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Abstract

In this paper, we establish the existence of fixed points for set-valued mappings
satisfying certain graph contractions with set-valued domain endowed with a graph.
These results unify, generalize, and complement various known comparable results in
the literature.
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1 Introduction and preliminaries

Existence of fixed points in ordered metric spaces has been studied by Ran and Reur-
ings [1]. Recently, many researchers have obtained fixed point results for single- and set-
valued mappings defined on partially ordered metrics spaces (see, e.g., [2—6]). Jachymski
and Jozwik [7] introduced a new approach in metric fixed point theory by replacing the
order structure with a graph structure on a metric space. In this way, the results proved in
ordered metric spaces are generalized (see also [8] and the references therein); in fact, in
2010, Gwozdz-Lukawska and Jachymski [9], developed the Hutchinson-Barnsley theory
for finite families of mappings on a metric space endowed with a directed graph. Abbas
and Nazir [10] obtained some fixed point results for power graph contraction pair en-
dowed with a graph. Bojor [11] proved fixed point theorem of ¢-contraction mapping on
a metric space endowed with a graph. Recently, Bojor [12] proved fixed point theorems for
Reich type contractions on metric spaces with a graph. For more results in this direction,
we refer to [13—17] and the references mentioned therein. The reader interested in fixed
point results of partial metric spaces is referred to [2, 10, 18]. In this paper, we prove fixed
point results for set-valued maps, defined on the family of closed and bounded subsets of a
metric space endowed with a graph and satisfying graph ¢-contractive conditions. These
results extend and strengthen various known results in [7, 8, 11, 19-21].

Consistent with Jachymski [8], let (X, d) be a metric space and A denotes the diagonal
of X x X. Let G be a directed graph, such that the set V(G) of its vertices coincides with X
and E(G) be the set of edges of the graph which contains all loops, that is, A € E(G). Also
assume that the graph G has no parallel edges and, thus, one can identify G with the pair
(V(G), E(G)).
© 2015 Abbas et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
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Definition 1.1 [8] An operator f : X — X is called a Banach G-contraction or simply a
G-contraction if
(a) f preserves edges of G; for each x,y € X with (x,y) € E(G), we have
(F().£0) € EG),
(b) f decreases weights of edges of G; there exists « € (0,1) such that for all x,y € X
with (x,y) € E(G), we have d(f(x),f(y)) < ad(x,y).

If x and y are vertices of G, then a path in G from x to y of length k € N is a finite
sequence {x,} (n €{0,1,2,...,k}) of vertices such that xy = x, x; = y, and (x;_1, ;) € E(G)
forie{1,2,...,k}.

Notice that a graph G is connected if there is a directed path between any two vertices
and it is weakly connected if G is connected, where G denotes the undirected graph ob-
tained from G by ignoring the direction of the edges. Denote by G™! the graph obtained
from G by reversing the direction of the edges. Thus,

E(G‘l) = {(x,y) EX X X:(y,x) eE(G)}.

It is more convenient to treat G as a directed graph for which the set of its edges is sym-

metric; under this convention, we have
E(G) = E(G)UE(G™).

If G is such that E(G) is symmetric, then for x € V(G), the symbol [x]s denotes the equiv-
alence class of the relation R defined on V(G) by the rule:

yRz if there is a path in G from y to z.

Recall that if f : X — X is an operator, then by Fy we denote the set of all fixed points of f.

We set also
Xy = {x eX: (x,f(x)) € E(G)}.

Jachymski and Jozwik [7] used the following property:
(P) for any sequence {x,} in X, if x, — x as n — oo and (x,,, %,+1) € E(G), then
(x,, %) € E(G).

Theorem 1.2 [7] Let (X, d) be a complete metric space and let G be a directed graph such
that V(G) = X. Let E(G) and the triplet (X,d, G) have property (P). Let f : X — X be a
G-contraction. Then the following statements hold:

(1) Er #9 if and only if Xy #;

(2) if Xy # 0 and G is weakly connected, then f is a Picard operator, i.e., Fy = {x*} and

sequence {f"(x)} — x* as n — oo, forall x € X;
(3) forany x € X, f| kg IS a Picard operator;
(4) if Xy € E(G), then f is a weakly Picard operator, i.e., F # 9 and, for each x € X, we

have sequence {f"(x)} — x*(x) € Fr as n — oo.
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For a detailed discussion concerning Picard and weakly Picard operators, we refer to Rus
[22, 23] and to Berinde [24, 25].

Let (X,d) be a metric space and let CB(X) be the class of all nonempty closed and
bounded subsets of X. For A, B € CB(X), let

H(A,B) = max{sup d(b,A),supd(a,B) },

beB acA

where d(x, B) = inf{d(x, b) : b € B} is the distance of a point x to the set B. The mapping H
is said to be the Pompeiu-Hausdorff metric induced by d.

Throughout this paper, we assume that a directed graph G has no parallel edge and G
is a weighted graph in the sense that each vertex x is assigned the weight d(x,x) = 0 and
each edge (x, ) is assigned the weight d(x, y). Since d is a metric on X, the weight assigned
to each vertex x to vertex y need not be zero and, whenever a zero weight is assigned to
some edge (x,7), it reduces to a loop (x,x) having weight 0. Further, in Pompeiu-Hausdorff
metric induced by metric d, the Pompeiu-Hausdorff weight assigned to each U, V € CB(X)
need not be zero (that is, H(U, V) # 0) and, whenever a zero Pompeiu-Hausdorff weight
is assigned to some U, V € CB(X), it reduces to U = V.

Definition 1.3 Let A and B be two nonempty subsets of X. Now we treat some terminol-
ogy:
(a) by ‘there is an edge between A and B; we mean there is an edge between some a € A
and b € B which we denote by (4, B) C E(G).
(b) by ‘there is a path between A and B, we mean that there is a path between some
acAandbeB.

In CB(X), we define a relation R in the following way:

For A, B € CB(X), we have ARB if and only if there is a path between A and B.

We say that the relation R on CB(X) is transitive if there is a path between A and B, and
there is a path between B and C, then there is a path between A and C.

For A € CB(X), the equivalence class of A induced by R is denoted by

[Alg = {B € CB(X):ARB}.

Now we consider the mapping 7 : CB(X) — CB(X) instead of T: X - X or T : X —
CB(X) to study fixed points of graph contraction mappings.
For a mapping T : CB(X) — CB(X), we define the following set:

Xr:=[U € CBX): (U, T(U)) € E(G)}.

Definition 1.4 Let T : CB(X) — CB(X) be a set-valued mapping. The mapping T is said
to be a graph ¢-contraction if the following conditions hold:
(i) There is an edge between A and B implies there is an edge between T'(A) and 7'(B)
for all A, B € CB(X).
(i) There is a path between A and B implies there is a path between T(A) and T'(B) for
all A, B € CB(X).
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(iii) There exists an upper semi-continuous and nondecreasing function ¢ : R* — R*
with ¢ () < ¢ for each ¢ > 0 such that there is an edge between A and B implies

H(T(A), T(B)) < ¢(H(A,B)) forall A,B e CB(X). 1.1)

Example 1.5
(1) Any constant mapping T : CB(X) — CB(X) is a graph ¢-contraction for A C E(G).
(2) Any graph ¢-contraction map for a graph G is also a graph ¢-contraction for graph
Gy, where the graph Gy is defined by E(Gp) = X x X.
It is obvious if T': CB(X) — CB(X) is a graph ¢-contraction for graph G, then T is also
graph ¢-contraction for the graphs G and G.
A graph G is said to have property:

(P*) if for any sequence {X,} in CB(X) with X,, — X as n — 00, there exists an edge be-
tween X, and X,,,; for n € N, implies that there is a subsequence {X,, } of {X,,} with an

edge between X,,, and X for n e N.

Definition 1.6 Let 7 : CB(X) — CB(X). The set A € CB(X) is said to be a fixed point of T
if T(A) = A. The set of all fixed points of T is denoted by F(T).

A subset I' of CB(X) is said to be complete if for any set X, Y € T', there is an edge between
XandY.

Definition 1.7 [19] A metric space (X, d) is called an e-chainable metric space for some
e > 0 if for given x, y € X, there is n € N and a sequence {x,} such that

X0 = X, x,=y and d(x,_,x)<e fori=1,...,n.
We need of the following lemma of Nadler [21] (see also [26]).

Lemma 1.8 IfU,V € CB(X) with H(U, V) < &, then for each u € U there exists an element
v €V such that d(u,v) < ¢.

2 Fixed point results
In this section, we obtain several fixed point results for set-valued selfmaps on CB(X) sat-
isfying certain graph contraction conditions.

Theorem 2.1 Let (X, d) be a complete metric space endowed with a directed graph G such
that V(G) = X and E(G) 2 A. If T : CB(X) — CB(X) is a graph ¢-contraction mapping
such that the relation R on CB(X) is transitive, then following statements hold:
(i) IfE(T) is complete, then the Pompeiu-Hausdor(f weight assigned to the U,V € F(T)
is 0.
(ii) X7 # 0 provided that F(T) # 0.
(iii) If X7 # 0 and the weakly connected graph G satisfies the property (P*), then T has a
fixed point.
(iv) F(T) is complete if and only if F(T) is a singleton.
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Proof To prove (i), let U, V € F(T). Suppose that the Pompeiu-Hausdorff weight assign to
the U and V is not zero. Since T is a graph ¢-contraction, we have

H(U,V) = H(T(U), T(V))
<¢(HW,V))

< H(U,YV),

a contradiction. Hence (i) is proved.

To prove (ii), let F(T) # @. Then there exists U € CB(X) such that T(U) = U. Since A C
E(G) and U is nonempty, we conclude that X1 # @.

To prove (iii), let U € X7. As T is a graph ¢-contraction and A,B € CB(X), it follows
by the hypothesis CB(X) C [A]z = P(X), where P(X) denotes the power set of X and so,
T(A) € [A]g. Now for A € CB(X) and B € [A]g, there exists a path {x;}, from some x € A
and to y € T(A), that is, xo =x and x,, = y and (x;_1,%;) € E(é), fori=1,2,...,n, such that
x9 €EAog = A, x1 € Ay,...,x, € A, = T(A), where each A; € CB(X). Since T is also a graph
¢-contraction for graph é, fori=1,2,...,n, we have

H(T(Ai1), T(A)) < ¢p(H(Ai1, A))),

H(T(Ai2), T(Ai1)) < 9(H(Ai2, A1),

H(T(Ao), T(A1)) < ¢(H (Ao, A),
and so we obtain

H(T"(A), T"!(A)) < ¢" (H(4, T(A)))
for all n € N. Now for m,n € N with m > n,

H(T™"(A), T™(A)) < H(T™"(A), T"(A)) + H(T"'(A), T"*(A)) + - --
+H(T"(A), T™(A))
<¢"(H(A, T(A))) + ¢" (H(A, T(A))) + -
+ " (H(A, T(A))).

On taking the upper limit as n,m — 0o, we get H(T"(A), T"(A)) converges to 0. Since
(X, d) is complete, we have T"(A) — U* as n — oo for some U* € CB(X). There exists an
edge between U and T(U), the fact that T is a graph ¢-contraction yields the result that
there is an edge between T"(U[) and T"*}(U) for all n € N. By property (P*), there exists a
subsequence {T"k(U)} such that there is an edge between T"k(U) and U* for every n € N.
By the transitivity of the relation R, there is a path in G (and hence also in G) between U
and U*. Thus U € [U]g. Now

H(T"N W), T(UY)) < ¢(H(T™ (W), U*)).
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Now T"(U) — U* as n — oo implies, on taking the upper limit as n — oo, T**1(U) —
T(U*) as n — 00. Thus we obtain U* = T(U*).

Finally to prove (iv), suppose the set F(T) is complete. We are to show that F(T) is sin-
gleton. Assume to the contrary that there exist U, V € CB(X) such that U,V € F(T) and
U # V. By completeness of F(T), there exists an edge between U and V. As T is a graph
¢-contraction, so we have

0 < H(U,V)
= H(T(U), T(V))
<¢(HU,V)),

a contradiction. Hence U = V.
Conversely, if F(T) is singleton, then obviously F(T') is complete. O

The following corollary is a direct consequence of Theorem 2.1(iii).

Corollary 2.2 Let (X,d) be a complete metric space endowed with a directed graph G such
that V(G) = X and E(G) 2 A.If G is weakly connected, then graph ¢-contraction mapping
T : CB(X) — CB(X) with (Ao, A1) C E(G) for some A, € T(Ay), has a fixed point.

Corollary 2.3 Let (X,d) be a e-chainable complete metric space for some ¢ >0, T :
CB(X) — CB(X) and ¢ : R* — R* be an upper semi-continuous and nondecreasing func-
tion with ¢(t) < t for each t > 0 with

0<H(A,B)<e.
If

H(T(A), T(B)) < ¢(H(A,B)) forall A,B e CB(X),
then T has a fixed point.

Proof By Lemma 1.8, from H(A, B) < ¢, we have for each a € A, an element b € B such that
d(a,b) < . Consider the graph G as V(G) = X and

EG) = {(a,b) eXxX:O<d(a,b)<8}.

Then the ¢-chainability of (X, d) implies that G is connected. For (4, B) C E(G), we have
from the hypothesis

H(T(A), T(B)) < $(H(A,B)).

This implies that T is a graph ¢-contraction mapping.

Also, G has property (P*). Indeed, if {X,} in CB(X) with X, > X as n — oo and
Xy Xus1) C E(G) for n € N, implies that there is a subsequence {X,, } of {X,} such that
(X, X) C E(G) for n € N. So by Theorem 2.1(iii), T has a fixed point. O
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Figure 1 Pompeiu-Hausdorff weighted graph. H(0,1)=1/4
0 1
H(0,2)=3/
H(0,3)=3/4 H(1,2)=3/4
(1,3)=3/4
3 2
H(2,3)=3/4

Example 2.4 Let X ={0,1,2,...,n—1} = V(G) and

E(G) = {(0,0),(1,1),(2,2),...,(n - L,n - 1),
(0,1),(0,2),...,(0,n-1),
1,2),(1,3),...,(1,n-1),

(n—2,n- 1)}.
Let V(G) be endowed with metric d : X x X — R* defined by
d0,0)=d(1,1)=---=d(n-1,n—1) =0,
d(0,1) =d(1,0) = %,

d0,2) =d(2,0)=d(1,2) =d(2,1) = ---=d(n-2,n-1) =d(n-1,n—2) = Ll
n+
The Pompeiu-Hausdorft weights (for n = 4) assigned to A, B € CB(X) are shown in Fig-
ure 1.
Furthermore,

L ifA,BC{0,1} withA #B,
H(A,B) = { -2, if A or B (orboth) Z {0,1} with A # B,

0, if A=B.
Define T : CB(X) — CB(X) as follows:

) - {{0}, ifU S (0,1
(0,1}, ifUU ¢ {0,1}.

Note that, for all A, B € CB(X) with edge between A and B, there is an edge between T'(A)
and T'(B). Also there is a path between A and B implies that there is a path between T'(A)
and T'(B).

Define ¢ : [0,00) — [0, 00) by

5(0) ¥, ifr€l0,2),
= 2”(2”“[—3) . 221, 92(n+l)
gnr o fte [, - neN

An easy computation shows that ¢ is continuous on [0, 00) and ¢(¢) < ¢ for all £ > 0.
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Now for all A, B € CB(X), we consider the following cases:
(a) For A,B < {0,1}, we have H(T'(A), T(B)) = 0.
(b) If A < {{0},{1},{0,1}} and B & {{0}, {1}, {0,1}}, then we have

H(T(A), T(B)) = H({0},{0,1})

n

P =¢( “ >:¢>(H(A,B)).

5n+5 n+1

(c) Inthe case A,B & {{0},{1},{0,1}}, we have
H(T(A), T(B)) = H({0,1},{0,1}) = 0.

Obviously, (1.1) is satisfied in the cases (a), (b), and (c).
Hence for all A, B € CB(X) having an edge between A and B, (1.1) is satisfied and so T is a
graph ¢-contraction. Thus all the conditions of Theorem 2.1 are satisfied. Moreover, {0}
is the fixed point of T and F(T') is complete.

Remark 2.5
(1) IfE(G):= X x X, then clearly G is connected and Theorem 2.1 improves and
generalizes Theorem 2.5 in [19], Theorems 2.1-2.3 in [11] and Theorem 3.1 in [7].
(2) Theorem 2.1 with the graph G improves and generalizes Theorem 2.1 in [20] from
single valued to set-valued mappings.
(3

~

If E(G) := X x X, then clearly G is connected and our Corollary 2.2 extends and

generalizes Theorem 2.5 in [19], Theorem 3.2 in [21], and Theorem 3.1 in [7].

(4) If E(G):=X x X, then clearly G is connected and our Corollary 2.3 improves and
generalizes Theorem 3.2 in [21] and Theorem 3.1 in [7].

(5) Corollary 2.3 extends and improves the Banach contraction theorem and

Theorem 5.1 in [27].
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