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Abstract
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1 Introduction
Let E be a real Banach space and let J be the normalized duality mapping from E into E∗

given by

J(x) =
{

f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}, ∀x ∈ E,

where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized duality pairing. It
is well known that if E∗ is strictly convex then J is single-valued. In the sequel, we denote
the single-valued normalized duality mapping by j. For an operator A : E → E , we define
its domain, range, and graph as follows:

D(A) = {x ∈ E : Ax 	= ∅},
R(A) =

⋃{
Az : z ∈ D(A)

}
,

and

G(T) =
{

(x, y) ∈ E × E : x ∈ D(A), y ∈ Ax
}

,

respectively. The inverse A– of A is defined by

x ∈ A–y, if and only if y ∈ Ax.
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An operator A is said to be accretive if, for each x, y ∈ D(A), there exists j(x – y) ∈ J(x – y)
such that

〈
u – v, j(x – y)

〉 ≥ ,

for all u ∈ Ax and v ∈ Ay. We denote by I the identity operator on E. An accretive operator
A is said to be maximal accretive if there is no proper accretive extension of A and A is
said to be m-accretive if R(I + λA) = E, for all λ > . If A is m-accretive, then it is maximal,
but generally, the converse is not true. If A is accretive, then we can define, for each λ > ,
a nonexpansive single-valued mapping JA

λ : R(I + λA) → D(A) by

JA
λ = (I + λA)–.

It is called the resolvent of A which is denoted by JA when λ = .
Let A : E → E be an m-accretive operator. It is well known that many problems in non-

linear analysis and optimization can be formulated as the problem: Find x ∈ E such that

 ∈ A(x).

One popular method of solving the equation  ∈ A(x), where A is a maximal mono-
tone operator in a Hilbert space H , is the proximal point algorithm. The proximal point
algorithm generates, for any starting point x = x ∈ E, a sequence {xn} by the rule

xn+ = JA
rn (xn), (.)

for all n ∈ N, where {rn} is a regularization sequence of positive real numbers, JA
rn = (I +

rnA)– is the resolvent of A, and N is the set of all natural numbers. Some of them deal
with the weak convergence theorem of the sequence {xn} generated by (.) and others
proved strong convergence theorems by imposing assumptions on A.

Note that algorithm (.) can be rewritten as

xn+ – xn + rnA(xn+) � , (.)

for all n ∈ N. This algorithm was first introduced by Martinet []. If ψ : H → R ∪ {∞} is
proper lower semicontinuous convex function, then the algorithm reduces to

xn+ = argmin
y∈H

{
ψ(y) +


rn

‖xn – y‖
}

,

for all n ∈ N. Moreover, Rockafellar [] has given a more practical method which is an
inexact variant of the method:

xn + en � xn+ + rnAxn+, (.)

for all n ∈N, where {en} is regarded as an error sequence and {rn} is a sequence of positive
regularization parameters. Note that the algorithm (.) can be rewritten as

xn+ = JA
rn (xn + en), (.)
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for all n ∈ N. This method is called inexact proximal point algorithm. It was shown in
Rockafellar [] that if en →  quickly enough such that

∑∞
n= ‖en‖ < ∞, then xn ⇀ z ∈ H

with  ∈ Az.
Further, Rockafellar [] posed the open question of whether the sequence generated by

(.) converges strongly or not. In , Güler [] gave an example showing that Rockafel-
lar’s proximal point algorithm does not converge strongly.

An example of the authors, Bauschke et al. [] also showed that the proximal algorithm
only converges weakly but not strongly.

When A is maximal monotone in a Hilbert space H , Lehdili and Moudafi [] obtained
the convergence of the sequence {xn} generated by the algorithm

xn+ = JAn
rn (xn), (.)

where An = μnI + A, μ >  is viewed as a Tikhonov regularization of A. Next, in , Xu
[] and in , Song and Yang [] used the technique of nonexpansive mappings to get
convergence theorems for {xn} defined by the perturbed version of algorithm (.) in the
form

xn+ = JA
rn

(
tnu + ( – tn)xn + en

)
. (.)

Note that algorithm (.) can be rewritten as

rnA(xn+) + xn+ � tnu + ( – tn)xn + en, n ≥ . (.)

In [], Tuyen was studied an extension the results of Xu [], when A is an m-accretive op-
erator in a uniformly smooth Banach space E which has a weakly sequentially continuous
normalized duality mapping j from E to E∗ (cf. []). At that time, in [], Sahu and Yao also
extended the results of Xu [] for the zero of an accretive operator in a Banach space which
has a uniformly Gâteaux differentiable norm by combining the prox-Tikhonov method and
the viscosity approximation method. They introduced the iterative method to define the
sequence {xn} as follows:

xn+ = JA
rn

(
( – αn)xn + αnf (xn)

)
, (.)

for all n ∈ N, where A is an accretive operator such that S = A– 	= ∅ and D(A) ⊂ C ⊂
⋂

t> R(I + tA), and f is a contractive mapping on C.
Zegeye and Shahzed [] studied the convergence problem of finding a common zero

of a finite family of m-accretive operators (cf. [, ]). More precisely, they proved the
following result.

Theorem . [] Let E be a strictly convex and reflexive Banach space with a uniformly
Gâteaux differentiable norm, K be a nonempty, closed, and convex subset of E and Ai :
K → E be an m-accretive operator, for each i = , , . . . , N with

N⋂

i=

A–
i  	= ∅.
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For any u, x ∈ K , let {xn} be a sequence in K generated by the algorithm:

xn+ = αnu + ( – αn)SN (xn), ∀n ≥ , (.)

where SN := aI + aJA + aJA + · · · + aN JAN with JAi = (I + Ai)– for  < ai < , i =
, , , . . . , N ,

∑N
i= ai = , and {αn} is a real sequence which satisfies the following condi-

tions:
(i) limn→∞ αn = ,

∑∞
n= αn = ∞,

(ii)
∑∞

n= |αn – αn–| < ∞ or limn→∞ |αn–αn–|
αn

= .
If every nonempty, bounded, closed, and convex subset of E has the fixed point property for
nonexpansive mapping, then {xn} converges strongly to a common solution of the equations
Ai(x) =  for i = , , . . . , N .

Motivated by Xu [] and Zegeye and Shahzed [], Tuyen [] introduced an iterative
algorithm as follows:

{
x ∈ C,
xn+ = SN (αnf (xn) + ( – αn)xn), ∀n ≥ ,

(.)

where SN := aI +aJA +aJA + · · ·+aN JAN with a, a, . . . , aN in (, ) such that
∑N

i= ai = 
and {αn} ⊂ (, ) is a real sequence of positive numbers. The result of Tuyen [] is given
by the following.

Theorem . [] Let E be a strictly convex and reflexive Banach space which has a weakly
continuous duality mapping Jϕ with gauge ϕ. Let C be a nonempty, closed, and convex
subset of E and f be a contraction mapping of C into itself with the contractive coefficient
c ∈ (, ). Let Ai : C → E be an m-accretive operator, for each i = , , . . . , N with

N⋂

i=

A–
i  	= ∅.

Let JAi = (I + Ai)– for i = , , . . . , N . For any x ∈ C, let {xn} be a sequence generated by
algorithm (.). If the sequence {αn} satisfies the following conditions:

(i) limn→∞ αn = ,
∑∞

n= αn = ∞,
(ii)

∑∞
n= |αn – αn–| < ∞ or limn→∞ |αn–αn–|

αn
= ,

then {xn} converges strongly to a common solution of the equations Ai(x) =  for i =
, , . . . , N .

In this paper, we combine the proximal point method [] and the viscosity approxima-
tion method [] with Meir-Keeler contractions to get strong convergence theorems for
the problem of finding a common zero of a finite family of accretive operators in Banach
spaces. We also give some applications of our results for the convex minimization problem
and the variational inequality problem in Hilbert spaces.

2 Preliminaries
Let E be a real Banach space and M ⊆ E. We denote by F(T) the set of all fixed points of
the mapping T : M → M.
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Recall that a mapping φ : (X, d) → (X, d) from the metric space (X, d) into itself is said to
be a Meir-Keeler contraction, if, for every ε > , there exists δ >  such that d(x, y) < ε + δ

implies

d(φx,φy) < ε,

for all x, y ∈ X. We know that if (X, d) is a complete metric space, then φ has a unique fixed
point []. In the sequel, we always use 
M to denote the collection of all Meir-Keeler
contractions on M and SE to denote the unit sphere SE = {x ∈ E : ‖x‖ = }. A Banach space
E is said to be strictly convex if x, y ∈ SE with x 	= y, and, for all t ∈ (, ),

∥∥( – t)x + ty
∥∥ < .

A Banach space E is said to be smooth provided the limit

lim
t→

‖x + ty‖ – ‖x‖
t

exists for each x and y in SE . In this case, the norm of E is said to be Gâteaux differentiable.
It is said to be uniformly Gâteaux differentiable if for each y ∈ SE , this limit is attained
uniformly for x ∈ SE . It is well known that every uniformly smooth Banach space has a
uniformly Gâteaux differentiable norm.

A closed convex subset C of a Banach space E is said to have the fixed point property
for nonexpansive mappings if every nonexpansive mapping of a nonempty, closed, and
convex subset M of C into itself has a fixed point in M.

A subset C of a Banach space E is called a retract of E if there is a continuous mapping
P from E onto C such that Px = x, for all x ∈ C. We call such P a retraction of E onto C.
It follows that if P is a retraction, then Py = y, for all y in the range of P. A retraction P is
said to be sunny if P(Px + t(x – Px)) = Px, for all x ∈ E and t ≥ . If a sunny retraction P is
also nonexpansive, then C is said to be a sunny nonexpansive retract of E.

An accretive operator A defined on a Banach space E is said to satisfy the range condition
if D(A) ⊂ R(I + λA), for all λ > , where D(A) denotes the closure of the domain of A. We
know that for an accretive operator A which satisfies the range condition, A– = F(JA

λ ),
for all λ > .

Let f be a continuous linear functional on l∞. We use fn(xn+m) to denote

f (xm+, xm+, . . . , xm+n, . . .),

for m = , , , . . . . A continuous linear functional f on l∞ is called a Banach limit if ‖f ‖ =
f (e) =  and fn(xn) = fn(xn+) for each x = (x, x, . . .) in l∞. Fix any Banach limit and denote
it by LIM. Note that ‖LIM‖ = , and, for all {xn} ∈ l∞,

lim inf
n→∞ xn ≤ LIMnxn ≤ lim sup

n→∞
xn. (.)

The following lemmas play crucial roles for the proof of main theorems in this paper.
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Lemma . [] Let φ be a Meir-Keeler contraction on a convex subset C of a Banach
space E. Then for each ε > , there exists r ∈ (, ) such that, for all x, y ∈ C, ‖x – y‖ ≥ ε

implies

‖φx – φy‖ ≤ r‖x – y‖. (.)

Remark . From Lemma ., for each ε > , there exists r ∈ (, ) such that

‖φx – φy‖ ≤ max
{
ε, r‖x – y‖}, (.)

for all x, y ∈ C.

Lemma . [] Let C be a convex subset of a Banach space E. Let T be a nonexpansive
mapping on C and φ be a Meir-Keeler contraction on C. Then, for each t ∈ (, ), a mapping
x �→ ( – t)Tx + tφx is also a Meir-Keeler contraction on C.

Lemma . [] Let C be a convex subset of a smooth Banach space E, D a nonempty subset
of C, and P a retraction from C onto D. Then the following statements are equivalent:

(i) P is sunny nonexpansive.
(ii) 〈x – Px, j(z – Px)〉 ≤ , for all x ∈ C, z ∈ D.

(iii) 〈x – y, j(Px – Py)〉 ≥ ‖Px – Py‖, for all x, y ∈ C.

We can easily prove the following lemma from Lemma  in [].

Lemma . [] Let E be a Banach space with a uniformly Gâteaux differentiable norm,
C a nonempty, closed, and convex subset of E and {xn} a bounded sequence in E. Let LIM
be a Banach limit and y ∈ C such that

LIMn‖xn – y‖ = inf
x∈C

LIMn‖xn – x‖.

Then LIMn〈x – y, j(xn – y)〉 ≤ , for all x ∈ C.

Lemma . [] Let {an}, {bn}, {σn} be sequences of positive numbers satisfying the in-
equality:

an+ ≤ ( – bn)an + σn, bn < .

If
∑∞

n= bn = +∞ and limn→∞ σn/bn = , then limn→∞ an = .

Lemma . [] Let E be a Banach space with a uniformly Gâteaux differentiable norm
and let C be a nonempty, closed, and convex subset of E with fixed point property for nonex-
pansive self-mappings. Let A : D(A) ⊂ E → E be an accretive operator such that A– 	= ∅
and D(A) ⊂ ⋂

t> R(I + tA). Then A– is a sunny nonexpansive retract of C.

Lemma . [] Let C be a nonempty, closed, and convex subset of a strictly convex Ba-
nach space E. Let Ai : C → E be an m-accretive operator for each i = , , . . . , N with
⋂N

i= N(Ai) 	= ∅. Let a, a, . . . , aN be real numbers in (, ) such that
∑N

i= ai =  and let
SN := aI + aJA + aJA + · · · + aN JAN , where JAi := (I + Ai)–. Then SN is a nonexpansive
mapping and F(SN ) =

⋂N
i= N(Ai).
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3 Main results
Now, we are in a position to introduce and prove the main theorems.

Propositon . Let E be a reflexive Banach space with a uniformly Gâteaux differen-
tiable norm and let C be a closed convex subset of E which has the fixed point property
for nonexpansive mappings. Let T be a nonexpansive mapping on C. Then for each φ ∈ 
C

and every t ∈ (, ), there exists a unique fixed point vt ∈ C of the Meir-Keeler contraction
C � vt �→ tφvt + ( – t)Tvt , such that {vt} converges strongly to x∗ ∈ F(T) as t →  which
solves the variational inequality:

〈
x∗ – φx∗, j

(
x∗ – x

)〉 ≤ , (.)

for all x ∈ F(T).

Proof By Lemma ., the mapping C � v �→ tφv + ( – t)Tv is a Meir-Keeler contraction
on C. So, there is a unique vt ∈ C which satisfies

vt = tφvt + ( – t)Tvt .

Now we show that {vt} is bounded. Indeed, take a p ∈ F(T) and a number ε > .
Case . Let ‖vt – p‖ ≤ ε. Then we can see easily that {vt} is bounded.
Case . Let ‖vt – p‖ ≥ ε. Then, by Lemma ., there exists r ∈ (, ) such that

‖φvt – φp‖ ≤ r‖vt – p‖.

So, we have

‖vt – p‖ =
∥∥tφvt + ( – t)Tvt – p

∥∥

≤ t‖φvt – φp‖ + t‖φp – p‖ + ( – t)‖vt – p‖
≤ rt‖vt – p‖ + t‖φp – p‖ + ( – t)‖vt – p‖.

Therefore,

‖vt – p‖ ≤ ‖φp – p‖
 – r

.

Hence, we conclude that {vt} is bounded and {φvt}, {Tvt} are also bounded.
By the boundedness of {vt}, {φvt}, and {Tvt}, we have

‖vt – Tvt‖ = t‖φvt – Tvt‖ →  as t → .

Assume tn → . Set vn := vtn and define ϕ : C →R
+ by

ϕ(x) = LIMn‖vn – x‖,

for all x ∈ C and let

M =
{

y ∈ C : ϕ(y) = inf
x∈C

ϕ(x)
}

.
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Since E is reflexive, ϕ(x) → ∞ as ‖x‖ → ∞, and ϕ is a continuous convex function, from
Barbu and Precupanu [], we know that M is a nonempty subset of C. By Takahashi [],
we see that M is also closed, convex, and bounded.

For all x ∈ M, from ‖vn – Tvn‖ → as n → ∞, we have

ϕ(Tx) = LIMn‖vn – Tx‖

≤ LIMn
(‖vn – Tvn‖ + ‖Tvn – Tx‖)

≤ LIMn‖Tvn – Tx‖

≤ LIMn‖vn – x‖

= ϕ(x).

So, M is invariant under T , i.e., T(M) ⊂ M. By assumption, we have M ∩ F(T) 	= ∅. Let
x∗ ∈ M ∩ F(T). By Lemma ., we obtain

LIMn
〈
x – x∗, j

(
vn – x∗)〉 ≤ , (.)

for all x ∈ C. In particular,

LIMn
〈
φx∗ – x∗, j

(
vn – x∗)〉 ≤ . (.)

Suppose that LIMn‖vn – x∗‖ ≥ ε > . By (.),

lim sup
n→∞

∥∥vn – x∗∥∥ ≥ ε.

So, there exists a subsequence {vnk } of {vn} such that, for all k ≥ ,

∥∥vnk – x∗∥∥ ≥ ε,

where ε ∈ (,
√

ε). By Lemma ., there is r ∈ (, ) such that

∥∥φvnk – φx∗∥∥ ≤ r
∥∥vnk – x∗∥∥.

From

〈
Tvnk – vnk , j

(
vnk – x∗)〉 ≤ ,

for all k ≥ , we have

∥∥vnk – x∗∥∥ = t
〈
φvnk – x∗, j

(
vnk – x∗)〉 + ( – t)

〈
Tvnk – x∗, j

(
vnk – x∗)〉

≤ t
〈
φvnk – x∗, j

(
vnk – x∗)〉 + ( – t)

∥∥vnk – x∗∥∥,

which implies that

∥∥vnk – x∗∥∥ ≤ 〈
φvnk – x∗, j

(
vnk – x∗)〉

≤ 〈
φvnk – x, j

(
vnk – x∗)〉 +

〈
φx – x∗, j

(
vnk – x∗)〉,
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for all x ∈ C. So, from (.), we get

LIMn
∥∥vnk – x∗∥∥ ≤ LIMn

〈
φvnk – x, j

(
vnk – x∗)〉 + LIMn

〈
φx – x∗, j

(
vnk – x∗)〉

≤ LIMn‖φvnk – x‖∥∥vnk – x∗∥∥,

for all x ∈ C. In particular,

LIMn
∥∥vnk – x∗∥∥ ≤ LIMn

∥∥φvnk – φx∗∥∥∥∥vnk – x∗∥∥

≤ rLIMn
∥∥vnk – x∗∥∥,

which is a contradiction. Hence, LIMn‖vn – x∗‖ =  and there exists a subsequence {vnk }
of {vn} such that vnk → x∗ as k → ∞.

Assume that {vnl} is another subsequence of {vn} such that vnl → y∗ with y∗ 	= x∗. It is
easy to see that y∗ ∈ F(T). By Lemma ., there exists r ∈ (, ) such that

∥∥φx∗ – φy∗∥∥ ≤ r
∥∥x∗ – y∗∥∥. (.)

Observe that

∣∣〈vn – φvn, j
(
vn – y∗)〉 –

〈
x∗ – φx∗, j

(
x∗ – y∗)〉∣∣

≤ ∣∣〈vn – φvn, j
(
vn – y∗)〉 –

〈
x∗ – φx∗, j

(
vn – y∗)〉∣∣

+
∣∣〈x∗ – φx∗, j

(
vn – y∗)〉 –

〈
x∗ – φx∗, j

(
x∗ – y∗)〉∣∣

≤ ∥∥vn – φvn –
(
x∗ – φx∗)∥∥∥∥vn – y∗∥∥ +

∣∣〈x∗ – φx∗, j
(
vn – y∗) – j

(
x∗ – y∗)〉∣∣,

for all n ∈N. Since vnk → x∗ and j is norm to weak* uniformly continuous, we obtain

〈
x∗ – φx∗, j

(
x∗ – y∗)〉 ≤ .

Similarly, we have

〈
y∗ – φy∗, j

(
y∗ – x∗)〉 ≤ .

Adding the above two inequalities yields

〈
x∗ – y∗ –

(
φx∗ – φy∗), j

(
x∗ – y∗)〉 ≤ ,

and combining with (.) implies that

∥∥x∗ – y∗∥∥ ≤ r
∥∥x∗ – y∗∥∥,

which is a contradiction. Hence {vtn} converges strongly to x∗.
Now, we prove that the net {vt} converges strongly to x∗ as t → . We assume that there

is another subsequence {sn} with sn ∈ (, ), for all n and sn →  as n → ∞ such that
vsn → z∗ as n → ∞. Then we have z∗ ∈ F(T). For each t and z ∈ F(T), we have

〈
vt – φvt , j(vt – z)

〉
=

 – t
t

〈
Tvt – vt , j(vt – z)

〉 ≤ .
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So, we obtain

〈
vtn – φvtn , j

(
vtn – z∗)〉 ≤ 

and similarly, we have

〈
vsn – φvsn , j

(
vsn – x∗)〉 ≤ ,

which implies that

〈
x∗ – φx∗, j

(
x∗ – z∗)〉 ≤ 

and

〈
z∗ – φz∗, j

(
z∗ – x∗)〉 ≤ .

Thus, we have x∗ = z∗. Therefore, {vt} converges strongly to x∗ and it is easy to see that x∗

solves the variational inequality

〈
x∗ – φx∗, j

(
x∗ – x

)〉 ≤ ,

for all x ∈ F(T). This completes the proof. �

Remark . Let Q be a sunny nonexpansive retraction from C onto F(T). By the unique-
ness of Q, inequality (.) and Lemma ., we obtain Qφx∗ = x∗.

Proposition . Let C be a closed convex subset of a reflexive Banach space E with a
uniformly Gâteaux differentiable norm and let T be a nonexpansive mapping on C with
F(T) 	= ∅. Assume {xn} is a bounded sequence such that xn – Txn →  as n → ∞. Let
xt = tφxt + ( – t)Txt , for all t ∈ (, ), where φ ∈ 
C . Assume that x∗ = limt→ xt exists.
Then we have

lim sup
n→∞

〈
(φ – I)x∗, j

(
xn – x∗)〉 ≤ . (.)

Proof Set M = sup{‖xn – xt‖ : t ∈ (, ), n ≥ }. Then we have

‖xt – xn‖ = t
〈
φxt – xn, j(xt – xn)

〉
+ ( – t)

〈
Txt – xn, j(xt – xn)

〉

= t
〈
φxt – xt , j(xt – xn)

〉
+ ( – t)

〈
Txt – Txn, j(xt – xn)

〉

+ ( – t)
〈
Txn – xn, j(xt – xn)

〉

≤ t
〈
φxt – xt , j(xt – xn)

〉
+ t‖xt – xn‖

+ ( – t)‖xt – xn‖ + M‖xn – Txn‖,

which implies that

〈
φxt – xt , j(xn – xt)

〉 ≤ M
t

‖xn – Txn‖.
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Fix t and letting n → ∞ yields

lim sup
n→∞

〈
(φ – I)x∗, j

(
xn – x∗)〉 ≤ .

This completes the proof. �

Now, let E be a reflexive and strictly convex Banach space with a uniformly Gâteaux dif-
ferentiable norm and C a closed convex subset of E which has the fixed point property for
nonexpansive mappings. Let Ai : E → E be an accretive operator, for each i = , , . . . , N
such that

S =
N⋂

i=

A–
i  	= ∅

and

D(Ai) ⊂ C ⊂
⋂

r>

R(I + rAi),

for all i = , , . . . , N .
For each φ ∈ 
C , we study the strong convergence of the sequence {zn} defined by

{
z ∈ C,
zn+ = SN (αnφzn + ( – αn)zn), ∀n ≥ ,

(.)

where SN := aI + aJA + aJA + · · · + aN JAN with a, a, . . . , aN are real numbers in (, )
such that

∑N
i= ai =  and {αn} ⊂ (, ) is a real sequence of positive numbers, under the

conditions:
(C) limn→∞ αn = ,

∑∞
n= αn = ∞,

(C)
∑∞

n= |αn – αn–| < ∞ or limn→∞ |αn–αn–|
αn

= .
Then we have the following theorem.

Theorem . If the sequence {αn} satisfies the conditions (C)-(C), then the sequence {xn}
generated by

xn+ = SN
(
αnu + ( – αn)xn

)
, ∀n ≥ , (.)

converges strongly to Qu, where u ∈ C and Q is a sunny nonexpansive retraction from C
onto S.

Proof By Lemma ., we have F(SN ) =
⋂N

i= A–
i  	= ∅. Now, for each p ∈ F(SN ), we have

‖xn+ – p‖ =
∥∥SN

(
αnu + ( – αn)xn

)
– SN (p)

∥∥

≤ ( – αn)‖xn – p‖ + αn‖u – p‖
≤ max

{‖xn – p‖,‖u – p‖}

...

≤ max
{‖x – p‖,‖u – p‖}. (.)
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Hence {xn} is bounded. Suppose that max{sup‖xn‖,‖u‖} ≤ K . It follows that

∥∥xn+ – SN (xn)
∥∥ =

∥∥SN
(
αnf (xn) + ( – αn)xn

)
– SN (xn)

∥∥

≤ αn
∥∥f (xn) – xn

∥∥ → , as n → ∞. (.)

From (.), we get

‖xn+ – xn‖ =
∥∥SN

(
αnu + ( – αn)xn

)
– SN

(
αn–u + ( – αn–)xn–

)∥∥

≤ ( – αn)‖xn – xn–‖ + αnβn,

where βn = K |αn–αn–|
αn

.
We consider two cases of condition (C).
First, suppose that

∑∞
n= |αn – αn–| < ∞. Then

‖xn+ – xn‖ ≤ ( – αn)‖xn – xn–‖ + σn,

where σn = K |αn – αn–|. So, we have
∑∞

n= σn < ∞.
Second, suppose that limn→∞ |αn–αn–|

αn
= . Then

‖xn+ – xn‖ ≤ ( – αn)‖xn – xn–‖ + σn,

where σn = αnβn. So, we have σn = o(αn).
For any case, we have ‖xn+ – xn‖ →  as n → ∞, from Lemma .. By (.) we obtain

‖xn – SN xn‖ ≤ ‖xn+ – xn‖ + ‖xn+ – SN xn‖ →  as n → ∞. (.)

Let yn = αnu + ( – αn)xn. Then we have

‖yn – xn‖ = αn‖u – xn‖ →  as n → ∞,

it follows that

‖yn – SN yn‖ ≤ ‖yn – xn‖ + ‖xn – SN xn‖ + ‖SN xn – SN yn‖
≤ ‖yn – xn‖ + ‖xn – SN xn‖ →  as n → ∞.

For each t ∈ (, ), let xt = tu + ( – t)SN xt . Apply Proposition . with φx = u, for all x ∈ C,
we know that {xt} converges strongly to x∗ ∈ F(SN ), satisfying Qu = x∗. It follows from
Proposition . that

lim sup
n→∞

〈
u – x∗, j

(
yn – x∗)〉 ≤ .

Observe that
∥∥yn – x∗∥∥ =

〈
αnu + ( – αn)xn – x∗, j

(
yn – x∗)〉

≤ ( – αn)
∥∥xn – x∗∥∥∥∥yn – x∗∥∥ + αn

〈
u – x∗, j

(
yn – x∗)〉

≤ ( – αn)


(∥∥xn – x∗∥∥ +
∥∥yn – x∗∥∥) + αn

〈
u – x∗, j

(
yn – x∗)〉.
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Hence, we have

∥∥yn – x∗∥∥ ≤ ( – αn)
∥∥xn – x∗∥∥ + αn

〈
u – x∗, j

(
yn – x∗)〉.

Next, we have

∥∥xn+ – x∗∥∥ ≤ ( – αn)
∥∥xn – x∗∥∥ + αn

〈
u – x∗, j

(
yn – x∗)〉. (.)

From Lemma ., we have the desired result. That is, the sequence {xn} converges strongly
to Qu = x∗. This completes the proof. �

The following is a strong convergence theorem for the sequence {zn} in (.).

Theorem . If the sequence {αn} satisfies the conditions (C)-(C), then the sequence {zn}
generated by (.) converges strongly to x∗ ∈ S, which satisfies Qφx∗ = x∗, where Q is a sunny
nonexpansive retraction from C onto S.

Proof Let x∗ be a unique fixed point of Qφ, that is, Qφx∗ = x∗. Let {xn} be a sequence
defined by

xn+ = SN
(
αnφx∗ + ( – αn)xn

)
, for all n ≥ .

By Theorem ., xn → Qφx∗ = x∗ as n → ∞.
Now, we prove that ‖zn – xn‖ →  as n → ∞. Assume that

lim sup
n→∞

‖zn – xn‖ > .

Then we choose ε with ε ∈ (, lim supn→∞ ‖zn – xn‖). By Lemma ., there exists r ∈ (, )
satisfying (.). We also choose n ∈N such that

r‖xn – x∗‖
 – r

< ε,

for all n ≥ n. We divide this into the following two cases:
(i) There exists n ∈N satisfying n ≥ n and ‖zn – xn‖ ≤ ε.

(ii) ‖zn – xn‖ > ε, for all n ≥ n.
In the case of (i), we have

‖zn+ – xn+‖ ≤ ( – αn )‖zn – xn‖ + αn

∥∥φzn – φx∗∥∥

≤ ( – αn )‖zn – xn‖ + αn max
{

r
∥∥zn – x∗∥∥, ε

}

≤ max

{
( – αn + rαn )‖zn – xn‖ + αn ( – r)

r‖xn – x∗‖
 – r

,

( – αn )‖zn – xn‖ + αnε

}

≤ ε.
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By induction, we can show that ‖zn – xn‖ ≤ ε, for all n ≥ n. This is a contradiction to
the fact that ε < lim supn→∞ ‖zn – xn‖.

In the case of (ii), for each n ≥ n, we have

‖zn+ – xn+‖ ≤ ( – αn)‖zn – xn‖ + αn
∥∥φzn – φx∗∥∥

≤ ( – αn)‖zn – xn‖ + αn‖φzn – φxn‖ + αn
∥∥φxn – φx∗∥∥

≤ [
 – αn( – r)

]‖zn – xn‖ + αn
∥∥φxn – φx∗∥∥.

So, by Lemma ., we get limn→∞ ‖zn – xn‖ = . This is a contradiction. Therefore
limn→∞ ‖zn – xn‖ = . Thus we obtain

lim
n→∞

∥∥zn – x∗∥∥ ≤ lim
n→∞‖zn – xn‖ + lim

n→∞
∥∥xn – x∗∥∥ = .

Hence {zn} convergence strongly to Qφx∗ = x∗. This completes the proof. �

Corollary . Let E be a reflexive and strictly convex Banach space with a uniformly
Gâteaux differentiable norm and let C be a closed convex subset of E which has the fixed
point property for nonexpansive mappings. Let Ai : E → E be an m-accretive operator, for
each i = , , . . . , N such that

S =
N⋂

i=

A–
i  	= ∅.

For each φ ∈ 
C , let {zn} be a sequence generated by (.). If the sequence {αn} satisfies
the conditions (C)-(C), then the sequence {zn} converges strongly to x∗ ∈ S which satisfies
Qφx∗ = x∗, where Q is a sunny nonexpansive retraction from C onto S.

Proof Since for each i = , , . . . , N , Ai is an m-accretive operator, the condition D(Ai) ⊂
C ⊂ ⋂

r> R(I + rAi) is satisfied, for all i = , , . . . , N . By the assumption and Theorem .,
we have zn → x∗ as n → ∞ which satisfies Qφx∗ = x∗. This completes the proof. �

Remark . Corollary . is a generalization of the results of Tuyen [], Zegeye and
Shahzad [] and Jung [].

Remark . If we take r = , then we may take S := JA = (I + A)– and strict convexity of
E and the real constants ai, i = , , may not be needed.

Corollary . Let E be a reflexive and strictly convex Banach space with a uniformly
Gâteaux differentiable norm and let C be a closed convex subset of E which has the fixed
point property for nonexpansive mappings. Let A : E → E be an m-accretive operator such
that S = A– 	= ∅. For each φ ∈ 
C , let {zn} be a sequence defined by

{
z ∈ C,
zn+ = JA(αnφzn + ( – αn)zn),

(.)

for all n ≥ . If the sequence {αn} satisfies the conditions (C)-(C), then the sequence {zn}
converges strongly to x∗ ∈ S which satisfies Qφx∗ = x∗, where Q is a sunny nonexpansive
retraction from C onto S.
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Remark . Corollary . is a generalization of the results of Tuyen in [].

4 Applications
In this section, we give some applications in the framework of Hilbert spaces. We first
apply Corollary . to the convex minimization problem.

Theorem . Let H be a Hilbert space and let f : H → (–∞,∞] be a proper lower semi-
continuous convex function such that (∂f )– 	= ∅ for a subdifferential mapping ∂f of f . Let
{xn} be a sequence defined as follows:

⎧
⎪⎨

⎪⎩

x ∈ H ,
yn = αnφxn + ( – αn)xn,
xn+ = argminz∈H{f (z) + 

‖z – yn‖},
(.)

for all n ≥ , where {αn} is a sequence positive real numbers and φ ∈ 
H . If the sequence
{αn} satisfies the conditions (C)-(C), then the sequence {xn} converges strongly to x∗ in
(∂f )–.

Proof By the Rockafellar theorem [] (cf. []), the subdifferential mapping ∂f is maximal
monotone in H . So,

xn+ = argmin
z∈H

{
f (z) +



‖z – yn‖

}

is equivalent to ∂f (xn+) + xn+ � yn. Using Corollary ., {xn} converges strongly to an
element x∗ in (∂f )–. This completes the proof. �

We next apply Proposition . to the variational inequality problem. Let C be a
nonempty, closed, and convex subset of a Hilbert space H and let A : C → H be a single-
valued monotone operator which is hemicontinuous. Then a point u ∈ C is said to be a
solution of the variational inequality for A if

〈y – u, Au〉 ≥ , (.)

for all y ∈ C. We denote by VI(C, A) the set of all solutions of the variational inequality
(.) for A. We also denote by NC(x) the normal cone for C at a point x ∈ C, that is,

NC(x) =
{

z ∈ H : 〈y – x, z〉 ≤ , for all y ∈ C
}

.

Theorem . Let C be a nonempty, closed, and convex subset of a Hilbert space H and
let A : C −→ H be a single-valued monotone operator and hemicontinuous such that
VI(C, A) 	= ∅. Let {xn} be a sequence defined as follows:

⎧
⎪⎨

⎪⎩

x ∈ H ,
yn = αnφxn + ( – αn)xn,
xn+ = VI(C, A + I – yn),

(.)
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for all n ≥ , where {αn} is a sequence of positive real numbers and φ ∈ 
H . If the sequence
{αn} satisfies the conditions (C)-(C), then the sequence {xn} converges strongly to x∗ in
VI(C, A).

Proof Define a mapping T ⊂ H × H by

Tx =

⎧
⎨

⎩
Ax + NC(x), x ∈ C,

∅, x /∈ C.

By the Rockafellar theorem [], we know that T is maximal monotone and T– =
VI(C, A).

Note that

xn+ = VI(C, A + I – yn)

if and only if

〈y – xn+, Axn+ + xn+ – yn〉 ≥ ,

for all y ∈ C, that is,

–Axn+ – xn+ + yn ∈ NC(xn+).

This implies that

xn+ = JT(
αnφxn + ( – αn)xn

)
.

Using Corollary ., {xn} converges strongly to an element x∗ in VI(C, A). This completes
the proof. �
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