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Abstract
The purpose of this article is to investigate a Halpern-like proximal point algorithm for
common zero points of an infinite family of accretive operators. Possible
computational errors are taken into account. Strong convergence theorems are
established in a reflexive Banach space.
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1 Introduction
The class of accretive operators is an important class of nonlinear operators. Interest in
accretive operators stems mainly from their firm connection with equations of evolutions.
It is well known that many physically significant problems can be modeled by initial value
problems of the following form: x′(t) + Ax(t) = , x() = x where A is an accretive operator
in an appropriate Banach space. Typical examples where such evolution equations occur
can be found in the heat, wave or Schrödinger equations. If x(t) is dependent on t, then
the above problem is reduced to Au =  whose solutions correspond to the equilibrium
points of the initial value problem. An early fundamental result in the theory of accretive
operators, due to Browder [], states that the initial value problem is solvable if A is locally
Lipschitz and accretive on E. One of the most popular techniques for solving zero points
of accretive operators is the proximal point algorithm, which was proposed by Martinet
[, ] and generalized by Rockafellar [, ].

Halpern algorithm is efficient to study fixed points of nonexpansive mappings. The ad-
vantage of Halpern algorithm for nonexpansive mappings is that strong convergence is
guaranteed without any compact assumptions or projections involved. Recently Halpern-
like proximal point algorithms have been extensively studied by many authors; see [–]
and the references therein.

In this article, we investigate common zeros of an infinite family of accretive operators
based on a Halpern-like proximal point algorithm. Strong convergence theorems are es-
tablished in a reflexive and strictly convex Banach space which has a weakly continuous
duality mapping.

2 Preliminaries
Let R+ be the positive real number set. Let ϕ : [,∞] := R+ → R+ be a continuous strictly
increasing function such that ϕ() =  and ϕ(t) → ∞ as t → ∞. This function ϕ is called a
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gauge function. Let E be a Banach space with the dual E∗. The duality mapping Jϕ : E → E∗

associated with a gauge function ϕ is defined by

Jϕ(x) =
{

f ∗ ∈ E∗ :
〈
x, f ∗〉 = ‖x‖ϕ(‖x‖),

∥∥f ∗∥∥ = ϕ
(‖x‖)}, ∀x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing. In the case that ϕ(t) = t, we write J for
Jϕ and call J the normalized duality mapping.

Let UE = {x ∈ E : ‖x‖ = }. The norm of E is said to be Gâteaux differentiable if the limit
limt→

‖x+ty‖–‖x‖
t exists for each x, y ∈ UE . In this case, E is said to be smooth. The norm of

E is said to be uniformly Gâteaux differentiable if for each y ∈ UE , the limit is attained uni-
formly for all x ∈ UE . The norm of E is said to be Fréchet differentiable if for each x ∈ UE ,
the limit is attained uniformly for all y ∈ UE . The norm of E is said to be uniformly Fréchet
differentiable if the limit is attained uniformly for all x, y ∈ UE . It is well known that (uni-
form) Fréchet differentiability of the norm of E implies (uniform) Gâteaux differentiability
of the norm of E. It is well known that if the norm of E is uniformly Gâteaux differentiable,
then the duality mapping J is single-valued and uniformly norm to weak∗ continuous on
each bounded subset of E.

Following Browder [], we say that a Banach space E has a weakly continuous duality
mapping if there exists a gauge ϕ for which the duality mapping Jϕ(x) is single-valued and
weak-to-weak∗ sequentially continuous (i.e., if {xn} is a sequence in E weakly convergent
to a point x, then the sequence Jϕ(xn) converges weakly∗ to Jϕ). It is well known that lp has
a weakly continuous duality mapping with a gauge function ϕ(t) = tp– for all  < p < ∞.
Set

�(t) =
∫ t


ϕ(τ ) dτ , ∀t ≥ ,

then

Jϕ(x) = ∂�
(‖x‖), ∀x ∈ E,

where ∂ denotes the subdifferential in the sense of convex analysis.
Let ρE : [,∞) → [,∞) be the modulus of smoothness of E by

ρE(t) = sup

{‖x + y‖ – ‖x – y‖


–  : x ∈ UE ,‖y‖ ≤ t
}

.

A Banach space E is said to be uniformly smooth if ρE(t)
t →  as t → . Let q > . E is said

to be q-uniformly smooth if there exists a fixed constant c >  such that ρE(t) ≤ ctq. If E is
q-uniformly smooth, then q ≤  and E is uniformly smooth, and hence the norm of E is
uniformly Fréchet differentiable.

A Banach space E is said to be strictly convex if and only if

‖x‖ = ‖y‖ =
∥∥( – λ)x + λy

∥∥

for x, y ∈ E and  < λ <  implies that x = y.
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E is said to be uniformly convex if for any ε ∈ (, ] there exists δ >  such that for any
x, y ∈ UE ,

‖x – y‖ ≥ ε implies
∥∥∥∥

x + y


∥∥∥∥ ≤  – δ.

It is well known that a uniformly convex Banach space is reflexive and strictly convex.
Let D be a nonempty subset of C. Let QD : C → D. Q is said to be
() contraction if Q

D = QD;
() sunny if for each x ∈ C and t ∈ (, ), we have QD(tx + ( – t)QDx) = QDx;
() sunny nonexpansive retraction if QD is sunny, nonexpansive, and it is a contraction.
D is said to be a nonexpansive retract of C if there exists a nonexpansive retraction from

C onto D. The following result, which was established in [], describes a characterization
of sunny nonexpansive retractions on a smooth Banach space.

Let E be a smooth Banach space and let C be a nonempty subset of E. Let QC : E → C
be a retraction and J be the normalized duality mapping on E. Then the following are
equivalent:

() QC is sunny and nonexpansive;
() ‖QCx – QCy‖ ≤ 〈x – y, J(QCx – QCy)〉, ∀x, y ∈ E;
() 〈x – QCx, J(y – QCx)〉 ≤ , ∀x ∈ E, y ∈ C.
It is well known that if E is a Hilbert space, then a sunny nonexpansive retraction QC is

coincident with the metric projection from E onto C. Let C be a nonempty closed con-
vex subset of a smooth Banach space E, let x ∈ E and let x ∈ C. Then we have from the
above that x = QCx if and only if 〈x – x, J(y – x)〉 ≤  for all y ∈ C, where QC is a sunny
nonexpansive retraction from E onto C.

Let C be a nonempty, closed, and convex subset of E. Let S : C → C be a mapping. In
this paper, we use F(S) to denote the set of fixed points of S. Recall that S is said to be α-
contractive iff there exists a constant α ∈ [, ) such that ‖Sx–Sy‖ ≤ α‖x–y‖, ∀x, y ∈ C. S is
said to be nonexpansive iff ‖Sx – Sy‖ ≤ ‖x – y‖, ∀x, y ∈ C. It is well known that many non-
linear problems can be reduced to the search for fixed points of nonexpansive mappings,
for example, equilibrium problems, saddle point problems, and variational inequalities.
Let K be a nonempty closed and convex subset of a smooth Banach space E. Recall the
following variational inequality. Find a point u ∈ C such that 〈Au, J(v – u)〉 ≥ , ∀v ∈ C.
This problem is connected with fixed point problems of nonexpansvie mappings. From
[], we know that this variational inequality problem is equivalent to fixed point prob-
lems of nonlinear mapping QK (I – rA), where I is the identity mapping and r is a positive
real number.

Let I denote the identity operator on E. An operator A ⊂ E ×E with domain D(A) = {z ∈
E : Az �= ∅} and range R(A) =

⋃{Az : z ∈ D(A)} is said to be accretive if for each xi ∈ D(A)
and yi ∈ Axi, i = , , there exists j(x – x) ∈ J(x – x) such that 〈y – y, j(x – x)〉 ≥ . An
accretive operator A is said to be m-accretive if R(I + rA) = E for all r > . In this paper,
we use A–() to denote the set of zero points of A. For an accretive operator A, we can
define a single-valued mapping Jr : R(I + rA) → D(A) by Jr = (I + rA)– for each r > , which
is called the resolvent of A.

Next, we give lemmas which play important roles in the article.
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Lemma . [] Let E be a reflexive Banach space which has a weakly continuous duality
map Jϕ(x) with gauge ϕ. Let C be nonempty, closed, and convex subset of E. Let f : C → C
be an α-contractive mapping and let T : C → C be a nonexpansive mapping. Let xt ∈ C be
the unique fixed point of the mapping tf + ( – t)T , where t ∈ (, ). Then T has a fixed point
if and only if {xt} remains bounded as t → +, and in this case, {xt} converges as t → +

strongly to a fixed point x̄ of T , where x̄ is the unique solution to the following variational
inequality: 〈f (x̄) – x̄, Jϕ(p – x̄)〉 ≤ , ∀p ∈ ⋂N

m= A–
m ().

Lemma . [] Let C be a closed convex subset of a strictly convex Banach space E. Let
Sm : C → C be a nonexpansive mapping for each m ≥ . Let {δm} be a real number sequence
in (, ) such that

∑∞
m= δm = . Suppose that

⋂∞
m= F(Sm) is nonempty. Then the mapping

∑∞
m= δmSm is nonexpansive with F(

∑∞
m= δmSm) =

⋂∞
m= F(Sm).

The first part of the next lemma is an immediate consequence of the subdifferential
inequality and the proof of the second part can be found in [].

Lemma . Assume that a Banach space E has a weakly continuous duality mapping Jϕ
with a gauge ϕ.

(i) For all x, y ∈ E, the following inequality holds:

�
(‖x + y‖) ≤ �

(‖x‖) +
〈
y, Jϕ(x + y)

〉
.

(ii) Assume that a sequence {xn} in E converges weakly to a point x ∈ E.
Then the following identity holds:

lim sup
n→∞

�
(‖xn – y‖) = lim sup

n→∞
�

(‖xn – x‖) + �
(‖y – x‖), ∀x, y ∈ E.

Lemma . [] Let {xn} and {yn} be bounded sequences in a Banach space E and let {βn}
be a sequence in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ =
( – βn)yn + βnxn for all n ≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .

Lemma . [] Let {an}, {bn}, {cn}, and {en} be three nonnegative real sequences satis-
fying bn+ ≤ ( – an)bn + ancn + en, ∀n ≥ n, where n is some positive integer, {an} is a
number sequence in (, ) such that

∑∞
n=n

an = ∞, {cn} is a number sequence such that
lim supn→∞ cn ≤  and

∑∞
n=n

en = ∞. Then limn→∞ an = .

3 Main results
Theorem . Let E be a reflexive and strictly convex Banach space which has a weakly con-
tinuous duality mapping Jϕ . Let Ai be an m-accretive operator in E with zeros for each i ≥ .
Assume that

⋂∞
i= D(Ai) is convex and

⋂∞
i= A–

i () is not empty. Let f be an α-contraction
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on
⋂∞

i= D(Ai). Let {αn}, {βn}, {γn}, {α′
n}, {β ′

n}, {γ ′
n} and {δn,i} be real number sequences in

(, ). Let {en} be a bounded computational error in
⋂∞

i= D(Ai). Let {xn} be a sequence in
⋂∞

i= D(Ai) generated by the following process:

⎧
⎪⎪⎨

⎪⎪⎩

x ∈ ⋂∞
i= D(Ai), chosen arbitrarily,

yn = α′
nxn + β ′

n
∑∞

i= δn,iJri xn + γ ′
nen,

xn+ = αnf (xn) + βnxn + γnyn, ∀n ≥ ,

where Jri = (I + riAi)–. Assume that the following conditions are satisfied:
() αn + βn + γn = α′

n + β ′
n + γ ′

n =
∑∞

i= δn,i = ;
() limn→∞ αn = ,

∑∞
n= αn = ∞;

()  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
()

∑∞
n= γ ′

n < ∞, limn→∞ δn,i = δi ∈ (, ).
Then {xn} converges strongly to x = P⋂∞

i= D(Ai)f (x), where P⋂∞
i= D(Ai) is the sunny nonexpan-

sive contraction onto
⋂∞

i= D(Ai).

Proof The proof is split into four steps.
Step . Show that {xn} is bounded.
Fixing p ∈ ⋂∞

i= A–
i (), we get

‖yn – p‖ ≤ α′
n‖xn – p‖ + β ′

n

∥∥∥∥∥

∞∑

i=

δn,iJri xn – p

∥∥∥∥∥
+ γ ′

n‖en – p‖

≤ α′
n‖xn – p‖ + β ′

n

∞∑

i=

δn,i‖Jri xn – p‖ + γ ′
n‖en – p‖

≤ (
α′

n + β ′
n
)‖xn – p‖ + γ ′

n‖en – p‖.

It follows that

‖xn+ – p‖ ≤ αn
∥∥f (xn) – p

∥∥ + βn‖xn – p‖ + γn‖yn – p‖
≤ αnα‖xn – p‖ + αn

∥∥f (p) – p
∥∥ + βn‖xn – p‖

+ γn‖xn – p‖ + γ ′
nγn‖en – p‖

≤ (
 – αn( – α)

)‖xn – p‖ + αn( – α)
‖f (p) – p‖

 – α
+ γ ′

nM,

where M is some appropriate constant. This implies that

‖xn+ – p‖ ≤ max

{‖f (p) – p‖
 – α

,‖x – p‖
}

+
∞∑

n=

γ ′
nM < ∞.

We find that {xn} is bounded. It follows that {yn} is also bounded. This completes
Step .
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Step . Show that limn→∞ ‖xn+ – xn‖ = .
Putting zn =

∑∞
i= δn,iJri xn, we see that

‖yn – yn–‖ ≤
∥∥∥∥∥

∞∑

i=

δn,iJri xn– –
∞∑

i=

δn–,iJri xn–

∥∥∥∥∥

+

∥∥∥∥∥

∞∑

i=

δn,iJri xn –
∞∑

i=

δn,iJrn xn–

∥∥∥∥∥

≤
∞∑

i=

|δn,i – δn–,i|‖Jri xn–‖ + ‖xn – xn–‖.

Define λn := xn+–βnxn
–βn

. This yields

‖λn – λn–‖ ≤ αn

 – βn

∥∥f (xn) – yn
∥∥ +

αn–

 – βn–

∥∥f (xn–) – yn–
∥∥ + ‖yn – yn–‖

≤ αn

 – βn

∥∥f (xn) – yn
∥∥ +

αn–

 – βn–

∥∥f (xn–) – yn–
∥∥ + ‖xn – xn–‖

+
∞∑

i=

|δn,i – δn–,i|‖Jri xn–‖.

Hence, we find that

‖λn – λn–‖ – ‖xn – xn–‖ ≤ αn

 – βn

∥∥f (xn) – yn
∥∥ +

αn–

 – βn–

∥∥f (xn–) – yn–
∥∥

+
∞∑

i=

|δn,i – δn–,i|‖Jri xn–‖.

Using restrictions (), (), and (), we get

lim sup
n→∞

(‖λn – λn–‖ – ‖xn – xn–‖
) ≤ .

Using Lemma ., we obtain limn→∞ ‖λn – xn‖ = . It follows that

lim
n→∞‖xn+ – xn‖ = . (.)

This completes Step .
Step . Show that lim supn→∞〈f (x) – x, Jϕ(xn – x)〉 ≤ .
Define a mapping T by T :=

∑∞
i= δiJri . Using Lemma ., we find that T is nonexpansive

with F(T) =
⋂∞

i= F(Jri ) =
⋂N

i= A–
i (). Note that

‖xn – Txn‖
≤ ‖xn – xn+‖ + ‖xn+ – Txn‖

≤ ‖xn – xn+‖ + αn
∥∥f (xn) – Txn

∥∥ + βn‖xn – Txn‖ + γn

∞∑

i=

|δn,i – δi|‖Jri xn‖.
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Using (.), we find from restrictions (), (), and () that

lim
n→∞‖Txn – xn‖ = . (.)

Take a subsequence {xnj} of {xn} such that

lim sup
n→∞

〈
f (x) – x, Jϕ(xn – x)

〉
= lim

j→∞
〈
f (x) – x, Jϕ(xnj – x̄)

〉
. (.)

Since E is reflexive, we may further assume that xnj ⇀ x̂ for some x̂ ∈ ⋂∞
i= D(Ai). Since Jϕ

is weakly continuous, we find from Lemma . that

lim sup
j→∞

�
(‖xnj – x‖) = lim sup

j→∞
�

(‖xnj – x̂‖) + �
(‖x – x̂‖), ∀x ∈ E.

Putting f (x) = lim supj→∞ �(‖xnj – x‖), ∀x ∈ E, we have

f (x) = f (x̂) + �
(‖x – x̂‖), ∀x ∈ E. (.)

It follows from (.) that

f (Tx̂) = lim sup
j→∞

�
(‖xnj – Tx̂‖)

≤ lim sup
j→∞

�
(‖Txnj – Tx̂‖)

≤ lim sup
j→∞

�
(‖xnj – x̂‖) = f (x̄). (.)

Note that f (Tx̂) = f (x̂) + �(‖Tx̂ – x̂‖). This yields from (.) �(‖Tx̂ – x̂‖) ≤ . This implies
that x̂ ∈ F(T) =

⋂N
i= A–

i (). It follows that

lim sup
n→∞

〈
f (x) – x, Jϕ(xn – x)

〉 ≤ . (.)

This completes Step .
Step . Show that xn → x as n → ∞.
Using Lemma ., we find that

�
(‖xn+ – x‖) = �

(∥∥αn
(
f (xn) – f (x)

)
+ αn

(
f (x) – x

)
+ βn(xn – x) + γn(yn – x)

∥∥)

≤ �
(∥∥αn

(
f (xn) – f (x)

)
+ βn(xn – x) + γn(yn – x)

∥∥)

+ αn
〈
f (x) – x, Jϕ(xn+ – x)

〉

≤ (
 – αn( – α)

)
�

(‖xn – x̄‖) + αn
〈
f (x̄) – x̄, Jϕ(xn+ – x̄)

〉
+ Mγ

′
n,

where M is some appropriate constant. It follows from Lemma . that �(‖xn – x‖) → .
This implies that limn→∞ ‖xn – x‖ = . This completes the proof. �

In the framework of Hilbert spaces, Theorem . is reduced to the following result.
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Corollary . Let E be a Hilbert space. Let Ai be a maximal monotone operator in E with
zeros for each i ≥ . Assume that

⋂∞
i= D(Ai) is convex and

⋂∞
i= A–

i () is not empty. Let f
be an α-contraction on

⋂∞
i= D(Ai). Let {αn}, {βn}, {γn}, {α′

n}, {β ′
n}, {γ ′

n}, and {δn,i} be real
number sequences in (, ). Let {en} be a bounded computational error in

⋂∞
i= D(Ai). Let

{xn} be a sequence in
⋂∞

i= D(Ai) generated by the following process:

⎧
⎪⎪⎨

⎪⎪⎩

x ∈ ⋂∞
i= D(Ai), chosen arbitrarily,

yn = α′
nxn + β ′

n
∑∞

i= δn,iJri xn + γ ′
nen,

xn+ = αnf (xn) + βnxn + γnyn, ∀n ≥ ,

where Jri = (I + riAi)–. Assume that the following conditions are satisfied:
() αn + βn + γn = α′

n + β ′
n + γ ′

n =
∑∞

i= δn,i = ;
() limn→∞ αn = ,

∑∞
n= αn = ∞;

()  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
()

∑∞
n= γ ′

n < ∞, limn→∞ δn,i = δi ∈ (, ).
Then {xn} converges strongly to x = P⋂∞

i= D(Ai)f (x), where P⋂∞
i= D(Ai) is the metric contraction

onto
⋂∞

i= D(Ai).

For a single accretive operator, Theorem . is reduced to the following result.

Corollary . Let E be a reflexive and strictly convex Banach space which has a weakly
continuous duality mapping Jϕ . Let A be an m-accretive operator in E with zeros. Assume
that D(A) is convex and A–() is not empty. Let f be an α-contraction on D(A). Let {αn},
{βn}, {γn}, {α′

n}, {β ′
n}, and {γ ′

n} be real number sequences in (, ). Let {en} be a bounded
computational error in D(A). Let {xn} be a sequence in D(Ai) generated by the following
process:

⎧
⎪⎪⎨

⎪⎪⎩

x ∈ D(A), chosen arbitrarily,

yn = α′
nxn + β ′

nJrxn + γ ′
nen,

xn+ = αnf (xn) + βnxn + γnyn, ∀n ≥ ,

where Jr = (I + rA)–. Assume that the following conditions are satisfied:
() αn + βn + γn = α′

n + β ′
n + γ ′

n = ;
() limn→∞ αn = ,

∑∞
n= αn = ∞;

()  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
()

∑∞
n= γ ′

n < ∞.
Then {xn} converges strongly to x = PD(A)f (x), where PD(A) is the sunny nonexpansive con-
traction onto D(A).

Finally, we investigate the Ky Fan inequality, which is also known as the equilibrium
problem [].

Let F be a bifunction of C × C into R, where R denotes the set of real numbers. Recall
the following equilibrium problem:

Find x ∈ C such that F(x, y) ≥ , ∀y ∈ C. (.)

EP(F) stands for the solution set of the equilibrium problem.
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To study equilibrium problem (.), we may assume that F satisfies the following con-
ditions:

(A) F(x, x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y, x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim sup
t↓

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) for each x ∈ C, y �→ F(x, y) is convex and weakly lower semi-continuous.

Lemma . [] Let C be a nonempty, closed, and convex subset of H and let F : C ×C →R

be a bifunction satisfying (A)-(A). Then, for any r >  and x ∈ H , there exists z ∈ C such
that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Further, define

Jrx :=
{

z ∈ C : F(z, y) +

r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all r >  and x ∈ H . Then the following hold:
(a) Jr is single-valued;
(b) Jr is firmly nonexpansive;
(c) F(Jr) = EP(F);
(d) EP(F) is closed and convex.

Theorem . Let C be a nonempty, closed, and convex subset of a Hilbert space E and let
Fi be a bifunction from C × C to R which satisfies (A)-(A) for each i ≥ . Assume that
⋂∞

i= EP(Fi) is not empty. Let f be an α-contraction on C. Let {αn}, {βn}, {γn}, {α′
n}, {β ′

n},
{γ ′

n}, and {δn,i} be real number sequences in (, ). Let {en} be the bounded computational
error in C. Let {xn} be a sequence in C generated by the following process:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x ∈ H , chosen arbitrarily,

Fi(zn,i, z) + 
ri
〈z – zn,i, zn,i – xn〉 ≥ , ∀z ∈ C,

yn = α′
nxn + β ′

n
∑∞

i= δn,izn,i + γ ′
nen,

xn+ = αnf (xn) + βnxn + γnyn, ∀n ≥ .

Assume that the following conditions are satisfied:
() αn + βn + γn = α′

n + β ′
n + γ ′

n =
∑∞

i= δn,i = ;
() limn→∞ αn = ,

∑∞
n= αn = ∞;

()  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
()

∑∞
n= γ ′

n < ∞, limn→∞ δn,i = δi ∈ (, ).
Then {xn} converges strongly to x = P⋂∞

i= EP(Fi)f (x), where P⋂∞
i= EP(Fi) is the metric projection

onto
⋂∞

i= EP(Fi).
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Table 1 The framework of the ILA

ILA: Ishikawa-like algorithm (for equilibrium problem (3.7))

Step 0: Choose x1 ∈ C, α1,β1,γ1,α′
1,β

′
1,γ

′
1 ∈ [0, 1]. Set n := 1.

Step 1: Given xn ∈ C. Choose αn ,βn ,γn ,α′
n ,β

′
n ,γ

′
n ∈ [0, 1] and compute xn+1 ∈ C as

F(zn , z) + 1
r 〈z – zn , zn – xn〉 ≥ 0, ∀z ∈ C,

yn = α′
nxn + β ′

nzn + γ ′
nen ,

xn+1 = αnf (xn) + βnxn + γnyn .
Update n := n + 1 and go to Step 1.

Proof From Lemma ., we find that zn,i = Jrn ,ixn, where Jrn ,i is defined as follows:

Jrn ,ix :=
{

z ∈ C : Fi(z, y) +


rn,i
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
, ∀x ∈ H .

From Theorem ., we find the desired conclusion immediately. �

Remark Let F = x – xy – x + y be a bifunction from [, ] × [, ] to R. It is easy to
see that F satisfies conditions (A)-(A). Let f (x) = x

 , αn = 
n , βn = n+

n , γn = n–
n , αn = n

n ,
βn = n–n–

n , and γ ′
n = en = 

n . Let {xn} be a sequence in C generated in the ILA (see Table ).
Then {xn} converges to zero.
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