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Abstract

In this paper, we prove some strong and A-convergence theorems for a finite family
of multivalued quasi-nonexpansive mappings satisfying condition (£) in CAT(x)
spaces. Our results extend the corresponding results of Abkar and Eslamian
(Nonlinear Anal. 75:1895-1903, 2012), Panyanak (Fixed Point Theory Appl. 2014:1,
2014), Shahzad and Zegeye (Nonlinear Anal. 71:838-844, 2009) and many others.
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1 Introduction

Fixed point theory for multivalued contractions and nonexpansive mappings using the
Hausdorff metric was first studied by Markin [1] and Nadler [2]. Since then different iter-
ative processes have been used to approximate fixed points of multivalued nonexpansive
mappings. Sastry and Babu [3] defined Mann and Ishikawa iterates for a multivalued map
T in a Hilbert space. Panyanak [4] and Song and Wang [5] generalized the results of Sastry
and Babu [3] to uniformly convex Banach spaces. Later, Shahzad and Zegeye [6] defined
two types of Ishikawa iteration processes and extended the results of [3—5]. The reader
may consult [7] for more detail. Recently, Abkar and Eslamian [8] established strong and
A-convergence theorems for the following iterative process for a finite family of multival-

ued quasi-nonexpansive mappings satisfying condition (E) in CAT(0) spaces:

Yn1l = (1 - an,l)xn () Uy 120,15

Vn2 = (1 - an,2)xn b Op22pn,2,

Ynm-1 = (1- Oln,m—l)xn D Ay m-1Znm-1

Xntl = (1 - an,m)xn (&) UymZnm N = 1,

where z,; € T1(x,) and z,x € Tx(y, k1) for k =2,...,m. It is easy to see that if m = 2 and
Ty = T, = T, then the sequence {x,} defined by (1) is the Ishikawa iteration:
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In =1 —ap1)%, ® ap1zn,

Xn+l = (1 - an,Z)xn (&) Oln,zzi,, n= 1:

where z, € Tx,, and z), € Ty,,.

The purpose of the paper is to extend and improve the corresponding results of Abkar
and Eslamian [8] to the general setting of CAT (k) spaces, which are geodesic spaces of
bounded curvature, where « € R is the curvature bound. For example, the n-dimensional
hyperbolic space H” is a CAT(-1) space and the #-dimensional unit sphere S” is a CAT(1)
space (see Section 2 for details). It is worth mentioning that any CAT(x) space is a CAT(«”)
space for k’ > k. Thus all results for CAT(x) spaces with x > 0 immediately apply to any
CAT(0) space.

Let D be a subset of a metric space (X, d). Recall that an element p € D is called a fixed
point of a single-valued mapping T if p = Tp and of a multivalued mapping T if p € Tp.
The set of fixed points of T is denoted by F(T'). D is said to be proximinal if, for each x € X,
there exists an element x* € D such that

d(x,D) = inf{d(x,y) S D} = d(x,x*).
It is evident that every proximinal set is closed and every compact set is proximinal
(see [9]).
Let 2% be a family of nonempty subsets of D. We denote by C(D), P(D) and K(D) the

families of nonempty closed subsets, nonempty proximinal subsets and nonempty com-
pact subsets of D, respectively. The Hausdorff metric on K(D) is defined by

H(A,B) = max{sup d(x, B)sup d(y,A)}
x€A yE

for all A, B € KC(D), where d(x, B) = inf{d(x,z) : z € B}.

Definition 1 A multivalued mapping T : D — 2P is said to
(i) be nonexpansive if, for all x,y € D,

H(Tx, Ty) < d(x,y);
(i) be quasi-nonexpansive if F(T) # () and
H(Tx,Tp) <d(x,p), VpeF(T),x€D;
(iii) satisfy condition (E,) provided that
d(x, Ty) < pd(x, Tx) + d(x,y), x,y€ Dand pu > 1.
We say that T satisfies condition (E) whenever T satisfies (E,) for some p > 1.

Remark 1 There exist multivalued quasi-nonexpansive mappings satisfying condition
(E). For example, define a mapping 7 : [0,5] — [0, 5] by
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- {[o, 5], x#5,
{1}, x=5.

Let x,y € [0,5), then we get
H(Tx, Ty) = "%‘ <d(x,y).
Ifx € [0,4] and y = 5, then
H(Tx, Ty) =1 <5-x=d(x,y).
If x € (4,5) and y = 5, we have
4x
d(x, Tx) = = dlx,y)=5-x, H(Tx,Ty)=1 and d(x,Ty)=x-1.

Then it is easy to prove that T has the required properties.

In 1991, Xu [10] introduced the best approximation operator Pr to find fixed points
of *-nonexpansive multivalued mappings. In 2013, Dehghan [11] obtained the demiclosed
principle of such mappings and approximated their fixed points using Pr. Let Py : D — 2P
be a multivalued mapping defined by

Pr(x) = {u € Tx:d(x,u) =d(x, Tx)}.
By [12] we have the following lemma.

Lemmal [12] Let D be a nonempty subset of a metric space (X,d) and T : D — P(D) be a
multivalued mapping. Then
(i) d(x, Tx) = d(x, Pr(x)) for all x € D;
(ii) w € F(T) & x € F(Pr) & Pr(x) = {x};
(i) F(T)=F(Pr).

2 Preliminaries
The study of fixed points in CAT (k) spaces was initiated by Kirk [13, 14]. A few recent
new convergence results of classical iterations on CAT(«) spaces have been obtained (see,
e.g., [15-19] and the references therein). For example, Panyanak [19] in 2014 proved the
strong convergence of two types of Ishikawa iteration processes introduced in Shahzad
and Zegeye [6] for some multivalued quasi-nonexpansive mappings in CAT(1) spaces.
Let (X,d) be a metric space and x,y € X with [ = d(x,y). For x,y € X, a geodesic path
joining x to yisanisometry c¢: [0, /] — X such that ¢(0) = «, ¢(/) = y. The image of a geodesic
path is called a geodesic segment, and we shall denote a definite choice of this geodesic
segment by [x, y]. A metric space X is a geodesic space (r-geodesic space) if every two points
of X (every two points with distance smaller than r) are joined by a geodesic segment, and
X is a uniquely geodesic space (r-uniquely geodesic space) if there is exactly one geodesic
segment joining x and y for any x,y € X (for any x,y € X with d(x,y) <r). A subset D of X
is said to be convex if D includes every geodesic segment joining any two of its points.
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The n-dimensional sphere S” is the set {x = (x1,...,%,.1) € R™! : (x|x) = 1}, where
(-|-) is the Euclidean scalar product. It is endowed with the following metric: ds» (x,y) =

arccos(x|y), x,y € S".

Definition 2 Given « € R, denote by M the following metric spaces:
(i) if & =0, then My is the Euclidean space R”;
(ii) if & >0, then M is obtained from the sphere S” by multiplying the distance
function by 1/4/k;
(iii) if & < 0, then M? is obtained from the hyperbolic n-space H” by multiplying the
distance function by 1//=.

A geodesic triangle A(x,y,z) in a geodesic space (X, d) consists of three points , y, z of
X and three geodesic segments joining each pair of vertices. A comparison triangle of a
geodesic triangle A(x, y,z) is the triangle Ax, ¥,Z) in M,% such that

d(x,y) = dM,% *,), d(y,z) = dM,% 0,2), d(z,x) = dM,% (z,%).

If k > 0, then such a triangle A always exists whenever d(x, y) + d(y, z) + d(z, x) is less than
2D,., where D, = 7w/ /k. A point p € [%,7] is called a comparison point for p € [x,y] if
dx,p)=d M2 (%, ). A geodesic triangle in X is said to satisfy the CAT (k) inequality if for
any p,q € A(x,y,z) and for their comparison points p,7 € A(%, 7, Z), we have

d(p,q) < dyp (5, @)-

Definition 3 Given « > 0, a metric space X is a CAT(x) space if X is D, -geodesic and any
geodesic triangle A(x,y,z) in X with d(x,y) + d(y,z) + d(z,x) < 2D, satisfies the CAT (k)

inequality.

In 1976, Lim [20] introduced the concept of A-convergence in a general metric space.
Let {x,} be a bounded sequence in a CAT(x) space X. For x € X, we define

r(x, {x,,}) = limsup d(x, x,,).

n—00

The asymptotic radius r({x,}) of {x,} is given by
r({xa}) = inf{r(x, {x}) :x € X}.
The asymptotic center A({x,}) of {x,} is the set

A({xa)) = {x € X i r(x o)) = r({xa}) }.

A sequence {x,} in a CAT(x) space X is said to A-converge to x € X if x is the unique
asymptotic center of {u,} for every subsequence {u,} of {x,}.

It follows from [21] that CAT(x) spaces are uniquely geodesic spaces. In this paper, we
mainly focus on CAT (k) spaces with « > 0, and we now collect some elementary facts
about them.
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Lemma 2 [15] Let k > 0 and (X,d) be a CAT(x) space with diam(X) =: sup{d(u,v) : u,v €
X} < 2”7 Then A({x,}) consists of exactly one point.

Lemma 3 [15] Let k > 0 and (X, d) be a complete CAT(«) space with diam(X) < % for

some ¢ € (0,7/2). Then every sequence in X has a A-convergent subsequence.

Lemma 4 [15] Let k > 0 and (X, d) be a complete CAT (k) space with diam(X) < iﬁ’g for
some ¢ € (0,7/2). D is a closed convex subset of X. If {x,} C D and A-1im,,_, » x, = x, then
xeD.

Since the asymptotic center is unique by Lemma 2, we can obtain the following lemma.
Lemma 5 [22] Let k > 0 and (X,d) be a complete CAT (k) space with diam(X) < iﬁ‘efor
some ¢ € (0,7/2). Let {x,} be a sequence in X with A({x,}) = {x}. If {u,} is a subsequence of

{x,} with A({u,}) = {u} and {d(x,, u)} converges, then x = u.

Lemma 6 [21] Let « > 0 and (X,d) be a complete CAT(x) space with diam(X) < %for
some ¢ € (0,7/2). Then, for any x,y,z € X and t € [0,1], we have

d(1-x®ty,z) < (1 - )d(x,2) + td(, 2).

Lemma 7 [23] Let k > 0 and (X,d) be a CAT(x) space with diam(X) < &ﬁ‘g for some
€ €(0,7/2). Then, for any x,y,z € X and t € [0,1], we have

A (A-0x® ty,z) <(1-0d*(x,2) + td*(y,2) - gt(l - )d*(x,),
where R = (r — 2¢) tan(g).

3 Main results

In this section, we prove our main theorems.

Theorem 1 (Demiclosed principle) Let « > 0 and (X, d) be a complete CAT (k) space with
diam(X) < i\/E"sfor some ¢ € (0,7/2). Let D be a nonempty closed convex subset of X, and
let T : D — K(D) be a multivalued mapping satisfying condition (E). If {x,} is a sequence
in D such that lim,,_, o d(x,, Tx,) = 0 and A-lim,_,  x, = x, then x € Tx, from which we
may formally say that I — T is demiclosed at zero.

Proof Since A-lim,_, %, = %, by Lemma 4 we have x € D. For each n > 1, we choose
z, € Tx such that

d(xnr Zn) = d(xn: Tx)

By the compactness of Tx, there is a subsequence {z,, } of {z,} such that lim_. z,, =w €
Tx. It follows from condition (E) that

d('xl’lkvz}’lk) = d(xnk: Tx) = /’Ld(xnk¢ Txnk) + d(xnkvx)



Wan Fixed Point Theory and Applications (2015) 2015:5 Page 6 of 11

for some p > 1. Note that
A%y, W) < dXny, 2y) + A2y, W) < (X, Tity) + Ay, %) + d(2y, w).

Thus

lim sup d(x,,, , w) < limsup d(x,,,x).

k— 00 k—o00

By the uniqueness of asymptotic centers, we obtain x = w € Tx. The proof is completed.
O

Theorem 2 Let k > 0 and (X,d) be a complete CAT(«) space with diam(X) < &ﬁ‘g for
some ¢ € (0,7/2). Let D be a nonempty closed convex subset of X, and let T; : D — K(D)
(i=1,...,m) be a family of multivalued quasi-nonexpansive mappings satisfying condition
(E). Suppose that F = (2, F(T;) # ¥ and T;(p) = {p} foreachp € F. Let a,; € [a,b] C (0,1)
(i=1,...,m). Then {x,} defined by (1) A-converges to some point in F.

Proof We divide our proof into several steps.
Step 1. In the sequel, we shall show that lim,,_, o d(x;,, p) exists for any p € F. Since T is
quasi-nonexpansive, by Lemma 6 we have
AWYn1,p) = d((l — Q)% D an,lzn,hp)

< (= au1)d(xy, p) + 0p1d(z1,p)
= (1 - an,l)d(xn;p) + aﬂ,ld(zn,ll Tl (p))
= (1 - an,l)d(xn;p) + an,lH(Tl(xn)’ Tl(p))
< (1 - an,l)d(xn’p) + an,ld(xnrp)

= d(x,, p)

and

AWn2:p) = d((1 = @p2)%n D Xn2202,P)
< (1 - an2)d(x,p) + an2d(2n2,p)
= (1= @ 2)d (0, p) + W2 (202, To(p)
< (1= @ 2)d(xn, p) + 2 H (T2 (1), T2 (p))
< (1= an2)d(xn, p) + @n2d (Y1, p)

< d(x, p).
By continuing this process we have
d(xn+lrp) =< d(xmp)

It implies that d(x,, p) is decreasing and bounded below, thus lim,,_, o, d(x,, p) exists for
anyp € F.
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Step 2. We shall show that lim,,_, o d(x,,, T;(x,)) = 0 for i =1,..., m. In fact, by Lemma 7

we obtain

dz(yn,l;P) = d2((1 —p1)%n D an,lzn,lyp)

R
E (1 - an,l)dz(xn:p) + an,le(zn,lrp) - Ean,l(l - O[;’1,1)('12(9‘:;1:Zn,l)
2 2 R 2
= (1 - an,l)d (xnrp) + an,ld (Zn,lr Tl (P)) - Ean,l(l - an,l)d (xnr Zn,l)
R
E (1 - an,l)dz(xmp) + an,lHZ(Tl(xn); Tl (P)) - Ean,l (1 - an,l)dz(xn: Zn,l)
2 2 R 2
= (1 - an,l)d (xmp) + O5n,1d (xmp) - Ean,l(l - an,l)d (xmzn,l)
2 R 2
=d"(xn,p) - Ean,l(l = ap1)d” (%, Z0,1)
and
dz(yn,Z:p) =d’ ((1 — 0y 2)%, D an,Zzn,Z»P)
R
< (1 - an,Z)dz (xnrp) + an,2d2 (Zn,2:p) - Ean,Z (1 - an,Z)dz (xnr Zn,Z)
2 2 R 2
= (1 - an,2)d (xmp) + an,Zd (Zn,Z; TZ(p)) - Ean,Z(l - an,Z)d (xm Zn,2)
R
= (1 - an,Z)dz (xnrp) + an,2H2(T2(yn,1)¢ Tz(P)) - Ean,Z(l - an,Z)dz(xm Zn,Z)
2 2 R 2
S (1 - an,Z)d (xmp) + an,Zd ()/n,l:P) - 5“;1,2(1 - an,2)d (xn’ Zn,Z)
2 R 2 R 2
< d (xmp) - 5“;4,2“;4,1(1 - an,l)d (xm Zn,l) - Ean,Z(l - an,Z)d (xn: Zn,2)~
Similarly, we get
dz(xm-l;p) = dz((l — Oym)%pn D an,mzn,m;p)
R
S (1 - an,m)dz(xn;p) + an,mdz(zn,m;p) - Ean,m(l - an,m)dz(xm Zn,m)

R
=1~ an,m)dz(xmp) + an,mdz (Zn,m: Tz(lﬂ)) - Ean,m(l - an,m)dz(xm Zym)
<(1- an,m)dz(xnrp) + an,mH2(Tm(Yn,m—l)y Tm(p))

R
- Ean,m(l - an,m)dz(xm Zn,m)

R
<(1- an,m)d2 (xmp) + an,mdz(yn,m—l,p) - Ean,m(l - an,m)dZ(men,m)
2 R 2
S d (xmp) - gan,m(l - an,m)d (xnvzn,m)
- Ean,man,m—l (1- an,m—l)d2 (%5 Zn,m—l) -

R

2
- Ean,man,m—l e an,l(l - Oln,l)d (xn: Zn,l)'
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Then we have

R R
Eam(l - b)dz(xn: Zn,l) S aan,man,m—l e an,l(l - an,l)dZ(xm Zn,l)

< dz(xnrp) - dz(xn+lrp)¢

which yields that

=R
> 5@ (1= D) @y, 20) < d(x1,p) < 00,

n=1
and hence
lim d(x,,z,1) =0.
n—0oQ
Similarly, we can also have
lim d(x,,z,4) =0 (k=2,...,m).
n—0Q

Thus we obtain

lim d(x,, T1(x,)) < lim d(x,,2,1) =0, 2)

n— 00 n— 00

lim d(xm Tk(yn,k—l)) = lim d(xn’ Zn,k) =0 (3)
and

lim d(xmyn,k—l) = Oy k-1 lim d(xm Zn,k—l) =0 (4)

for k =2,...,m. Now, by condition (E), (3) and (4), we have, for some u > 1,

A% Ti(xn)) < A Yuior) + AT Texn))
< d®xn, Yni-1) + nd (yn,k—lr Tk(Yn,k—l)) +d( X, Y k1)
< A Yuk-1) + AYni-1,%n) + (1A (X, Tk Yi-1))
+d (X, Ynk-1) = 0 (5)

as n — oo (for k =2,...,m). By (2) and (5) we have
lim d(x,, Tj(x,)) = 0

fori=1,...,m.

Step 3. Now we are in a position to prove the A-convergence of {x,}. In fact, let
W, (x,) := UA({u,}) for all subsequences {u,} of {x,}. We claim that W, (x,) C F. Let
u € W,(x,), then there exists a subsequence {u,} of {x,} such that A({u,}) = {u#}. By
Lemma 3 and Lemma 4, there exists a subsequence {v,} of {u,} such that A-lim, v, =
v € D. Since lim,,_, oo d(v,,, T;v,) = 0 (i = 1,...,m), it follows from Theorem 1 that v € F
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and thus lim,,_, » d(x,,v) exists by Step 1. By Lemma 5, u = v € F, which implies that
W, (x,) C F. Let {u,} be a subsequence of {x,} with A({u,}) = {1}, and let A({x,}) = {x}.
Since u € W, (x,) C F and lim,,_, o d(x,,, u) converges, we get x = u by Lemma 5. It implies
that W, (x,) consists of exactly one point. The proof is completed. O

Remark 2 Theorem 2 improves and extends the corresponding results in Abkar and Es-

lamian [8, Theorem 3.6].

In the sequel, we make use of condition (A) introduced by Senter and Dotson [24].
A mapping T : D — D, where D is a subset of a normed space E, is said to satisfy condition
(A) if there exists a nondecreasing function f : [0,00) — [0, 00) with f(0) = 0, f(r) > O for
all 7 > 0 such that

ll - Tx|| > f (d(x, F(T))) forallxeD.

Theorem 3 Let k > 0 and (X,d) be a complete CAT(x) space with diam(X) < &ﬁ'e for
some € € (0,7/2). Let D be a nonempty closed convex subset of X, and let T; : D — C(D)
(i=1,...,m) be a family of multivalued quasi-nonexpansive mappings satisfying condition
(E). Suppose that F = (\i2y F(T;) # @ and T;p = {p} for each p € F. Let a,,; € [a,b] C (0,1)
(i=1,...,m). Assume that there is a nondecreasing function f : [0, 00) — [0, 00) with f(0) =
0,f(r) >0 forall r > 0 such that for somei=1,...,m,

d (%, Ti(xn)) = f (d(x, F)).- (6)
Then {x,} defined by (1) converges strongly to some point in F.

Proof As in the proof of Theorem 2, for i = 1,...,m, we have lim,_, o d(x,, Ti(x,)) = 0.
Hence by assumption (6) we obtain lim,_, . d(x,,, F) = 0. Now we can choose a subse-
quence {x,, } C {x,} and a subsequence {p;} C F such that for all positive integer k > 1,

1
A% pr) < %

Since for each p € F the sequence {d(x,,p)} is decreasing, we get

1
d(xnk“:pk) = d(xnk’pk) < ﬁ

Hence

1 1 1
d(Pk+1,pk) =< d(xnkmpku) + d(xnkﬂ;pk) < W + ? < F

Then {pi} is a Cauchy sequence in D. Without loss of generality, we can assume that py —

p* e D.Sinceforeachi=1,...,m
' Tlp")) = Jim dlpu, T(p7) < i H(T), Tip")) < fim (o) =0

then p* € F and {x,,} converges strongly to p*. Since lim,_, o d(x,, p*) exists, it follows
that {x,} converges strongly to p*. The proof is completed. O
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Remark 3 Theorem 3 improves and extends the corresponding results in Abkar and Es-
lamian [8, Theorem 3.9] and Panyanak [19, Theorem 3.2].

Theorem4 Letk > 0 and (X,d) be a complete CAT («) space with diam(X) < i\/lf forsome
e € (0,7/2). D is a nonempty closed convex subset of X. Let T; : D — P(D) (i =1,...,m)
be a family of multivalued mappings with F = (-, F(T;) # @ such that Pr, is quasi-
nonexpansive satisfying condition (E). For x; € D, define the sequence {x,} C D as follows:

In1 = (1= Bu1)xn @ Buizut,
In2 = (L= Bu2)xn © Buozn2,

(7)
Ynm-1 =1 = Bum-1)%1 © Bum-1Znm-1,

K1 = (1= ,Bn,m)xn @ BumZum n=1,

where z,) € Pr, (%), Znk € Pr,(Yui-1) (k=2,...,m) and B,; € [a,b] C (0,1) (i =1,...,m).
Assume that there is a nondecreasing function f : [0,00) — [0,00) with f(0) =0, f(r) >0
for all r > 0 such that for somei=1,...,m,

d(xn: Tz(xn)) Zf(d(xnr -F)) (8)
Then {x,} defined by (7) converges strongly to some point in F.

Proof 1t follows from Lemma 1 and (8) that

d(xanTl‘ (xn)) = d(xn: Ti(xn)) Zf(d(xm f)) =f (d<xm mF(PT,)>>
i=1

for some i =1,...,m. Next we show that Pr,(x) is closed for any i=1,...,m and x € D. In
fact, let {y,} C Pr,(x) and lim,_, ¥, = y for some y € D. Then

d(x,y,) = d(x, Ti(x)) and nlLrIgo dx,y,) = dx,y).

It follows that d(x,y) = d(x, T;(x)) and hence y € Pr,(x). Now applying Theorem 3 to the
mappings Pr,, we conclude that the sequence {x,} defined by (7) converges strongly to
some point in F. The proof is completed. O

Remark 4 Theorem 4 improves and extends the corresponding results in Abkar and Es-
lamian [8, Theorem 3.12] and Panyanak [19, Theorem 3.4].
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