ξi →  as n,m → ∞.

Thus {xn} is a Cauchy sequence in C. C is complete for it is a closed subset in a complete
hyperbolic space. Without loss of generality, we can assume that {xn} converges strongly
to some point p∗ ∈ C. It is easy to prove that F is closed. It follows from () that p∗ ∈F .
The proof is completed. �

http://www.fixedpointtheoryandapplications.com/content/2015/1/4
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