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Abstract
In this paper, based on the viscosity approximation method and the regularized
gradient-projection algorithm, we find a common element of the solution set of a
constrained convex minimization problem and the set of zero points of the maximal
monotone operator problem. In particular, the set of zero points of the maximal
monotone operator problem can be transformed into the equilibrium problem.
Under suitable conditions, new strong convergence theorems are obtained, which
are useful in nonlinear analysis and optimization. As an application, we apply our
algorithm to solving the split feasibility problem and the constrained convex
minimization problem in Hilbert spaces.
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1 Introduction
Throughout this paper, let N and R be the sets of positive integers and real numbers,
respectively. Let H be a real Hilbert space with the inner product 〈·, ·〉 and norm ‖ · ‖. Let
C be a nonempty, closed, and convex subset of H . We introduce some operators which
will be used in this paper.

A mapping f : C → C is a contraction if there exists k ∈ (, ) such that ‖f (x) – f (y)‖ ≤
k‖x – y‖ for all x, y ∈ C. A nonlinear operator T : C → C is called nonexpansive if ‖Tx –
Ty‖ ≤ ‖x – y‖ for all x, y ∈ C. The set of fixed points of T is denoted by Fix(T). A nonlinear
mapping A : H → H is called monotone if 〈x – y, Ax – Ay〉 ≥  for all x, y ∈ H .

Firstly, consider the following constrained convex minimization problem:

min
x∈C

g(x), (.)

where g : C → R is a real-valued convex function. Assume that the constrained convex
minimization problem (.) is solvable, and let U denote the solution set of (.). The
gradient-projection algorithm (GPA) generates a sequence {xn}∞n= according to the re-
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cursive formula

xn+ = PC(I – βn∇g)xn, ∀n ≥ , (.)

where the parameters βn are real positive numbers, and PC is the metric projection from
H onto C. It is well known that the convergence of the algorithms (.) depends on the
behavior of the gradient ∇g . If the gradient ∇g is only assumed to be inverse strongly
monotone, then the sequence {xn} defined by the algorithm (.) can only converge weakly
to a minimizer of (.). If the gradient ∇g is Lipschitz continuous and strongly monotone,
then the sequence generated by (.) can converge strongly to a minimizer of (.) provided
the parameters βn satisfy appropriate conditions.

As we all know, Xu [] gave an averaged mapping approach to the gradient-projection
method, and he constructed a counterexample which shows that the sequence generated
by the gradient-projection method does not converge strongly in the infinite-dimensional
space. Moreover, he presented two modifications of the gradient-projection method which
are shown to have strong convergence.

In , motivated by Xu, Ceng et al. [] proposed the following iterative algorithm:

xn+ = PC
[
θnγ f (xn) + (I – θnμF)Tn(xn)

]
, n ≥ , (.)

where f : C → H is an l-Lipschitzian mapping with a constant l > , and F : C → H is
a k-Lipschitzian and η-strongly monotone operator with constants k,η > . Let  < μ <
η/k,  ≤ γ l < τ , and τ =  –

√
 – μ(η – μk). Let Tn and θn satisfy θn = –λnL

 , PC(I –
λn∇g) = θnI + ( – θn)Tn. Under suitable conditions, it is proved that the sequence {xn}∞n=

generated by (.) converges strongly to a minimizer x∗ of (.). There are also many other
methods for solving constrained convex minimization problems, such as extragradient-
projection method (see []) and so on.

However, we all know that the minimization problem (.) has more than one solution
under some conditions, so regularization is needed in finding the unique solution of the
minimization problem (.). Now, we consider the following regularized minimization
problem:

min
x∈C

gα(x) := g(x) +
α


‖x‖,

where α >  is the regularization parameter, g is a convex function with a /L-ism contin-
uous gradient ∇g . Then the RGPA generates a sequence {xn}∞n= by the following recursive
formula:

xn+ = PC(I – β∇gαn )xn = PC
[
xn – β(∇g + αnI)(xn)

]
, (.)

where the parameter αn > , β is a constant with  < β < /L, and PC is the metric pro-
jection from H onto C. We all know that the sequence {xn}∞n= generated by algorithm
(.) converges weakly to a minimizer of (.) in the setting of infinite-dimensional spaces
(see []). In , however, Ceng et al. [] established a strong convergence result via an
implicit hybrid method with regularization for solving constrained convex minimization
problems and fixed point problems in Hilbert spaces. This method is based on the RGPA.
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Secondly, consider the problem of zero points of maximal monotone operator:

B– = {x ∈ H :  ∈ Bx}, (.)

where B is a mapping of H into H , the effective domain of B is denoted by dom B or
D(B), that is, dom B = {x ∈ H : Bx = ∅}. A multi-valued mapping B is said to be a monotone
operator on H if 〈x – y, u – v〉 ≥  for all x, y ∈ dom B, u ∈ Bx, v ∈ By. A monotone operator
B on H is said to be maximal if its graph is not properly contained in the graph of any other
monotone operator on H . For a maximal monotone operator B on H and r > , we may
define a single-valued operator Jr = (I + rB)– : H → dom B, which is called the resolvent
of B for r. We denote by Ar = 

r (I – Jr) the Yosida approximation of B for r > . We know
from [] that

Arx ∈ BJrx, ∀x ∈ H , r > . (.)

Let B be a maximal monotone operator on H and define the set of zero points of B as
follows:

B– = {x ∈ H :  ∈ Bx}.

It is well known that B– = Fix(Jr) for all r >  and the resolvent Jr is firmly nonexpansive,
i.e.,

‖Jrx – Jry‖ ≤ 〈x – y, Jrx – Jry〉, ∀x, y ∈ H . (.)

Thirdly, consider the equilibrium problem (EP) which is to find z ∈ C such that

F(z, y) ≥ , ∀y ∈ C, (.)

where F is a bifunction of C × C into R, and R is the set of real numbers. We denote
the set of solutions of EP by EP(F). Given a mapping T : C → H , let F(x, y) = 〈Tx, y –
x〉 for all x, y ∈ C, then z ∈ EP(F) if and only if 〈Tz, y – z〉 ≥  for all y ∈ C, i.e., z is a
solution of the variational inequality. Numerous problems in physics, optimizations, and
economics reduce to finding a solution of (.). Some methods have been proposed to
solve the equilibrium problem; see, for instance, [–].

In , Moudafi [] introduced the viscosity approximation method for nonexpansive
mappings, extended in []. Let f be a contraction on H , starting with an arbitrary initial
x ∈ H , define a sequence {xn} recursively by

xn+ = αnf (xn) + ( – αn)Txn, n ≥ , (.)

we use Fix(T) to denote the set of fixed points of the mapping T , i.e., Fix(T) = {x ∈ H : x =
Tx}.

For finding the common solution of EP(F) and a fixed point problem, Takahashi and
Takahashi [] introduced the following iterative scheme by the viscosity approximation
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method in a Hilbert space: x ∈ H and

{
F(un, y) + 

rn
〈y – un, un – xn〉 ≥ , ∀y ∈ C,

xn+ = αnf (xn) + ( – αn)T(un), ∀n ∈N,
(.)

where {αn} ⊂ (, ) and {γn} ⊂ (,∞) satisfy some appropriate conditions. Further, they
proved {xn} and {un} converge strongly to z ∈ Fix(T) ∩ EP(F), where z = PFix(T)∩EP(F)f (z).

In , Zeng et al. [] proved a strong convergence theorem for finding a common
element of the solution set EP of a generalized equilibrium problem and the set T– ∩
T̃– for two maximal monotone operators T and T̃ defined on a Banach space X: x ∈ X
and

xn+ =
∏

Hn∩Wn

x, n = , , , . . . ,

where Hn = {z ∈ C : φ(z, Krn yn) ≤ (αn + α̃n – αnα̃n)φ(z, x) + ( – αn)( – α̃n)φ(z, xn)},
Wn = {z ∈ C : 〈xn – z, Jx – Jxn〉 ≥ }, x̃n = J–(αnJx + ( – αn)(βnJxn + ( – βn)JJrn xn)),
yn = J–(α̃nJx + ( – α̃n)(β̃nJx̃n + ( – β̃n)J J̃rn x̃n)), and {αn}, {βn}, {α̃n}, {β̃n}, {rn} satisfy some
appropriate conditions. Then the sequence {xn} converges strongly to

∏
T–∩T̃–∩EP x,

where
∏

T–∩T̃–∩EP is the generalized projection of X onto T– ∩ T̃– ∩ EP.
In , Tian and Liu [] introduced the following iterative method in a Hilbert space:

x ∈ C and

{
F(un, y) + 

rn
〈y – un, un – xn〉 ≥ , ∀y ∈ C,

xn+ = αnγ f (un) + (I – αnA)Tn(un), ∀n ∈N,
(.)

where F : C × C →R, un = Qβn (xn), PC(I – λn∇g) = θnI + ( – θn)Tn, θn = –λnL
 , and {λn} ⊂

(, /L), and {αn}, {rn}, {θn}, satisfy appropriate conditions. Further, they proved that the
sequence {xn} converges strongly to a point q ∈ U ∩ EP(F), which solves the variational
inequality

〈
(A – γ f )q, q – z

〉 ≤ , z ∈ U ∩ EP(F).

It is the first time that the equilibrium and constrained convex minimization problems
have been solved.

Defining a set-valued mapping AF ⊂ H × H by

AF x =

{
{z ∈ H : F(x, y) ≥ 〈y – x, z〉,∀y ∈ C}, ∀x ∈ C,
∅, ∀x /∈ C,

we find from [] that AF is a maximal monotone operator such that the domain is included
in C; see Lemma . in Section  for more details.

In this paper, motivated and inspired by the above results, we introduce a new iterative
algorithm: x ∈ C and

{
un = Jrn (xn),
xn+ = αnf (xn) + ( – αn)Tλn (un), ∀n ∈N

(.)
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for finding an element of U ∩ B–, where F : C × C → R, Tλn = PC(I – β∇gλn ), ∇gλn =
∇g + λnI , β ∈ (, /L). Under appropriate conditions, it is proved that the sequence {xn}
generated by (.) converges strongly to a point q ∈ U ∩B–, which solves the variational
inequality

〈
(I – f )q, q – z

〉 ≤ , ∀z ∈ U ∩ B–.

Equivalently, q = PU∩B–f (q).
Finally, in Section , we apply the above algorithm to the split feasibility problem, and

we give concrete examples and the numerical result in Section .

2 Preliminaries
In this section we introduce some properties and lemmas which will be useful in the proofs
for the main results in the next section.

Throughout this paper, we always assume that C is a nonempty closed convex subset of a
real Hilbert space H . We denote the strong convergence of {xn} to x ∈ C by xn → x and the
weak convergence by xn ⇀ x. Let Fix(T) denote the set of fixed points of the mapping T ,
EP(F) denote the solution set of the equilibrium problem (.), and U denote the solution
set of (.). We find that, for any x, y ∈ H , the following inequality holds in an inner product
space X:

‖x + y‖ ≤ ‖x‖ + 〈y, x + y〉, ∀x, y ∈ X. (.)

Firstly, we recall the metric (nearest point) projection from H onto C is the mapping
PC : H → C which is defined as follows: given x ∈ H , PCx is the unique point in C with the
property

‖x – PCx‖ = inf
y∈C

‖x – y‖ =: d(x, C).

PC is characterized as follows.

Lemma . Given x ∈ H and y ∈ C. Then y = PCx if and only if the following inequality
holds:

〈x – y, y – z〉 ≥ , ∀z ∈ C.

Secondly, we introduce the following lemma, which is about the resolvent of the maxi-
mal monotone operator.

Lemma . ([, ]; see also []) Let H be a real Hilbert space and let B be a maximal
monotone operator on H . For r >  and x ∈ H , define the resolvent Jrx. Then the following
holds:

s – t
s

〈Jsx – Jtx, Jsx – x〉 ≥ ‖Jsx – Jtx‖

for all s, t >  and x ∈ H . In particular,

‖Jsx – Jtx‖ ≤ (|s – t|/s
)‖x – Jsx‖

for all s, t >  and x ∈ H .
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Thirdly, for solving the equilibrium problem for a bifunction F : C × C → R, let us as-
sume that F satisfies the following conditions:

(A) F(x, x)= for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y, x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C, limt↓ F(tz + ( – t)x, y) ≤ F(x, y);
(A) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.

Then we have the following lemma, which appears implicitly in Blum and Oettli [].

Lemma . ([]) Let F be a bifunction of C × C into R satisfying (A)-(A). Let r >  and
x ∈ H . Then there exists z ∈ C such that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

The following lemma was also given in Combettes and Hirstoaga [].

Lemma . ([]) Assume that F : C × C → R satisfies (A)-(A). For r >  and x ∈ H ,
define a mapping Jr : H → C as follows:

Jr(x) =
{

z ∈ C : F(z, y) +

r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all x ∈ H . Then the following hold:
() Jr is single-valued;
() Jr is a firmly nonexpansive mapping, i.e., for all x, y ∈ H ,

‖Jrx – Jry‖ ≤ 〈Jrx – Jry, x – y〉;

() Fix(Jr) = EP(F);
() EP(F) is closed and convex.

We call such Jr the resolvent of F for r > . Using Lemma . and Lemma ., Takahashi
obtained the following lemma. See [] for a more general result.

Lemma . ([]) Let H be a Hilbert space and let C be a nonempty, closed, and convex
subset of H . Let F : C × C →R satisfy (A)-(A). Let AF be a set-valued mapping of H into
itself defined by

AF x =

{
{z ∈ H : F(x, y) ≥ 〈y – x, z〉,∀y ∈ C}, ∀x ∈ C,
∅, ∀x /∈ C.

Then EP(F) = A–
F  and AF is a maximal monotone operator with dom AF ⊂ C. Further-

more, for any x ∈ H and r > , the resolvent Jr of F coincides with the resolvent of AF , i.e.,

Jrx = (I + rAF )–x.

Besides, the following two lemmas are extremely important in the proof of the theo-
rems.
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Lemma . ([]) Assume that {an}∞n= is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + γnδn + βn, n ≥ ,

where {γn}∞n= and {βn}∞n= are sequences in (, ) and {δn}∞n= is a sequence in R such that
(i)

∑∞
n= γn = ∞;

(ii) either lim supn→∞ δn ≤  or
∑∞

n= γn|δn| < ∞;
(iii)

∑∞
n= βn < ∞.

Then limn→∞ an = .

The so-called demiclosed principle for nonexpansive mappings will often be used.

Lemma . (Demiclosed principle []) Let T : C → C be a nonexpansive mapping with
F(T) = ∅. If {xn}∞n= is a sequence in C weakly converging to x and if {(I – T)xn}∞n= converges
strongly to y, then (I – T)x = y. In particular, if y = , then x ∈ F(T).

Lemma . ([]) Let C be a nonempty, closed, and convex subset of H and let iC be the
indicator function of C, then iC is a proper lower semicontinuous convex function on H and
the subdifferential ∂iC of iC is a maximal monotone operator. Define Jλx = (I + λ∂iC)–x, for
all x ∈ H . We see that, for any x ∈ H and u ∈ C, u = Jλx ⇐⇒ u = PCx.

3 Main results
In this section, we will give our main results of this paper. Let B be a maximal monotone
operator on H such that the domain of B is included in C, and define the set of zero points
of B as follows:

B– = {x ∈ H :  ∈ Bx}.

We always denote Fix(T) as the fixed point set of the nonexpansive mapping T , denote
U as the solution set of the constrained convex minimization problem (.), and denote
EP(F) as the solution set of the equilibrium problem (.).

Let f be a contraction on C with the constant k ∈ (, ). Suppose that ∇g is /L-ism
continuous. Let Jrn be a sequence of mappings defined as in Lemma .. Consider the
mapping Gn on C defined by

Gn(x) = αnf (x) + ( – αn)Tλn Jrn (x), ∀x ∈ C, n ∈N,

where PC(I – β∇gλn ) = Tλn , ∇gλn = ∇g + λnI , λn ⊂ (, /β – L), β ∈ (, /L), {αn} ⊂ (, ).
It is easy to prove that ∇gλn is 

L+λn
-ism, Tλn is nonexpansive. It is easy to see that Gn is a

contraction. Indeed, by Lemma ., we have, for each x, y ∈ C,

∥∥Gn(x) – Gn(y)
∥∥ =

∥∥(
αnf (x) – αnf (y)

)
+ ( – αn)

(
Tλn Jrn (x) – Tλn Jrn (y)

)∥∥

≤ αnk‖x – y‖ + ( – αn)‖x – y‖
=

(
 – αn( – k)

)‖x – y‖.
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Since  <  – αn( – k) < , it follows that Gn is a contraction. Therefore, by the Banach
contraction principle, Gn has a unique fixed point xf

n ∈ C such that

xf
n = αnf

(
xf

n
)

+ ( – αn)Tλn Jrn

(
xf

n
)
.

For simplicity, we will write xn for xf
n provided no confusion occurs. Then we prove the

convergence of {xn}, while we claim the existence of the q ∈ U ∩ B–, which solves the
variational inequality

〈
(I – f )q, p – q

〉 ≥ , ∀p ∈ U ∩ B–. (.)

Equivalently, q = PU∩B–f (q).

Theorem . Let H be a real Hilbert space and let C be a nonempty closed convex subset
of H . Let B be a maximal monotone operator on H such that the domain of B is included
in C. Let Jr = (I + rB)– be the resolvent of B for r > . Let g be a real-valued convex function
of C into R, and the gradient ∇g be a /L-ism with L > . Let f be a contraction with the
constant k ∈ (, ). Assume that U ∩ B– = ∅. Let the sequences {un} and {xn} be generated
by

{
un = Jrn (xn),
xn = αnf (xn) + ( – αn)Tλn (un), ∀n ∈N,

(.)

where Tλn = PC(I – β∇gλn ), ∇gλn = ∇g + λnI , β ∈ (, /L). Let {rn}, {αn}, {λn} satisfy the
following conditions:

(i) {rn} ⊂ (,∞), lim infn→∞ rn > ;
(ii) {αn} ⊂ (, ), limn→∞ αn = ;

(iii) {λn} ⊂ (, /β – L), λn = o(αn).
Then the sequence {xn} converges strongly to a point q ∈ U ∩ B–, which solves the varia-
tional inequality (.).

Proof It is well known that x̂ ∈ C solves the minimization problem (.) if and only if for
each fixed  < β < /L, x̂ solves the fixed point equation

x̂ = PC(I – β∇g)x̂ = Tx̂.

It is clear that x̂ = Tx̂, i.e., x̂ ∈ U = Fix(T).
First, we claim that {xn} is bounded. Indeed, pick any p ∈ U ∩ B–, since un = Jrn (xn),

and p = Jrn (p), we know that, for any n ∈ N ,

‖un – p‖ =
∥∥Jrn (xn) – Jrn (p)

∥∥ ≤ ‖xn – p‖. (.)

Thus, we derive that

‖xn – p‖ =
∥∥αnf (xn) + ( – αn)Tλn (un) – p

∥∥

≤ ∥∥αnf (xn) – αnf (p)
∥∥ +

∥∥αnf (p) – αnp
∥∥ + ( – αn)

∥∥Tλn (un) – Tλn (p)
∥∥



Tian and Jiao Fixed Point Theory and Applications  (2015) 2015:11 Page 9 of 23

+ ( – αn)
∥∥Tλn (p) – T(p)

∥∥

≤ αnk‖xn – p‖ + αn
∥
∥(I – f )p

∥
∥ + ( – αn)‖un – p‖

+ ( – αn)
∥∥Tλn (p) – T(p)

∥∥

≤ (
 – αn( – k)

)‖xn – p‖ + αn
∥
∥(I – f )p

∥
∥ + ( – αn)

∥
∥Tλn (p) – T(p)

∥
∥.

It follows that

‖xn – p‖ ≤ 
 – k

∥
∥(I – f )p

∥
∥ +

 – αn

αn( – k)
∥
∥Tλn (p) – T(p)

∥
∥. (.)

For x ∈ C, note that

PC(I – β∇gλn )x = Tλn x

and

PC(I – β∇g)x = Tx.

Then we get

‖Tλn x – Tx‖ =
∥∥PC(I – β∇gλn )x – PC(I – β∇g)x

∥∥

≤ λnβ‖x‖. (.)

It follows from (.) and (.) that

‖xn – p‖ ≤ 
 – k

∥∥(I – f )p
∥∥ +

( – αn)β
 – k

· λn

αn
‖p‖.

Since λn = o(αn), there exists a real number M >  such that λn
αn

≤ M, and

‖xn – p‖ ≤ 
 – k

∥
∥(I – f )p

∥
∥ +

( – αn)β
 – k

M‖p‖

=
‖(I – f )p‖ + ( – αn)βM‖p‖

 – k
.

Hence {xn} is bounded and we also find that {un} is bounded.
Next, we show that ‖xn – un‖ → . Indeed, for any p ∈ U ∩ B–, by Lemma ., we have

‖un – p‖ =
∥
∥Jrn (xn) – Jrn (p)

∥
∥

≤ 〈xn – p, un – p〉
=



(‖xn – p‖ + ‖un – p‖ – ‖un – xn‖).

This implies that

‖un – p‖ ≤ ‖xn – p‖ – ‖un – xn‖. (.)
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Then from (.), (.), and (.), we derive that

‖xn – p‖ =
∥
∥αnf (xn) + ( – αn)Tλn (un) – p

∥
∥

=
∥∥αnf (xn) – αnp + ( – αn)

(
Tλn (un) – p

)∥∥

≤ ( – αn)∥∥Tλn (un) – Tλn (p) + Tλn (p) – T(p)
∥
∥ + αn

〈
f (xn) – p, xn – p

〉

≤ ( – αn)(‖un – p‖ + ‖un – p‖ · ∥∥Tλn (p) – T(p)
∥∥ +

∥∥Tλn (p) – T(p)
∥∥)

+ αn
∥
∥f (xn) – p

∥
∥ · ‖xn – p‖

≤ ( – αn)
(‖xn – p‖ – ‖un – xn‖ + ‖un – p‖ · λnβ‖p‖ + λ

nβ
‖p‖)

+ αn
(
k‖xn – p‖ +

∥
∥(I – f )p

∥
∥) · ‖xn – p‖.

Hence, we obtain

( – αn)‖un – xn‖ ≤ (αnk – αn)‖xn – p‖ + ( – αn)λnβ‖un – p‖ · ‖p‖
+ ( – αn)λ

nβ
‖p‖ + αn

∥
∥(I – f )p

∥
∥ · ‖xn – p‖.

Since both {xn} and {un} are bounded and αn → , λn → , it follows that ‖un – xn‖ → .
Then we show that ‖xn – Tλn (xn)‖ → . Indeed,

∥∥xn – Tλn (xn)
∥∥ =

∥∥xn – Tλn (un) + Tλn (un) – Tλn (xn)
∥∥

≤ ∥
∥xn – Tλn (un)

∥
∥ +

∥
∥Tλn (un) – Tλn (xn)

∥
∥

≤ ∥∥αnf (xn) + ( – αn)Tλn (un) – Tλn (un)
∥∥ + ‖un – xn‖

≤ αn
∥
∥f (xn) – Tλn (un)

∥
∥ + ‖un – xn‖.

Since αn →  and ‖un – xn‖ → , we obtain ‖xn – Tλn (xn)‖ → .
Thus,

∥∥un – Tλn (un)
∥∥ =

∥∥un – xn + xn – Tλn (xn) + Tλn (xn) – Tλn (un)
∥∥

≤ ‖un – xn‖ +
∥
∥xn – Tλn (xn)

∥
∥ +

∥
∥Tλn (xn) – Tλn (un)

∥
∥

≤ ‖un – xn‖ +
∥∥xn – Tλn (xn)

∥∥ + ‖xn – un‖

and

∥
∥xn – Tλn (un)

∥
∥ ≤ ‖un – xn‖ +

∥
∥Tλn (un) – un

∥
∥,

we have ‖un – Tλn (un)‖ →  and ‖xn – Tλn (un)‖ → .
Since {un} is bounded, without loss of generality, we can assume that uni ⇀ q. Next, we

show that q ∈ U ∩ B–.
By (.), we have

∥∥un – T(un)
∥∥ ≤ ∥∥un – Tλn (un)

∥∥ +
∥∥Tλn (un) – T(un)

∥∥

≤ ∥
∥un – Tλn (un)

∥
∥ + λnβ‖un‖.

Since ‖un – Tλn (un)‖ →  and λn → , we have ‖un – T(un)‖ → .
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So, by Lemma ., we get q ∈ Fix(T) = U .
Next, we show that q ∈ B–. Since un = Jrn (xn), B is a maximal monotone operator, we

have from (.) Arni
xni ∈ BJrni

xni , where Ar is the Yosida approximation of B for r > .
Furthermore, we have, for any (u, v) ∈ B,

〈
u – uni , v –

xni – uni

rni

〉
≥ .

Since lim infn→∞ rn > , unij
⇀ q and xnij

– unij
→ , we have

〈u – q, v〉 ≥ .

Since B is a maximal monotone operator, we have  ∈ Bq and hence q ∈ B–. Thus we
have q ∈ U ∩ B–.

On the other hand, we note that

xn – q = αnf (xn) + ( – αn)Tλn (un) – q

= αnf (xn) – αnf (q) + αnf (q) – αnq + ( – αn)
(
Tλn (un) – q

)
.

Hence, we obtain from (.) and (.)

‖xn – q‖ = αn
〈
(f – I)q, xn – q

〉

+
〈
αn

(
f (xn) – f (q)

)
+ ( – αn)

(
Tλn (un) – T(q)

)
, xn – q

〉

≤ αn
〈
(f – I)q, xn – q

〉

+
(
αnk‖xn – q‖ + ( – αn)

∥
∥Tλn (un) – Tλn (q) + Tλn (q) – T(q)

∥
∥) · ‖xn – q‖

≤ αn
〈
(f – I)q, xn – q

〉
+ αnk‖xn – q‖

+ ( – αn)‖un – q‖ · ‖xn – q‖ + ( – αn)λnβ‖q‖ · ‖xn – q‖
≤ αn

〈
(f – I)q, xn – q

〉
+ ( – αn + αnk)‖xn – q‖

+ ( – αn)λnβ‖q‖ · ‖xn – q‖.

It follows that

‖xn – q‖ ≤ 〈(f – I)q, xn – q〉
 – k

+
( – αn)λnβ‖q‖ · ‖xn – q‖

( – k)αn
.

In particular,

‖xni – q‖ ≤ ( – αn)β
 – k

· λni

αni

‖q‖ · ‖xni – q‖ +


 – k
〈
(f – I)q, xni – q

〉
. (.)

Since xni ⇀ q and λn = o(αn), it follows from (.) that xni → q as i → ∞.
Next, we show that q solves the variational inequality (.).
Observe that

xn = αnf (xn) + ( – αn)Tλn (un)

= αnf (xn) + ( – αn)Tλn Jrn (xn).
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Hence, we conclude that

(I – f )(xn) = –

αn

(I – Tλn Jrn )(xn) – Tλn Jrn (xn) + xn.

Since Tλn Jrn is nonexpansive, we find that I – Tλn Jrn is monotone. Note that, for any given
z ∈ U ∩ B–,

〈
(I – f )(xn), xn – z

〉
= –


αn

〈
(I – Tλn Jrn )(xn) – (I – Tλn Jrn )z, xn – z

〉

–

αn

〈
(I – Tλn Jrn )z, xn – z

〉
–

〈
Tλn (un) – xn, xn – z

〉

≤ –

αn

〈
(I – Tλn Jrn )z, xn – z

〉
–

〈
Tλn (un) – xn, xn – z

〉

≤ 
αn

∥∥z – Tλn (z)
∥∥ · ‖xn – z‖ +

∥∥Tλn (un) – xn
∥∥ · ‖xn – z‖

≤ λn

αn
β‖z‖ · ‖xn – z‖ +

∥∥Tλn (un) – xn
∥∥ · ‖xn – z‖.

Now, replacing n with ni in the above inequality, and letting i → ∞, since λn = o(αn),
‖Tλn (un) – xn‖ → , we have

〈
(I – f )q, q – z

〉
= lim

i→∞
〈
(I – f )xni , xni – z

〉 ≤ .

From the arbitrariness of z ∈ U ∩ B–, it follows that q ∈ U ∩ B– is a solution of the
variational inequality (.). Further, by the uniqueness of the solution of the variational
inequality (.), we conclude that xn → q as n → ∞.

The variational inequality (.) can be rewritten as

〈
f (q) – q, q – z

〉 ≥ , ∀z ∈ U ∩ B–.

By Lemma ., it is equivalent to the following fixed point equation:

PU∩B–f (q) = q.

This completes the proof. �

Theorem . Let H be a real Hilbert space and let C be a nonempty closed convex subset
of H . Let B be a maximal monotone operator on H such that the domain of B is included
in C. Let Jr = (I + rB)– be the resolvent of B for r > . Let g be a real-valued convex function
of C into R, and the gradient ∇g be a /L-ism with L > . Let f be a contraction with the
constant k ∈ (, ). Assume that U ∩ B– = ∅. Let the sequences {un} and {xn} be generated
by x ∈ C and

{
un = Jrn (xn),
xn+ = αnf (xn) + ( – αn)Tλn (un), ∀n ∈N,

(.)

where Tλn = PC(I – β∇gλn ), ∇gλn = ∇g + λnI , β ∈ (, /L). Let {rn}, {αn}, {λn} satisfy the
following conditions:
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(C) {rn} ⊂ (,∞), lim infn→∞ rn > ,
∑∞

n= |rn+ – rn| < ∞;
(C) {αn} ⊂ (, ), limn→∞ αn = ,

∑∞
n= αn = ∞,

∑∞
n= |αn+ – αn| < ∞;

(C) {λn} ⊂ (, /β – L), λn = o(αn),
∑∞

n= |λn+ – λn| < ∞.
Then the sequence {xn} converges strongly to a point q ∈ U ∩ B–, which solves the varia-
tional inequality (.).

Proof It is clear that x̂ ∈ C solves the minimization problem (.) if and only if for each
fixed  < β < /L, x̂ solves the fixed point equation

x̂ = PC(I – β∇g)x̂ = Tx̂,

and x̂ = Tx̂, i.e., x̂ ∈ U = Fix(T).
Now, we first show that {xn} is bounded. Indeed, pick any p ∈ U ∩B–, since un = Jrn (xn),

by Lemma ., we know that

‖un – p‖ =
∥
∥Jrn (xn) – Jrn (p)

∥
∥ ≤ ‖xn – p‖. (.)

Thus, we derive from (.) that

‖xn+ – p‖ =
∥
∥αnf (xn) + ( – αn)Tλn (un) – p

∥
∥

=
∥∥( – αn)

(
Tλn (un) – p

)
+ αn

(
f (xn) – p

)∥∥

≤ ( – αn)
∥
∥Tλn (un) – Tλn (p) + Tλn (p) – T(p)

∥
∥

+ αn
∥∥f (xn) – f (p) + f (p) – p

∥∥

≤ ( – αn)
(‖un – p‖ +

∥∥Tλn (p) – T(p)
∥∥)

+ αn
(
k‖xn – p‖ +

∥
∥f (p) – p

∥
∥)

≤ ( – αn)
(‖xn – p‖ + λnβ‖p‖)

+ αn
(
k‖xn – p‖ +

∥
∥f (p) – p

∥
∥)

≤ (
 – αn( – k)

)‖xn – p‖

+ αn( – k)
[

λnβ( – αn)
αn( – k)

‖p‖ +
αn

αn( – k)
· ∥∥f (p) – p

∥∥
]

.

Since λn = o(αn), there exists a real number E >  such that λn
αn

≤ E. Thus,

‖xn+ – p‖ ≤ (
 – αn( – k)

)‖xn – p‖ + αn( – k)
Eβ‖p‖ + ‖f (p) – p‖

 – k
.

By induction, we have

‖xn – p‖ ≤ max

{
‖x – p‖,


 – k

(
Eβ‖p‖ +

∥∥f (p) – p
∥∥)

}
, n ≥ .

Hence, {xn} is bounded. From (.), we also find that {un} is bounded.
Next, we show that ‖xn+ – xn‖ → .
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Indeed, since ∇g is /L-ism, PC(I – β∇gλn ) = Tλn is nonexpansive, we derive that

∥
∥Tλn (un–) – Tλn– (un–)

∥
∥ =

∥
∥PC(I – β∇gλn )un– – PC(I – β∇gλn– )un–

∥
∥

≤ ∥∥(I – β∇gλn )un– – (I – β∇gλn– )un–
∥∥

= β
∥∥∇g(un–) + λn–un– – ∇g(un–) – λnun–

∥∥

= β|λn – λn–|‖un–‖.

Thus, we get

‖xn+ – xn‖ =
∥∥(

αnf (xn) + ( – αn)Tλn (un)
)

–
(
αn–f (xn–)

+ ( – αn–)Tλn– (un–)
)∥∥

≤ ∥
∥αnf (xn) – αnf (xn–)

∥
∥

+
∥∥αnf (xn–) – αn–f (xn–)

∥∥

+
∥∥( – αn)

(
Tλn (un) – Tλn (un–)

)∥∥

+
∥∥( – αn)Tλn (un–) – ( – αn)Tλn– (un–)

∥∥

+
∥
∥( – αn)Tλn– (un–) – ( – αn–)Tλn– (un–)

∥
∥

≤ αnk‖xn – xn–‖ + |αn – αn–| ·
∥∥f (xn–)

∥∥

+ ( – αn)‖un – un–‖ + ( – αn)
∥∥Tλn (un–) – Tλn– (un–)

∥∥

+ |αn – αn–| ·
∥∥Tλn– (un–)

∥∥

≤ αnk‖xn – xn–‖ + ( – αn)‖un – un–‖
+ ( – αn)β|λn – λn–| · ‖un–‖
+ |αn – αn–|

(∥∥f (xn–)
∥∥ +

∥∥Tλn– (un–)
∥∥)

≤ αnk‖xn – xn–‖ + ( – αn)‖un – un–‖
+ M

(|λn – λn–| + |αn – αn–|
)

(.)

for some appropriate constant M >  such that

M ≥ max
{
β‖un–‖,

∥∥f (xn–)
∥∥ +

∥∥Tλn– (un–)
∥∥}

, ∀n ≥ .

Since un+ = Jrn+ (xn+) and un = Jrn (xn), we have from Lemma .

‖un+ – un‖ = ‖Jrn+ xn+ – Jrn xn‖
= ‖Jrn+ xn+ – Jrn+ xn‖ + ‖Jrn+ xn – Jrn xn‖

≤ ‖xn+ – xn‖ +
|rn+ – rn|

rn+
‖Jrn+ xn – xn‖.

Since lim infn→∞ rn > , without loss of generality, we may assume that there exists a real
number a such that rn ≥ a >  for all n ∈N.



Tian and Jiao Fixed Point Theory and Applications  (2015) 2015:11 Page 15 of 23

Thus, we have

‖un+ – un‖ ≤ ‖xn+ – xn‖ +
|rn+ – rn|

a
‖Jrn+ xn – xn‖

≤ ‖xn+ – xn‖ + |rn+ – rn|M, (.)

where M = sup{ 
a‖Jrn+ xn – xn‖ : n ∈N}. From (.) and (.), we obtain

‖xn+ – xn‖ ≤ αnk‖xn – xn–‖ + ( – αn)‖un – un–‖
+ M

(|λn – λn–| + |αn – αn–|
)

≤ αnk‖xn – xn–‖ + ( – αn)
(‖xn – xn–‖ + |rn – rn–|M

)

+ M
(|λn – λn–| + |αn – αn–|

)

≤ (
 – αn( – k)

)‖xn – xn–‖ + M|rn – rn–|
+ M

(|λn – λn–| + |αn – αn–|
)

≤ (
 – αn( – k)

)‖xn – xn–‖
+ M

(|rn – rn–| + |λn – λn–| + |αn – αn–|
)
,

where M = max{M, M}. Hence by Lemma ., we have

lim
n→∞‖xn+ – xn‖ = . (.)

Then, from (.), (.), and |rn+ – rn| → , we have

lim
n→∞‖un+ – un‖ = . (.)

For any p ∈ U ∩ B–, in the same way as in the proof of Theorem ., we have

‖un – p‖ ≤ ‖xn – p‖ – ‖un – xn‖. (.)

Then, from (.) and (.), by the same argument as in the proof of Theorem ., we
derive that

‖xn+ – p‖ =
∥∥( – αn)

(
Tλn (un) – p

)
+ αn

(
f (xn) – p

)∥∥

≤ ∥
∥Tλn (un) – Tλn (p) + Tλn (p) – T(p)

∥
∥

+ αn
∥∥Tλn (un) – p

∥∥ · ∥∥f (xn) – p
∥∥ + αn

∥∥f (xn) – p
∥∥

≤ ‖xn – p‖ – ‖un – xn‖ + ‖un – p‖ · λnβ‖p‖ + λ
nβ

‖p‖

+ αn
(

(‖un – p‖ + λnβ‖p‖) · ∥∥f (xn) – p

∥
∥ +

∥
∥f (xn) – p

∥
∥)

and hence

‖xn – un‖ ≤ ‖xn – p‖ – ‖xn+ – p‖ + βλn‖un – p‖ · ‖p‖ + λ
nβ

‖p‖

+ αn
(

(‖un – p‖ + βλn‖p‖) · ∥∥f (xn) – p

∥∥ +
∥∥f (xn) – p

∥∥)
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≤ ‖xn+ – xn‖
(‖xn – p‖ + ‖xn+ – p‖)

+ βλn‖un – p‖ · ‖p‖ + λ
nβ

‖p‖

+ αn
(

(‖un – p‖ + βλn‖p‖) · ∥∥f (xn) – p

∥∥ +
∥∥f (xn) – p

∥∥).

Since both {xn}, {f (xn)} and {un} are bounded, αn → , λn → , and ‖xn+ – xn‖ → , we
have

lim
n→∞‖xn – un‖ = . (.)

Next, we derive that

∥∥xn – Tλn (xn)
∥∥ =

∥∥xn – xn+ + xn+ – Tλn (un) + Tλn (un) – Tλn (xn)
∥∥

≤ ‖xn – xn+‖ +
∥
∥xn+ – Tλn (un)

∥
∥ +

∥
∥Tλn (un) – Tλn (xn)

∥
∥

≤ ‖xn – xn+‖ + αn
∥∥f (xn) – Tλn (un)

∥∥ + ‖un – xn‖.

From (.), (.), and αn → , we have

∥∥xn – Tλn (xn)
∥∥ → .

It follows that ‖un – Tλn (un)‖ → .
Now we show that

lim sup
n→∞

〈
xn – q, –(I – f )q

〉 ≤ ,

where q ∈ U ∩ B– is a unique solution of the variational inequality (.).
Indeed, take a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
xn – q, –(I – f )q

〉
= lim

k→∞
〈
xnk – q, –(I – f )q

〉
. (.)

Since {xn} is bounded, without loss of generality, we may assume that xnk ⇀ x̃.
By the same argument as in the proof of Theorem ., we have x̃ ∈ U ∩ B–.
Since q = PU∩B–f (q), it follows that

lim sup
n→∞

〈
(I – f )q, q – xn

〉
=

〈
(I – f )q, q – x̃

〉 ≤ . (.)

Finally, we show that xn → q.
In fact,

xn+ – q = αnf (xn) + ( – αn)Tλn (un) – q

= αn
(
f (xn) – f (q)

)
+ αn

(
f (q) – q

)

+ ( – αn)
(
Tλn (un) – Tλn (q)

)

+ ( – αn)
(
Tλn (q) – T(q)

)
.
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So, from (.) and (.), we derive

‖xn+ – q‖ = ( – αn)
〈(

Tλn (un) – Tλn (q)
)

+
(
Tλn (q) – T(q)

)
, xn+ – q

〉

+ αn
〈
f (xn) – f (q), xn+ – q

〉
+ αn

〈
–(I – f )q, xn+ – q

〉

≤ ( – αn)
(‖un – q‖ + λnβ‖q‖)‖xn+ – q‖

+ αnk‖xn – q‖ · ‖xn+ – q‖ + αn
〈
–(I – f )q, xn+ – q

〉

≤ ( – αn)‖xn – q‖ · ‖xn+ – q‖ + ( – αn)λnβ‖q‖ · ‖xn+ – q‖
+ αnk‖xn – q‖ · ‖xn+ – q‖ + αn

〈
–(I – f )q, xn+ – q

〉

≤ (
 – αn( – k)

)‖xn – q‖ · ‖xn+ – q‖ + λnβ‖q‖ · ‖xn+ – q‖
+ αn

〈
–(I – f )q, xn+ – q

〉

≤ (
 – αn( – k)

) 

(‖xn – q‖ + ‖xn+ – q‖)

+ αn

[〈
–(I – f )q, xn+ – q

〉
+

λn

αn
β‖q‖ · ‖xn+ – q‖

]
.

It follows that

‖xn+ – q‖ ≤  – αn( – k)
 + αn( – k)

‖xn – q‖

+
αn

 + αn( – k)

[
〈
–(I – f )q, xn+ – q

〉
+

λn

αn
β‖q‖ · ‖xn+ – q‖

]

≤ (
 – αn( – k)

)‖xn – q‖

+
αn

 + αn( – k)

[
〈
–(I – f )q, xn+ – q

〉
+

λn

αn
β‖q‖ · ‖xn+ – q‖

]
;

since {xn} is bounded, we can take a constant M >  such that

M ≥ ‖xn+ – q‖, n ≥ .

Then we obtain

‖xn+ – q‖ ≤ (
 – αn( – k)

)‖xn – q‖ + αnδn, (.)

where δn = 
+αn(–k) [〈–(I – f )q, xn+ – q〉 + λn

αn
β‖q‖M].

By (.) and λn = o(αn), we get lim supn→∞ δn ≤ . Now applying Lemma . to (.)
one concludes that xn → q as n → ∞. The variational inequality (.) can be rewritten as

〈
f (q) – q, q – z

〉 ≥ , ∀z ∈ U ∩ B–.

By Lemma ., it is equivalent to the following fixed point equation:

PU∩B–f (q) = q.

This completes the proof. �
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4 Applications
In this section, we will give some applications, which are useful in nonlinear analysis and
optimization.

Theorem . Let H be a real Hilbert space and let C be a nonempty closed convex subset
of H . Let F be a bifunction of C ×C intoR satisfying (A)-(A). Let Jr be the resolvent of F for
r > . Let g be a real-valued convex function of C into R, and the gradient ∇g be a /L-ism
with L > . Let f be a contraction with the constant k ∈ (, ). Assume that U ∩ EP(F) = ∅.
Let the sequences {un} and {xn} be generated by x ∈ C and

{
F(un, y) + 

rn
〈y – un, un – xn〉 ≥ , ∀y ∈ C,

xn+ = αnf (xn) + ( – αn)Tλn (un), ∀n ∈N,
(.)

where Tλn = PC(I – β∇gλn ), ∇gλn = ∇g + λnI , β ∈ (, /L). Let {rn}, {αn}, {λn} satisfy the
conditions (C)-(C). Then the sequence {xn} converges strongly to a point q ∈ U ∩ EP(F),
where q = PU∩EP(F)f (q).

Proof For a bifunction F of C × C into R satisfying (A)-(A), we can define a maximal
monotone operator AF with dom AF ⊂ C. Put B = AF in Theorem .. Then by Lemma .,
we have un = Jrn (xn). Thus we obtain the desired result by Theorem .. �

On the other hand, based on Theorem . and Theorem ., we will give another two
applications of it. In , Censor and Elfving [] introduced the split feasibility problem
(SFP). Then various algorithms were introduced by some authors to solve it (see [] and
[–]). Recently, many authors have paid attention to the SFP due to its application in
signal processing and image reconstructions (see [, , ]).

Let C and Q be nonempty, closed, and convex subset of real Hilbert spaces H and H,
respectively. Then the SFP under consideration in this paper can mathematically be for-
mulated as finding a point x satisfying the following property:

x ∈ C and Ax ∈ Q, (.)

where A : H → H is a bounded linear operator. It is clear that x∗ is a solution to the split
feasibility problem (.) if and only if x∗ ∈ C and Ax∗ –PQAx∗ = . We define the proximity
function g by

g(x) =


‖Ax – PQAx‖.

Then consider the constrained convex minimization problem

min
x∈C

g(x) = min
x∈C



‖Ax – PQAx‖. (.)

Then x∗ solves the SFP (.) if and only if x∗ solves the minimization problem (.) with
the minimum equal to .

In particular, the so-called CQ algorithm was introduced by Byrne []. Take the initial
guess x ∈ H arbitrarily, and define {xn} recursively as follows:

xn+ = PC
(
I – βA∗(I – PQ)A

)
xn, n ≥ , (.)
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where  < β < /‖A‖ and PC denotes the projector onto C. Then the sequence {xn} gen-
erated by (.) converges weakly to a solution of the SFP.

Let B be a maximal monotone operator on Hilbert space H . Let Jr = (I + rB)– be the
resolvent of B for r > . In order to obtain a strong convergence iterative sequence to solve
the SFP, we propose a new algorithm as follows: x ∈ C,

{
un = Jrn (xn),
xn+ = αnf (xn) + ( – αn)Tλn (un), ∀n ∈N,

(.)

where f : C → C is a contraction with the constant k ∈ (, ), and {Tλn} satisfy PC(I –
β(A∗(I – PQ)A + λnI)) = Tλn for all n, and β ∈ (, /‖A‖). We can show that the sequence
{xn} generated by (.) converges strongly to a solution of the SFP (.) if the sequence
{αn} ⊂ (, ) and the sequence {λn} of parameters satisfy appropriate conditions. Applying
Theorem ., we obtain the following result.

Theorem . Assume that the split feasibility problem (.) is consistent. Let the sequence
{xn} be generated by (.). Here the sequences {rn} and {αn} ⊂ (, ), and the sequence {λn}
satisfy the conditions (C)-(C). Then the sequence {xn} converges strongly to a point q ∈
W ∩ B–, where W denotes the solution set of SFP (.).

Proof By the definition of the proximity function g , we have

∇g(x) = A∗(I – PQ)Ax,

since PQ is /-averaged mapping, then I – PQ is -ism, for ∀x, y ∈ C, we obtain

〈∇g(x) – ∇g(y), x – y
〉
– /‖A‖ · ∥∥∇g(x) – ∇g(y)

∥∥

=
〈
A∗(I – PQ)Ax – A∗(I – PQ)Ay, x – y

〉

– /‖A‖ · ∥∥A∗(I – PQ)Ax – A∗(I – PQ)Ay
∥∥

=
〈
A∗[(I – PQ)Ax – (I – PQ)Ay

]
, x – y

〉

– /‖A‖ · ∥∥A∗[(I – PQ)Ax – (I – PQ)Ay
]∥∥

=
〈
(I – PQ)Ax – (I – PQ)Ay, Ax – Ay

〉

– /‖A‖ · ∥∥A∗[(I – PQ)Ax – (I – PQ)Ay
]∥∥

≥ ∥∥(I – PQ)Ax – (I – PQ)Ay
∥∥

–
∥
∥(I – PQ)Ax – (I – PQ)Ay

∥
∥

= .

So, ∇g is /‖A‖-ism.
Set gλn (x) = g(x) + λn

 ‖x‖, consequently,

∇gλn (x) = ∇g(x) + λnI(x)

= A∗(I – PQ)Ax + λnx.
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Then the iterative scheme (.) is equivalent to
{

un = Jrn (xn),
xn+ = αnf (xn) + ( – αn)Tλn (un), ∀n ∈N,

where {Tλn} satisfy PC(I – β(A∗(I – PQ)A + λnI)) = Tλn for all n, and β ∈ (, /‖A‖). �

However, in order to obtain a strong convergence iterative sequence to solve the SFP, we
propose another new algorithm as follows: x ∈ C,

{
F(un, y) + 

rn
〈y – un, un – xn〉 ≥ , ∀y ∈ C,

xn+ = αnf (xn) + ( – αn)Tλn (un), ∀n ∈N,
(.)

where f : C → C is a contraction with the constant k ∈ (, ), and {Tλn} satisfy PC(I –
β(A∗(I – PQ)A + λnI)) = Tλn for all n, and β ∈ (, /‖A‖). We can show that the sequence
{xn} generated by (.) converges strongly to a solution of the SFP (.) if the sequence
{αn} ⊂ (, ) and the sequence {λn} of parameters satisfy appropriate conditions. Applying
Theorem ., we obtain the following result.

Theorem . Assume that the split feasibility problem (.) is consistent. Let the sequence
{xn} be generated by (.). Here the sequences {rn} and {αn} ⊂ (, ), the sequence {λn}
satisfies the conditions (C)-(C). Then the sequence {xn} converges strongly to a point
q ∈ W ∩ EP(F), where W denotes the solution set of SFP (.).

Proof For a bifunction F of C × C into R satisfying (A)-(A), we can define a maximal
monotone operator AF with dom AF ⊂ C. Put F = AF in Theorem .. Then by Lemma .,
we have un = Jrn (xn). Thus we obtain the desired result by Theorem . and Theorem ..

�

5 Numerical results
In this section, we present the following concrete examples to judge the numerical per-
formance of our algorithm. By using the algorithm in Theorem . and Theorem ., we
illustrate its realization, effectiveness, and convergence in solving a system of linear equa-
tions and a constrained convex minimization problem.

The first example is the  ×  system of linear equations, which use the algorithm in
Theorem ..

Example  In Theorem ., we assume that H = H = R
. Take f = 

 I , where I denotes
the  ×  identity matrix. Given the parameters αn = 

n+ , λn = 
(n+) for every n ≥ .

β = 
 . Take

A =

⎛

⎜
⎜⎜
⎝

 –  –
 –  –
   
 –  

⎞

⎟
⎟⎟
⎠

, (.)

b =

⎛

⎜
⎜⎜
⎝

–
–




⎞

⎟
⎟⎟
⎠

. (.)
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Table 1 Numerical results as regards Example 1

n x1
n x2

n x3
n x4

n En

0 1.0000 1.0000 1.0000 1.0000 3.74E+00
100 0.6070 2.0706 1.7816 3.9672 1.03E+00

1,000 1.0094 2.8884 1.9496 4.0123 1.23E–01
5,000 1.0353 2.9643 1.9702 4.0133 5.99E–02
10,000 1.0307 2.9769 1.9774 4.0109 4.59E–02

The SFP can be formulated as the problem of finding a point x∗ with the property

x∗ ∈ C and Ax∗ ∈ Q,

where C = H, Q = {b} ⊂ H. That is, x∗ is the solution of the system of linear equations
Ax = b, and

x∗ =

⎛

⎜⎜
⎜
⎝






⎞

⎟⎟
⎟
⎠

. (.)

Then by Theorem . and Lemma ., the sequence {xn} is generated by

xn+ =


(n + )
xn +

n + 
n + 

(
xn –




A∗Axn +



A∗b –


(n + ) xn

)
.

As n → ∞, we have {xn} → x∗ = (, , , )T .
From Table , we can easily see that with iterative number increasing, xn approaches the

exact solution x∗ and the errors gradually approach zero.

The second example is also the constrained convex minimization problem, which uses
the algorithm in Theorem ..

Example  In Theorem ., we assume that H = R and C = [, ]. Take f = 
 I , where

I denotes the unit function. Given the parameters αn = 
n+ , λn = 

(n+) for every n ≥ .
β = 

 . Consider the problem (.) and take the function

g(x) =
–x
ex , ∀x ∈ C. (.)

The problem (.) can be written as

min
x∈[,]

–x
ex . (.)

It is easy to see that ∇g is /-ism, that is, L = . In order to solve the problem (.), we
can find a point x∗ ∈ [, ], such that g(x) reaches the minimum at x∗, and x∗ = .

Then by Theorem . and Lemma ., the sequence {xn} is generated by

xn+ =


(n + )
xn +

n + 
n + 

PC

(
xn –




(
xn

exn
–


exn

+


(n + ) xn

))
.

As n → ∞, we have {xn} → x∗.
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Table 2 Numerical results as regards Example 2

n xn En

0 0.5000 5.00E–01
10 0.7301 2.70E–01
50 0.9250 7.50E–02
500 0.9919 8.09E–03

5,000 0.9992 8.15E–04

From Table , we easily see that by using the regularization method and with iterative
number increasing, xn approaches to x∗ and the errors gradually approach to zero.

From the computer programming’s point of view, the above algorithms in the concrete
examples are easier to implement in this paper.

6 Conclusion
In a real Hilbert space, methods for solving the equilibrium problem and constrained con-
vex minimization problem have been extensively studied, respectively. Recently, Tian and
Liu were first to propose composite iterative algorithms for finding a common solution of
an equilibrium and a constrained convex minimization problem. However, in this paper,
we use the regularized gradient-projection algorithm to find the unique solution of the
problems of constrained convex minimization problem and the zero points of maximal
monotone operator, which also solves a certain variational inequality. In particular, un-
der suitable conditions, the zero points of a maximal monotone operator problem can be
transformed into the equilibrium problem. Then new strong convergence theorems and
applications are obtained, which also solve a certain variational inequality. Finally, we ap-
ply this algorithm to the split feasibility problem and the constrained convex minimization
problem, and we illustrate the effectiveness, realization, and convergence of our algorithm
by giving concrete examples and numerical results.
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