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Abstract
In this article, we propose a new iterative method for approximating a common
element of the set of common fixed points of a finite family of k-strictly
pseudononspreading single-valued mappings, the set of common fixed points of a
finite family of quasi-nonexpansive multi-valued mappings, and the set of common
solutions of a finite family of variational inequality problems in Hilbert spaces.
Furthermore, we prove that the proposed iterative method converges strongly to a
common element of the above three sets, and we also apply our results to
complementarity problems. Finally, we give two numerical examples to support our
main result.
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1 Introduction
Let D be a nonempty subset of a real Hilbert space X. Let CB(D) denote the families of
nonempty closed bounded subsets of D. The Hausdorff metric on CB(D) is defined by

H(A, B) = max
{

sup
x∈A

dist(x, B), sup
y∈B

dist(y, A)
}

for A, B ∈ CB(D),

where dist(x, D) = inf{‖x – y‖ : y ∈ D}. Let T : D → CB(D) be a multi-valued mapping. An
element x ∈ D is said to be a fixed point of T if x ∈ Tx. The set of fixed points of T will be
denoted by F(T). A multi-valued mapping T : D → CB(D) is called

(i) nonexpansive if

H(Tx, Ty) ≤ ‖x – y‖ for all x, y ∈ D;

(ii) quasi-nonexpansive if F(T) �= ∅ and

H(Tx, Tp) ≤ ‖x – p‖ for all x ∈ D and p ∈ F(T);
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(iii) L-Lipschitzian if there exists L >  such that

H(Tx, Ty) ≤ L‖x – y‖ for all x, y ∈ D.

It is clear that every nonexpansive multi-valued mapping T with F(T) �= ∅ is quasi-
nonexpansive. It is known that if T is a quasi-nonexpansive multi-valued mapping, then
F(T) is closed. In general, the fixed point set of a quasi-nonexpansive multi-valued map-
ping T is not necessary to be convex. In the next lemma, we show that F(T) is convex
under the assumption that Tp = {p} for all p ∈ F(T). The proof of this fact is very easy,
therefore we omit it.

Lemma . Let D be a nonempty closed convex subset of a real Hilbert space X. Assume
that T : D → CB(D) is a quasi-nonexpansive multi-valued mapping. If Tp = {p} for all
p ∈ F(T), then F(T) is convex.

The fixed point theory of multi-valued mappings is much more complicated and harder
than the corresponding theory of single-valued mappings. However, some classical fixed
point theorems for single-valued mappings have already been extended to multi-valued
mappings; see [, ]. The recent fixed point results for multi-valued mappings can be found
in [–] and the references cited therein.

For a single-valued case, a mapping t : D → D is called nonexpansive if ‖tx– ty‖ ≤ ‖x–y‖
for all x, y ∈ D. An element x ∈ D is called a fixed point of t if x = tx. Recall that a single-
valued mapping t : D → D is said to be nonspreading [, ] if

‖tx – ty‖ ≤ ‖x – y‖ + 〈x – tx, y – ty〉 for all x, y ∈ D.

In , Kurokawa and Takahashi [] obtained a weak mean ergodic theorem of Bail-
lon’s type for nonspreading single-valued mappings in Hilbert spaces. They also proved a
strong convergence theorem for this class of single-valued mappings using an idea of mean
convergence in Hilbert spaces. Later in , Osilike and Isiogugu [] introduced a new
class of nonspreading type of mappings, which is more general than the class studied in
[], as follows: A single-valued mapping t : D → D is called k-strictly pseudononspreading
if there exists k ∈ [, ) such that

‖tx – ty‖ ≤ ‖x – y‖ + k
∥∥(I – t)x – (I – t)y

∥∥ + 〈x – tx, y – ty〉 for all x, y ∈ D.

Obviously, every nonspreading mapping is k-strictly pseudononspreading. Osilike and
Isiogugu proved weak and strong convergence theorems for this mapping in Hilbert
spaces. They also provided a property of a k-strictly pseudononspreading mapping as fol-
lows.

Lemma . ([]) Let D be a nonempty closed convex subset of a real Hilbert space X, and
let t : D → D be a k-strictly pseudononspreading mapping. If F(t) �= ∅, then it is closed and
convex.

Many researchers studied the existence and convergence theorems of those single-
valued mappings in both Hilbert spaces and Banach spaces (e.g., see [–]).
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The problem of finding common fixed points has been extensively studied by mathe-
maticians. To deal with a fixed point problem of a family of nonlinear mappings, several
ways have appeared in the literature. For example, in , Atsushiba and Takahashi []
introduced a new mapping, called W -mapping, for finding a common fixed point of a fi-
nite family of nonexpansive mappings. This mapping is defined as follows. Let {ti}N

i= be
a finite family of nonexpansive mappings of D into itself. Let W : D → D be a mapping
defined by

U = βt + ( – β)I,

U = βtU + ( – β)I,

U = βtU + ( – β)I,

...

UN– = βN–tN–UN– + ( – βN–)I,

W = UN = βN tN UN– + ( – βN )I,

where I is the identity mapping of D and {βi}N
i= is a sequence in (, ). This mapping is

called the W -mapping generated by t, t, . . . , tN and β,β, . . . ,βN . They also proved that
if X is a strictly convex Banach space, then F(W ) =

⋂N
i= F(ti).

In , Kangtunyakarn and Suantai [] introduced a new concept of the S-mapping
for finding a common fixed point of a finite family of nonexpansive mappings as follows:
Let {ti}N

i= be a finite family of nonexpansive mappings of D into itself. Let S : D → D be a
mapping defined by

V = δ
t + δ

I + δ
I,

V = δ
 tV + δ

V + δ
I,

V = δ
 tV + δ

V + δ
I,

...

VN– = δN–
 tN–VN– + δN–

 VN– + δN–
 I,

S = VN = δN
 tN VN– + δN

 VN– + δN
 I,

where I is the identity mapping of D and δj = (δj
, δj

, δj
) ∈ [, ]×[, ]×[, ], j = , , . . . , N ,

where δ
j
 + δ

j
 + δ

j
 =  for all j = , , . . . , N . This mapping is called the S-mapping gener-

ated by t, t, . . . , tN and δ, δ, . . . , δN . They proved the following lemma important for our
results.

Lemma . Let D be a nonempty closed convex subset of a strictly convex Banach space X .
Let {ti}N

i= be a finite family of nonexpansive mappings of D into itself with
⋂N

i= F(ti) �= ∅,
and let δj = (δj

, δj
, δj

) ∈ [, ] × [, ] × [, ], j = , , . . . , N , where δ
j
 + δ

j
 + δ

j
 = , δj

 ∈ (, )
for all j = , , . . . , N – , δN

 ∈ (, ], and δ
j
, δj

 ∈ [, ) for all j = , , . . . , N . Let S be the S-
mapping generated by t, t, . . . , tN and δ, δ, . . . , δN . Then S is a nonexpansive mapping and
F(S) =

⋂N
i= F(ti).
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Applications of W -mappings and S-mappings for fixed point problems can be found in
[–].

Let B : D → X be a nonlinear mapping. The variational inequality problem is to find a
point u ∈ D such that

〈Bu, v – u〉 ≥  for all v ∈ D. (.)

The set of solutions of (.) is denoted by VI(D, B).
A mapping B : D → X is called φ-inverse strongly monotone [] if there exists a positive

real number φ such that

〈x – y, Bx – By〉 ≥ φ‖Bx – By‖ for all x, y ∈ D.

Variational inequality theory, which was first introduced by Stampacchia [] in ,
emerged as an interesting and fascinating branch of applicable mathematics with a wide
range of applications in economics, industry, network analysis, optimizations, pure and
applied sciences etc. In recent years, much attention has been given to developing efficient
iterative methods for treating solution problems of variational inequalities (e.g., see [–
]).

In , Takahashi and Toyoda [] introduced an iterative method for finding a com-
mon element of the set of fixed points of nonexpansive single-valued mappings and the
set of solutions of variational inequalities for φ-inverse strongly monotone mappings in
Hilbert spaces. Recently, by using the concept of S-mapping, Kangtunyakarn [] intro-
duced a new method for finding a common element of the set of fixed points of k-strictly
pseudononspreading single-valued mappings and the set of solutions of variational in-
equality problems in Hilbert spaces.

Question A How can we construct an iteration process for finding a common element of
the set of common fixed points of a finite family of k-strictly pseudononspreading single-
valued mappings, the set of common fixed points of a finite family of quasi-nonexpansive
multi-valued mappings, and the set of common solutions of a finite family of variational
inequality problems?

In the recent years, the problem of finding a common element of the set of fixed points
of single-valued mappings and multi-valued mappings in the framework of Hilbert spaces
and Banach spaces has been intensively studied by many researchers. However, no re-
searchers have studied the problem of finding a common element of three sets, i.e., the set
of common fixed points of a finite family of single-valued mappings, the set of common
fixed points of a finite family of multi-valued mappings, and the set of common solutions
of a finite family of variational inequality problems.

In this article, motivated by [] and the research described above, we propose a new
hybrid iterative method for finding a common element of the set of a common fixed point
of a finite family of k-strictly pseudononspreading single-valued mappings, the set of com-
mon fixed points of a finite family of quasi-nonexpansive multi-valued mappings, and the
set of common solutions of a finite family of variational inequality problems in Hilbert
spaces and provide an affirmative answer to Question A.
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2 Preliminaries
In this section, we give some useful lemmas for proving our main results. Let D be a
nonempty closed convex subset of a real Hilbert space X. Let PD be the metric projec-
tion of X onto D, i.e., for x ∈ X, PDx satisfies the property ‖x – PDx‖ = miny∈D ‖x – y‖. It is
well known that PD is a nonexpansive mapping of X onto D.

Lemma . ([]) Let X be a Hilbert space, let D be a nonempty closed convex subset of X,
and let B be a mapping of D into X. Let u ∈ D. Then, for λ > ,

u = PD(I – λB)u ⇐⇒ u ∈ VI(D, B).

Lemma . ([]) Let D be a nonempty closed convex subset of a real Hilbert space X, and
let PD : X → D be the metric projection. Given x ∈ X and z ∈ D, then z = PDx if and only if
the following holds:

〈x – z, y – z〉 ≤  for all y ∈ D.

Lemma . ([]) Let D be a nonempty closed convex subset of a real Hilbert space X, and
let PD : X → D be the metric projection. Then the following inequality holds:

‖y – PDx‖ + ‖x – PDx‖ ≤ ‖x – y‖ for all x ∈ X and y ∈ D.

Lemma . ([]) Let X be a real Hilbert space. Then

‖x – y‖ = ‖x‖ – 〈x, y〉 + ‖y‖ for all x, y ∈ X.

Lemma . ([]) Let X be a Hilbert space. Let x, x, . . . , xN ∈ X and α,α, . . . ,αN be real
numbers such that

∑N
i= αi = . Then

∥∥∥∥∥
N∑

i=

αixi

∥∥∥∥∥


=
N∑

i=

αi‖xi‖ –
∑

≤i,j≤N

αiαj‖xi – xj‖.

Lemma . ([]) Let D be a nonempty closed convex subset of a real Hilbert space X.
Given x, y, z ∈ X and b ∈R, the set

{
u ∈ D : ‖y – u‖ ≤ ‖x – u‖ + 〈z, u〉 + b

}

is closed and convex.

Lemma . ([]) In a strictly convex Banach space X , if

‖x‖ = ‖y‖ =
∥∥λx + ( – λ)y

∥∥

for all x, y ∈ X and λ ∈ (, ), then x = y.

The following lemma obtained by Kangtunyakarn [] is useful for our results.
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Lemma . Let D be a nonempty closed convex subset of a Hilbert space X. Let t : D → D
be a k-strictly pseudononspreading mapping with F(t) �= ∅. Then F(t) = VI(D, I – t).

Remark . ([]) From Lemmas . and ., we have

F(t) = F
(
PD

(
I – λ(I – t)

))
for all λ > .

3 Main results
In this section, we prove a strong convergence theorem which solves the problem of find-
ing a common element of the set of common fixed points of a finite family of k-strictly
pseudononspreading single-valued mappings, the set of common fixed points of a finite
family of quasi-nonexpansive multi-valued mappings, and the set of common solutions of
a finite family of variational inequality problems in Hilbert spaces. Before starting the main
theorem of this section, we need to prove the following useful lemma in Hilbert spaces.

Lemma . Let D be a nonempty closed convex subset of a real Hilbert space X, and let
{ti}N

i= be a finite family of k-strictly pseudononspreading single-valued mappings of D into
itself such that

⋂N
i= F(ti) �= ∅. Let Ri : D → D be defined by Rix = PD(I – λ(I – ti))x for all

x ∈ D, λ ∈ (,  – k), and i = , , . . . , N . Suppose that β,β, . . . ,βN are real numbers such
that  < βi <  for all i = , , . . . , N –  and  < βN ≤ . Let W be the W -mapping generated
by R, R, . . . , RN and β,β, . . . ,βN . Then the following hold:

(i) W is quasi-nonexpansive;
(ii) F(W ) =

⋂N
i= F(ti) =

⋂N
i= F(Ri).

Proof (i) For each x ∈ D and z ∈ ⋂N
i= F(ti),

‖Rix – z‖ =
∥∥PD

(
I – λ(I – ti)

)
x – z

∥∥

≤ ∥∥(
I – λ(I – ti)

)
x – z

∥∥

=
∥∥(x – z) – λ(I – ti)x

∥∥

= ‖x – z‖ – λ
〈
x – z, (I – ti)x

〉
+ λ‖I – ti‖. (.)

By ti is k-strictly pseudononspreading, we have

‖tix – tiz‖ ≤ ‖x – z‖ + k
∥∥(I – ti)x – (I – ti)z

∥∥ + 
〈
(I – ti)x, (I – ti)z

〉

= ‖x – z‖ + k
∥∥(I – ti)x

∥∥. (.)

Since

‖tix – tiz‖ =
∥∥(

I – (I – ti)
)
x –

(
I – (I – ti)

)
z
∥∥

=
∥∥(x – z) –

(
(I – ti)x – (I – ti)z

)∥∥

= ‖x – z‖ – 
〈
x – z, (I – ti)x

〉
+

∥∥(I – ti)x
∥∥, (.)

it follows by (.) that

( – k)
∥∥(I – ti)x

∥∥ ≤ 
〈
x – z, (I – ti)x

〉
.
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Therefore, by (.), we have

‖Rix – z‖ ≤ ‖x – z‖ – ( – k)λ
∥∥(I – ti)x

∥∥ + λ∥∥(I – ti)x
∥∥

= ‖x – z‖ – λ( – k – λ)
∥∥(I – ti)x

∥∥

≤ ‖x – z‖.

This implies that

‖Rix – z‖ ≤ ‖x – z‖ for all i = , , . . . , N . (.)

Let j ∈ {, , . . . , N}, we get

‖Ujx – z‖ =
∥∥βjRjUj–x + ( – βj)x – z

∥∥

≤ βj‖RjUj–x – z‖ + ( – βj)‖x – z‖
≤ βj‖Uj–x – z‖ + ( – βj)‖x – z‖.

So, we have

‖Wx – z‖ = ‖UN x – z‖
≤ βN‖UN–x – z‖ + ( – βN )‖x – z‖
≤ βN

(
βN–‖UN–x – z‖ + ( – βN–)‖x – z‖) + ( – βN )‖x – z‖

= βNβN–‖UN–x – z‖ + ( – βNβN–)‖x – z‖
...

≤ βNβN– · · ·β‖Ux – z‖ + ( – βNβN– · · ·β)‖x – z‖
≤ βNβN– · · ·β

(
β‖x – z‖ + ( – β)‖x – z‖)

+ ( – βNβN– · · ·β)‖x – z‖
= ‖x – z‖.

Thus, W is a quasi-nonexpansive mapping.
(ii) Since

⋂N
i= F(ti) ⊂ F(W ) is trivial, it suffices to show that F(W ) ⊂ ⋂N

i= F(ti). To show
this, we suppose that p ∈ F(W ) and z ∈ ⋂N

i= F(ti). Then we have

‖p – z‖ = ‖Wp – z‖
=

∥∥βN (RN UN–p – z) + ( – βN )(p – z)
∥∥

≤ βN‖RN UN–p – z‖ + ( – βN )‖p – z‖
≤ βN‖UN–p – z‖ + ( – βN )‖p – z‖
≤ βNβN–‖RN–UN–p – z‖ + ( – βNβN–)‖p – z‖
...
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≤ βNβN– · · ·β‖RUp – z‖ + ( – βNβN– · · ·β)‖p – z‖
≤ βNβN– · · ·β‖Up – z‖ + ( – βNβN– · · ·β)‖p – z‖
≤ βNβN– · · ·ββ‖RUp – z‖ + ( – βNβN– · · ·ββ)‖p – z‖
≤ βNβN– · · ·ββ‖Up – z‖ + ( – βNβN– · · ·ββ)‖p – z‖
≤ βNβN– · · ·βββ‖Rp – z‖ + ( – βNβN– · · ·βββ)‖p – z‖
≤ ‖p – z‖. (.)

This shows that

‖p – z‖ = βNβN– · · ·β
∥∥β(Rp – z) + ( – β)(p – z)

∥∥ + ( – βNβN– · · ·β)‖p – z‖.

Thus,

‖p – z‖ =
∥∥β(Rp – z) + ( – β)(p – z)

∥∥.

Again by (.), we have

‖p – z‖ = ‖Rp – z‖ =
∥∥β(Rp – z) + ( – β)(p – z)

∥∥.

This implies by Lemma . that Rp = p and hence Up = p.
Again by (.), we get

‖p – z‖ = βNβN– · · ·β
∥∥β(RUp – z) + ( – β)(p – z)

∥∥ + ( – βNβN– · · ·β)‖p – z‖,

and hence

‖p – z‖ =
∥∥β(RUp – z) + ( – β)(p – z)

∥∥. (.)

By (.), we get

‖p – z‖ = ‖RUp – z‖.

From Up = p and (.), we have

‖p – z‖ = ‖Rp – z‖ =
∥∥β(RUp – z) + ( – β)(p – z)

∥∥.

This implies by Lemma . that Rp = p and hence Up = p.
By continuing this process, we can conclude that Rip = p and Uip = p for all i =

, , . . . , N – . Since

‖p – RN p‖ ≤ ‖p – Wp‖ + ‖Wp – RN p‖
= ‖p – Wp‖ + ( – βN )‖p – RN p‖,
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which yields that p = RN p since p ∈ F(W ). Hence p = Rip for all i = , , . . . , N and thus
p ∈ ⋂N

i= F(Ri). From Remark ., we have

F(ti) = F
(
PD

(
I – λ(I – ti)

))
= F(Ri) for all i = , , . . . , N .

This implies that
⋂N

i= F(Ri) =
⋂N

i= F(ti), and hence p ∈ ⋂N
i= F(ti). Therefore, F(W ) =⋂N

i= F(ti). This completes the proof. �

We now prove our main theorem.

Theorem . Let D be a nonempty closed convex subset of a real Hilbert space X. Let
{ti}N

i= be a finite family of continuous and k-strictly pseudononspreading mappings of D
into itself, let {Ti}N

i= be a finite family of quasi-nonexpansive and L-Lipschitzian mappings
from D into CB(D) with Tip = {p} for all i = , , . . . , N , p ∈ ⋂N

i= F(Ti), and let {Bi}N
i= be a

finite family of φi-inverse strongly monotone mappings from D into X. Let Ri : D → D be
defined by Rix = PD(I – λ(I – ti))x for all x ∈ D, λ ∈ (, ), and i = , , . . . , N . Suppose that
β,β, . . . ,βN are real numbers such that  < βi <  for all i = , , . . . , N –  and  < βN ≤ .
Let W : D → D be the W -mapping generated by R, R, . . . , RN and β,β, . . . ,βN . Let
Gi : D → D be defined by Gix = PD(I – ηBi)x for all x ∈ D, η ∈ (, φi), and i = , , . . . , N .
Suppose δj = (δj

, δj
, δj

) ∈ [, ] × [, ] × [, ], j = , , . . . , N , where δ
j
 + δ

j
 + δ

j
 = , δ

j
 ∈

(, ) for all j = , , . . . , N – , δN
 ∈ (, ], and δ

j
, δj

 ∈ [, ) for all j = , , . . . , N . Let
S : D → D be the S-mapping generated by G, G, . . . , GN and δ, δ, . . . , δN . Assume that
F :=

⋂N
i= F(ti) ∩ ⋂N

i= F(Ti) ∩ ⋂N
i= VI(D, Bi) �= ∅. Let x ∈ D with C = D, and let {xn}, {yn},

and {zn} be sequences defined by

yn = α()
n xn + α()

n Wxn + α()
n Sxn,

zn = γ ()
n yn +

N∑
i=

γ (i)
n q(i)

n , q(i)
n ∈ Tiyn,

Cn+ =
{

p ∈ Cn : ‖zn – p‖ ≤ ‖yn – p‖ ≤ ‖xn – p‖},

xn+ = PCn+ x, n ∈ N,

(.)

where {α()
n }, {α()

n }, {α()
n }, {γ (i)

n } (i = , , . . . , N ) are sequences in (, ) satisfying the following
conditions:

(i) α
()
n + α

()
n + α

()
n = , limn→∞ α

()
n = , and  < a ≤ α

()
n ,α()

n < ;
(ii)  < b ≤ γ

(i)
n <  for all i = , , . . . , N and

∑N
i= γ

(i)
n = .

Then {xn}, {yn}, and {zn} converge strongly to u = PFx.

Proof We shall divide our proof into  steps.
Step . We show that PCn+ x is well defined for every x ∈ X.
Let x, y ∈ X. Since Bi is a φi-inverse strongly monotone mapping and η ∈ (, φi), for

i = , , . . . , N , we get that

‖Gix – Giy‖ =
∥∥PC(I – ηBi)x – PC(I – ηBi)y

∥∥

≤ ∥∥(x – y) – η(Bix – Biy)
∥∥
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≤ ‖x – y‖ – η〈x – y, Bix – Biy〉 + η‖Bix – Biy‖

≤ ‖x – y‖ – ηφi‖Bix – Biy‖ + η‖Bix – Biy‖

= ‖x – y‖ – η(φi – η)‖Bix – Biy‖

≤ ‖x – y‖.

This shows that Gi = PD(I – ηBi) is a nonexpansive mapping for all i = , , . . . , N . By
Lemma ., the closedness and convexity of F(Gi), we have that VI(D, Bi) = F(PD(I –ηBi)) =
F(Gi) is closed and convex for all i = , , . . . , N . So,

⋂N
i= VI(D, Bi) is closed and convex.

By Lemmas . and ., we also know that
⋂N

i= F(Ti) and
⋂N

i= F(ti) are closed and con-
vex. Hence, F :=

⋂N
i= F(ti) ∩ ⋂N

i= F(Ti) ∩ ⋂N
i= VI(D, Bi) is also closed and convex. By

Lemma ., we observe that Cn is closed and convex. Let p ∈ F . Since Gi is nonexpan-
sive and ti is k-strictly pseudononspreading for all i = , , . . . , N , it implies by Lemmas .
and . that p ∈ F(S) and p ∈ F(W ). So, we have

‖zn – p‖ =

∥∥∥∥∥γ ()
n yn +

N∑
i=

γ (i)
n q(i)

n – p

∥∥∥∥∥

≤ γ ()
n ‖yn – p‖ +

N∑
i=

γ (i)
n

∥∥q(i)
n – p

∥∥

≤ γ ()
n ‖yn – p‖ +

N∑
i=

γ (i)
n H(Tiyn, Tip)

≤ γ ()
n ‖yn – p‖ +

N∑
i=

γ (i)
n ‖yn – p‖

= ‖yn – p‖
=

∥∥α()
n xn + α()

n Wxn + α()
n Sxn – p

∥∥

≤ α()
n ‖xn – p‖ + α()

n ‖Wxn – p‖ + α()
n ‖Sxn – p‖

≤ ‖xn – p‖.

This shows that p ∈ Cn+ and hence F ⊂ Cn+ ⊂ Cn. Therefore, PCn+ x is well defined.
Step . We show that limn→∞ xn = q for some q ∈ D.
Since F is a nonempty closed convex subset of a real Hilbert space X, there exists a

unique ν ∈ F such that ν = PFx. From xn = PCn x and xn+ ∈ Cn+ ⊂ Cn, for all n ∈ N, we
get that

‖xn – x‖ ≤ ‖xn+ – x‖ for all n ∈ N.

On the other hand, by F ⊂ Cn, we obtain that

‖xn – x‖ ≤ ‖ν – x‖ for all n ∈N.
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This implies that {xn} is bounded and nondecreasing. So, limn→∞ ‖xn – x‖ exists. For
m > n ∈N, we have xm = PCm x ∈ Cm ⊂ Cn. It implies by Lemma . that

‖xm – xn‖ ≤ ‖xm – x‖ – ‖xn – x‖ for all n ∈N.

Since limn→∞ ‖xn – x‖ exists, it implies that {xn} is a Cauchy sequence. Hence, there exists
an element q ∈ D such that limn→∞ xn = q.

Step . We show that q ∈ ⋂N
i= F(Ti).

From Step , we have

lim
n→∞‖xn+ – xn‖ = . (.)

Since xn+ ∈ Cn+, we get that

‖zn – xn‖ ≤ ‖zn – xn+‖ + ‖xn+ – xn‖
≤ ‖xn – xn+‖ + ‖xn+ – xn‖
= ‖xn+ – xn‖

and

‖yn – xn‖ ≤ ‖yn – xn+‖ + ‖xn+ – xn‖
≤ ‖xn – xn+‖ + ‖xn+ – xn‖
≤ ‖xn+ – xn‖.

This implies by (.) that

lim
n→∞‖zn – xn‖ =  (.)

and

lim
n→∞‖yn – xn‖ = . (.)

Thus, limn→∞ zn = q and limn→∞ yn = q.
Let p ∈F . By Lemma . and the definition of zn, for each j = , , . . . , N , we have

‖zn – p‖ =

∥∥∥∥∥γ ()
n yn +

N∑
i=

γ (i)
n q(i)

n – p

∥∥∥∥∥


=

∥∥∥∥∥γ ()
n (yn – p) +

N∑
i=

γ (i)
n

(
q(i)

n – p
)
∥∥∥∥∥



≤ γ ()
n ‖yn – p‖ +

N∑
i=

γ (i)
n

∥∥q(i)
n – p

∥∥ – γ ()
n γ (j)

n
∥∥q(j)

n – yn
∥∥

≤ γ ()
n ‖yn – p‖ +

N∑
i=

γ (i)
n

[
H(Tiyn, Tip)

] – γ ()
n γ (j)

n
∥∥q(j)

n – yn
∥∥
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≤ γ ()
n ‖yn – p‖ +

N∑
i=

γ (i)
n ‖yn – p‖ – γ ()

n γ (j)
n

∥∥q(j)
n – yn

∥∥

= ‖yn – p‖ – γ ()
n γ (j)

n
∥∥q(j)

n – yn
∥∥

≤ ‖xn – p‖ – γ ()
n γ (j)

n
∥∥q(j)

n – yn
∥∥.

By condition (ii), it implies that

b∥∥q(j)
n – yn

∥∥ ≤ γ ()
n γ (j)

n
∥∥q(j)

n – yn
∥∥

≤ ‖xn – p‖ – ‖zn – p‖

≤ ‖xn – zn‖
(‖xn – zn‖ + ‖zn – p‖).

Thus, by (.), we have

lim
n→∞

∥∥q(j)
n – yn

∥∥ =  for all j = , , . . . , N . (.)

For each i = , , . . . , N , we get

dist(q, Tiq) ≤ ‖q – yn‖ +
∥∥yn – q(i)

n
∥∥ + dist

(
q(i)

n , Tiq
)

≤ ‖q – yn‖ +
∥∥yn – q(i)

n
∥∥ + H(Tiyn, Tiq)

≤ ‖q – yn‖ +
∥∥yn – q(i)

n
∥∥ + L‖yn – q‖

= ( + L)‖q – yn‖ +
∥∥yn – q(i)

n
∥∥.

Since limn→∞ yn = q, it implies by (.) that

dist(q, Tiq) =  for all i = , , . . . , N .

This shows that q ∈ Tiq for all i = , , . . . , N , and hence q ∈ ⋂N
i= F(Ti).

Step . We show that q ∈ ⋂N
i= VI(D, Bi).

For p ∈F , we have

‖yn – p‖ ≤ α()
n ‖xn – p‖ + α()

n ‖Wxn – p‖ + α()
n ‖Sxn – p‖

– α()
n α()

n ‖Wxn – Sxn‖

≤ ‖xn – p‖ – α()
n α()

n ‖Wxn – Sxn‖.

This implies by condition (i) that

a‖Wxn – Sxn‖ ≤ α()
n α()

n ‖Wxn – Sxn‖

≤ ‖xn – p‖ – ‖yn – p‖

≤ ‖xn – yn‖
(‖xn – p‖ + ‖yn – p‖).

Then, by (.), we have

lim
n→∞‖Wxn – Sxn‖ = . (.)
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Since

‖yn – Wxn‖ =
∥∥α()

n xn + α()
n Wxn + α()

n Sxn – Wxn
∥∥

=
∥∥α()

n (xn – Wxn) + α()
n (Sxn – Wxn)

∥∥

≤ α()
n ‖xn – Wxn‖ + α()

n ‖Sxn – Wxn‖,

it follows by condition (i) and (.) that

lim
n→∞‖yn – Wxn‖ = . (.)

From (.) and (.), we obtain that

‖xn – Wxn‖ ≤ ‖xn – yn‖ + ‖yn – Wxn‖ →  as n → ∞. (.)

Since yn – xn = α
()
n (Wxn – xn) + α

()
n (Sxn – xn) and  < a < α

()
n < , we get

a‖Sxn – xn‖ ≤ α()
n ‖Sxn – xn‖ ≤ ‖yn – xn‖ + α()

n ‖Wxn – xn‖.

This implies by (.) and (.) that

lim
n→∞‖Sxn – xn‖ = . (.)

Since xn → q ∈ D as n → ∞, it follows by (.) and the nonexpansiveness of S that

‖Sq – q‖ ≤ ‖Sq – Sxn‖ + ‖Sxn – xn‖ + ‖xn – q‖
≤ ‖xn – q‖ + ‖Sxn – xn‖ →  as n → ∞.

This shows that q ∈ F(S). Since PD(I – ηBi)x = Gix for all x ∈ D and i = , , . . . , N , by
Lemma ., we have VI(D, Bi) = F(PD(I – ηBi)) = F(Gi) for all i = , , . . . , N . By Lemma .,
we obtain

F(S) =
N⋂

i=

F(Gi) =
N⋂

i=

VI(D, Bi).

Thus, q ∈ ⋂N
i= VI(D, Bi).

Step . We show that q ∈ ⋂N
i= F(ti).

Since ti is continuous for all i = , , . . . , N , it follows that PD(I –λ(I – ti)) is continuous for
all i = , , . . . , N . So, W is continuous. This implies by xn → q that Wxn → Wq as n → ∞.
Then, by (.), we have

‖Wq – q‖ ≤ ‖Wq – Wxn‖ + ‖Wxn – xn‖ + ‖xn – q‖ →  as n → ∞.

This shows that q ∈ F(W ). By Lemma ., we have q ∈ ⋂N
i= F(ti).

Step . Finally, we show that q = u = PFx.
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Since xn = PCn x and F ⊂ Cn, we obtain

〈x – xn, xn – p〉 ≥  for all p ∈F . (.)

Taking limits in the above inequality, we get

〈x – q, q – p〉 ≥  for all p ∈F .

This shows that q = PFx = u.
By Step  to Step , we conclude that {xn}, {yn}, and {zn} converge strongly to u = PFx.

This completes the proof. �

As a direct consequence of Theorem ., we have the following two corollaries.

Corollary . Let D be a nonempty closed convex subset of a real Hilbert space X. Let
{ti}N

i= be a finite family of continuous and k-strictly pseudononspreading mappings of D into
itself, and let {Ti}N

i= be a finite family of quasi-nonexpansive and L-Lipschitzian mappings
from D into CB(D) with Tip = {p} for all i = , , . . . , N , p ∈ ⋂N

i= F(Ti). Let Ri : D → D be
defined by Rix = PD(I – λ(I – ti))x for all x ∈ D, λ ∈ (, ), and i = , , . . . , N . Suppose that
β,β, . . . ,βN are real numbers such that  < βi <  for all i = , , . . . , N –  and  < βN ≤ .
Let W : D → D be the W -mapping generated by R, R, . . . , RN and β,β, . . . ,βN . Assume
that F :=

⋂N
i= F(ti) ∩ ⋂N

i= F(Ti) �= ∅. Let x ∈ D with C = D, and let {xn}, {yn}, and {zn} be
sequences defined by

yn =
(
α()

n + α()
n

)
xn + α()

n Wxn,

zn = γ ()
n yn +

N∑
i=

γ (i)
n q(i)

n , q(i)
n ∈ Tiyn,

Cn+ =
{

p ∈ Cn : ‖zn – p‖ ≤ ‖yn – p‖ ≤ ‖xn – p‖},

xn+ = PCn+ x, n ∈N,

where {α()
n }, {α()

n }, {α()
n }, {γ (i)

n } (i = , , . . . , N) are sequences in (, ) satisfying the following
conditions:

(i) α
()
n + α

()
n + α

()
n = , limn→∞ α

()
n = , and  < a ≤ α

()
n ,α()

n < ;
(ii)  < b ≤ γ

(i)
n <  for all i = , , . . . , N and

∑N
i= γ

(i)
n = .

Then {xn}, {yn}, and {zn} converge strongly to u = PFx.

Proof Let Bix =  for all x ∈ D and i = , , . . . , N in Theorem .. Then we obtain that
Sxn = xn for all n ∈N. Therefore the conclusion follows. �

Corollary . Let D be a nonempty closed convex subset of a real Hilbert space X. Let
t : D → D be a continuous and k-strictly pseudononspreading mapping, let T : D → CB(D)
be a quasi-nonexpansive and L-Lipschitzian mapping with Tp = {p} for all p ∈ F(T), and
let B : D → X be a φ-inverse strongly monotone mapping. Assume that F := F(t) ∩ F(T) ∩
VI(D, B) �= ∅. Let x ∈ D with C = D, and let {xn}, {yn}, and {zn} be sequences defined by

yn = α()
n xn + α()

n PD
(
I – λ(I – t)

)
xn + α()

n PD(I – ηB)xn,
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zn = γ ()
n yn + γ ()

n qn, qn ∈ Tyn,

Cn+ =
{

p ∈ Cn : ‖zn – p‖ ≤ ‖yn – p‖ ≤ ‖xn – p‖},

xn+ = PCn+ x, n ∈N,

where λ ∈ (, ), η ∈ (, φ), and {α()
n }, {α()

n }, {α()
n }, {γ ()

n }, {γ ()
n } are sequences in (, )

satisfying the following conditions:
(i) α

()
n + α

()
n + α

()
n = , limn→∞ α

()
n = , and  < a ≤ α

()
n ,α()

n < ;
(ii)  < b ≤ γ

()
n ,γ ()

n <  and γ
()
n + γ

()
n = .

Then {xn}, {yn}, and {zn} converge strongly to u = PFx.

Proof In Theorem ., put N = , t = t, T = T , B = B, β = , and δ
 = . Then W =

PD(I – λ(I – t)) and S = PD(I – ηB). Hence, we obtain the desired result from Theorem ..
�

Remark . It is known that the class of k-strictly pseudononspreading mappings
contains the classes of nonexpansive mappings and nonspreading mappings. Thus,
Lemma ., Theorem ., Corollaries . and . can be applied to these classes of map-
pings.

4 Applications to complementarity problems
In this section, we apply our results to complementarity problems in Hilbert spaces. Let
D be a nonempty closed convex cone in a real Hilbert space X, i.e., a nonempty closed set
with rD + sD ⊂ D for all r, s ∈ [,∞). The polar of D is the set

D∗ =
{

y ∈ X : 〈x, y〉 ≥ ,∀x ∈ D
}

.

Let B : D → X be a nonlinear mapping. The complementarity problem is to find an element
u ∈ D such that

Bu ∈ D∗ and 〈u, Bu〉 = . (.)

The set of solutions of (.) is denoted by CP(D, B).
A complementarity problem is a special case of a variational inequality problem. The

following lemma indicates the equivalence between the complementarity problem and the
variational inequality problem. The proof of this fact can be found in []; for convenience
of the readers, we include the details.

Lemma . Let D be a nonempty closed convex cone in a real Hilbert space X, and let D∗

be the polar of D. Let B be a mapping of D into X. Then VI(D, B) = CP(D, B).

Proof Let x ∈ VI(D, B). Then we have

〈u – x, Bx〉 ≥  for all u ∈ D. (.)

In particular, if u = , we have 〈x, Bx〉 ≤ . If u = λx with λ > , we have 〈λx – x, Bx〉 =
(λ–)〈x, Bx〉 ≥  and hence 〈x, Bx〉 ≥ . Therefore, 〈x, Bx〉 = . Next, we show that Bx ∈ D∗.
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To show this, suppose not. Then there exists u ∈ D such that 〈u, Bx〉 < . By (.), we
obtain

〈u – x, Bx〉 ≥ .

So, we get

 > 〈u, Bx〉 ≥ 〈x, Bx〉 = .

This is a contradiction. Thus, Bx ∈ D∗. So, x ∈ CP(D, B).
Conversely, let x ∈ CP(D, B). Then we have

Bx ∈ D∗ and 〈x, Bx〉 = .

For any u ∈ D, we get

〈u – x, Bx〉 = 〈u, Bx〉 – 〈x, Bx〉
= 〈u, Bx〉 ≥ .

Thus, x ∈ VI(D, B). This completes the proof. �

Theorem . Let D be a nonempty closed convex cone in a real Hilbert space X. Let
{ti}N

i= be a finite family of continuous and k-strictly pseudononspreading mappings of D
into itself, let {Ti}N

i= be a finite family of quasi-nonexpansive and L-Lipschitzian mappings
from D into CB(D) with Tip = {p} for all i = , , . . . , N , p ∈ ⋂N

i= F(Ti), and let {Bi}N
i= be

a finite family of φi-inverse strongly monotone mappings from D into X. Let Ri : D → D
be defined by Rix = PD(I – λ(I – ti))x for all x ∈ D, λ ∈ (, ), and i = , , . . . , N . Sup-
pose that β,β, . . . ,βN are real numbers such that  < βi <  for all i = , , . . . , N – 
and  < βN ≤ . Let W : D → D be the W -mapping generated by R, R, . . . , RN and
β,β, . . . ,βN . Let Gi : D → D be defined by Gix = PD(I – ηBi)x for all x ∈ D, η ∈ (, φi),
and i = , , . . . , N . Suppose δj = (δj

, δj
, δj

) ∈ [, ] × [, ] × [, ], j = , , . . . , N , where
δ

j
 + δ

j
 + δ

j
 = , δ

j
 ∈ (, ) for all j = , , . . . , N – , δN

 ∈ (, ], and δ
j
, δj

 ∈ [, ) for all
j = , , . . . , N . Let S : D → D be the S-mapping generated by G, G, . . . , GN and δ, δ, . . . , δN .
Assume that F :=

⋂N
i= F(ti) ∩ ⋂N

i= F(Ti) ∩ ⋂N
i= CP(D, Bi) �= ∅. Let x ∈ D with C = D, and

let {xn}, {yn}, and {zn} be sequences defined by

yn = α()
n xn + α()

n Wxn + α()
n Sxn,

zn = γ ()
n yn +

N∑
i=

γ (i)
n q(i)

n , q(i)
n ∈ Tiyn,

Cn+ =
{

p ∈ Cn : ‖zn – p‖ ≤ ‖yn – p‖ ≤ ‖xn – p‖},

xn+ = PCn+ x, n ∈N,

where {α()
n }, {α()

n }, {α()
n }, {γ (i)

n } (i = , , . . . , N) are sequences in (, ) satisfying the following
conditions:



Onjai-uea and Phuengrattana Fixed Point Theory and Applications  (2015) 2015:16 Page 17 of 23

(i) α
()
n + α

()
n + α

()
n = , limn→∞ α

()
n = , and  < a ≤ α

()
n ,α()

n < ;
(ii)  < b ≤ γ

(i)
n <  for all i = , , . . . , N and

∑N
i= γ

(i)
n = .

Then {xn}, {yn}, and {zn} converge strongly to u = PFx.

Proof By Lemma ., we get that

VI(D, Bi) = CP(D, Bi) for all i = , , . . . , N .

Then we obtain the result. �

5 Numerical results
In this section, we give two numerical examples to support our main result.

Example . We consider the nonempty closed convex subset D = [, ] of the real Hilbert
space R. Define two single-valued mappings t and t on [, ] as follows:

tx = –



x, tx = –



x.

Also we define two multi-valued mappings T and T on [, ] as follows:

Tx =
[

x


,
x


]
, Tx =

[
,

x


]
.

For i = , , let Bi : [, ] → [, ] ⊂R be defined by

Bix =
x


i.

Let W be the W -mapping generated by R, R and β, β, where Rix = P[,](I – 
 (I – ti))x

for all i = , , and β = β = 
 . Let S be the S-mapping generated by G, G and δ, δ,

where Gix = P[,](I – 
 Bi)x for all i = , , and δ = δ = ( 

 , 
 , 

 ). Let {xn}, {yn}, and {zn}
be generated by (.), where α

()
n = 

n , α
()
n = n–

n , α
()
n = n–

n , γ
()
n = 

 + 
n , γ

()
n = n–

n ,
γ

()
n = n–

n for all n ∈ N. Then the sequences {xn}, {yn}, and {zn} converge strongly to ,
where {} =

⋂
i= F(ti) ∩ ⋂

i= F(Ti) ∩ ⋂
i= VI([, ], Bi).

Solution. It is easy to see that t, t are k-strictly pseudononspreading, T, T are quasi-
nonexpansive and Lipschitzian, and B, B are inverse strongly monotone. Obviously,
{Ti}

i= satisfies the condition Tip = {p} for all i = , , p ∈ ⋂
i= F(Ti) since

⋂
i= F(Ti) = {}.

From the definitions of these mappings, we get that

⋂
i=

F(ti) ∩
⋂

i=

F(Ti) ∩
⋂

i=

VI
(
[, ], Bi

)
= {}.

For every n ∈ N, α
()
n = 

n , α
()
n = n–

n , α
()
n = n–

n , γ
()
n = 

 + 
n , γ

()
n = n–

n , γ
()
n = n–

n .
Then the sequences {α()

n }, {α()
n }, {α()

n }, {γ ()
n }, {γ ()

n }, and {γ ()
n } satisfy all the conditions of

Theorem .. For any arbitrary x ∈ C = [, ], it follows by (.) that  ≤ z ≤ y ≤ x ≤ .
Then we have

C =
{

p ∈ C : |z – p| ≤ |y – p| ≤ |x – p|} =
[

,
z + y



]
.



Onjai-uea and Phuengrattana Fixed Point Theory and Applications  (2015) 2015:16 Page 18 of 23

Since z+y
 ≤ x, we get

x = PC x =
z + y


.

By continuing this process, we obtain that

Cn+ =
{

p ∈ Cn : |zn – p| ≤ |yn – p| ≤ |xn – p|} =
[

,
zn + yn



]
,

and hence

xn+ = PCn+ x =
zn + yn


.

Now, we have the following algorithm:

x ∈ [, ],

yn =


n
xn +

n – 
n

Wxn +
n – 

n
Sxn,

zn =
(




+


n

)
yn +

n – 
n

q()
n +

n – 
n

q()
n , q(i)

n ∈ Tiyn, i = , ,

xn+ =
zn + yn


, n ∈N.

(.)

Since W is the W -mapping generated by R, R and β, β, where Rix = P[,](I – 
 (I – ti))x

for all i = ,  and β = β = 
 , and S is the S-mapping generated by G, G and δ, δ, where

Gix = P[,](I – 
 Bi)x for all i = ,  and δ = δ = ( 

 , 
 , 

 ), we obtain that

Wx =



x, Sx =

,
,

x for all x ∈ [, ].

Put q()
n = yn

 and q()
n = yn

 . Then we rewrite (.) as follows:

x ∈ [, ],

yn =
(

,
,

+
,

,,n

)
xn,

zn =
(




+


,n

)
yn,

xn+ =
zn + yn


, n ∈N.

(.)

Using algorithm (.) with the initial point x = ., we have numerical results in Table .
From Table , we see that the sequences {xn}, {yn}, and {zn} converge to . We ob-

serve that x = . is an approximation of the common element in
⋂

i= F(ti) ∩⋂
i= F(Ti) ∩ ⋂

i= VI([, ], Bi) with accuracy at  significant digits.

Next, we give the numerical example to support our main theorem in a two-dimensional
space of real numbers.
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Table 1 The values of the sequences {xn}, {yn}, and {zn} in Example 5.1

n xn yn zn

1 4.5000000 3.7807316 1.3778666
2 2.5792991 2.1441268 0.7327468
3 1.4384368 1.1914900 0.3981720
4 0.7948310 0.6572003 0.2171369
5 0.4371686 0.3610815 0.1184806
...

...
...

...
16 0.0005599 0.0004611 0.0001484
...

...
...

...
23 0.0000079 0.0000065 0.0000021
24 0.0000043 0.0000035 0.0000011
25 0.0000023 0.0000019 0.0000006
26 0.0000013 0.0000010 0.0000003
27 0.0000007 0.0000006 0.0000002

Example . Let x = (x(), x()), y = (y(), y()) ∈ R
, and let the inner product 〈·, ·〉 : R ×

R
 →R be defined by 〈x, y〉 = x()y() + x()y() and the usual norm ‖ ·‖ : R →R be defined

by ‖x‖ =
√

(x()) + (x()). We consider the nonempty closed convex subset D = [, ] ×
[, ] of the real Hilbert space R

. Define three single-valued mappings t, t, and t on
D as follows:

tx =
(

–



x(), –



x()
)

, tx =
(

–



x(), –



x()
)

, tx =
(

–



x(), –



x()
)

.

Define three multi-valued mappings T, T, and T on D as follows:

Tx =
[

x


,
x


]
, Tx =

[
,

x


]
, Tx =

[
x


,
x


]
.

For i = , , , let Bi : D → D ⊂R
 be defined by

Bix =
(

ix()


,

ix()



)
.

Let W be the W -mapping generated by R, R, R and β, β, β, where Rix = PD(I – 
 (I –

ti))x for all i = , , , and β = β = β = 
 . Let S be the S-mapping generated by G, G,

G and δ, δ, δ, where Gix = PD(I – 
 Bi)x for all i = , , , and δ = δ = δ = ( 

 , 
 , 

 ). Let
xn = (x()

n , x()
n ), yn = (y()

n , y()
n ), and zn = (z()

n , z()
n ) and the sequences {xn}, {yn}, and {zn} be

generated by (.), where α
()
n = 

n , α
()
n = n–

n , α
()
n = n–

n , γ
()
n = 

 + 
n , γ

()
n = n–

n ,
γ

()
n = γ

()
n = n–

n for all n ∈ N. Then the sequences {xn}, {yn}, and {zn} converge strongly
to (, ), where {(, )} =

⋂
i= F(ti) ∩ ⋂

i= F(Ti) ∩ ⋂
i= VI(D, Bi).

Solution. It is obvious that t, t, t are k-strictly pseudononspreading, T, T, T are
quasi-nonexpansive and Lipschitzian, and B, B, B are inverse strongly monotone. Also,
{Ti}

i= satisfies the condition Tip = {p} for all i = , , , p ∈ ⋂
i= F(Ti) since

⋂
i= F(Ti) =

{(, )}. Obviously,
⋂

i= F(ti) ∩ ⋂
i= F(Ti) ∩ ⋂

i= VI(D, Bi) = {(, )}. For every n ∈ N,
α

()
n = 

n , α
()
n = n–

n , α
()
n = n–

n , γ
()
n = 

 + 
n , γ

()
n = n–

n , γ
()
n = γ

()
n = n–

n . Then
the sequences {α()

n }, {α()
n }, {α()

n }, {γ ()
n }, {γ ()

n }, {γ ()
n } and {γ ()

n } satisfy all the conditions
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of Theorem .. Now, we get the following algorithm:

x ∈ D,

yn =


n
xn +

n – 
n

W xn +
n – 

n
Sxn,

zn =
(




+


n

)
yn +

n – 
n

q()
n +

n – 
n

q()
n +

n – 
n

q()
n ,

q(i)
n ∈ Tiyn, i = , , ,

Cn+ =
{

p =
(
p(), p()) ∈ Cn : 

(
z()

n – y()
n

)
p() + 

(
z()

n – y()
n

)
p() +

(
y()

n
)

+
(
y()

n
) –

(
z()

n
) –

(
z()

n
) ≤ , 

(
z()

n – x()
n

)
p() + 

(
z()

n – x()
n

)
p()

+
(
x()

n
) +

(
x()

n
) –

(
z()

n
) –

(
z()

n
) ≤ , 

(
y()

n – x()
n

)
p()

+ 
(
y()

n – x()
n

)
p() +

(
x()

n
) +

(
x()

n
) –

(
y()

n
) –

(
y()

n
) ≤ 

}
,

xn+ = PCn+ x, n ∈N.

(.)

Since W is the W -mapping generated by R, R, R and β, β, β, where Rix = PD(I –

 (I – ti))x for all i = , ,  and β = β = β = 

 , and S is the S-mapping generated by G,
G, G and δ, δ, δ, where Gix = PD(I – 

 Bi)x for all i = , ,  and δ = δ = δ = ( 
 , 

 , 
 ),

we obtain that

W x =
(




x(),
,
,

x()
)

, Sx =
(

,
,

x(),
,
,

x()
)

for all x ∈ D.

Put q()
n = yn

 , q()
n = yn

 , and q()
n = yn

 . Then algorithm (.) becomes

x ∈ D,

yn =
((

,,
,,

+
,

,,n

)
x()

n ,

(
,,
,,

+
,,

,,,n

)
x()

n

)
,

zn =
((




+


,n

)
y()

n ,
(




+


,n

)
y()

n

)
,

Cn+ =
{

p =
(
p(), p()) ∈ Cn : 

(
z()

n – y()
n

)
p() + 

(
z()

n – y()
n

)
p() +

(
y()

n
)

+
(
y()

n
) –

(
z()

n
) –

(
z()

n
) ≤ , 

(
z()

n – x()
n

)
p() + 

(
z()

n – x()
n

)
p()

+
(
x()

n
) +

(
x()

n
) –

(
z()

n
) –

(
z()

n
) ≤ , 

(
y()

n – x()
n

)
p()

+ 
(
y()

n – x()
n

)
p() +

(
x()

n
) +

(
x()

n
) –

(
y()

n
) –

(
y()

n
) ≤ 

}
,

xn+ = PCn+ x, n ∈N.

(.)

For any arbitrary (x()
n , x()

n ) ∈ D, by algorithm (.), we see that

 ≤ z(i)
n ≤ y(i)

n ≤ x(i)
n ≤ x(i)

 ≤  for all i = , , and n ∈ N.

The numerical results for the sequences {xn}, {yn}, and {zn} are shown in Table  and
Table .
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Table 2 The values of the sequences {xn}, {yn}, and {zn} with the initial point x1 = (7.5, 9.1) in
Example 5.2

n xn yn zn

1 (7.5000000,9.1000000) (6.3029396,7.6067234) (3.0687437,3.7035235)
2 (4.6619648,5.6749079) (3.8840555,4.7013476) (1.7741233,2.1474385)
3 (2.8183693,3.4332496) (2.3412722,2.8357215) (1.0459308,1.2668192)
4 (1.6857031,2.0577916) (1.3983068,1.6970922) (0.6176583,0.7496374)
5 (1.0092457,1.2223240) (0.8364468,1.0071576) (0.3669562,0.4418484)
6 (0.5676300,0.7527995) (0.4701681,0.6199094) (0.2053231,0.2707153)
7 (0.7174567,0.1573218) (0.5940218,0.1294942) (0.2585586,0.0563647)
8 (0.3517952,0.4346565) (0.2911794,0.3576574) (0.1264280,0.1552922)
9 (0.4298726,0.0764960) (0.3557172,0.0629290) (0.1541523,0.0272707)
...

...
...

...
45 (0.0000963,0.0000292) (0.0000795,0.0000240) (0.0000340,0.0000103)
...

...
...

...
55 (0.0000088,0.0000042) (0.0000072,0.0000034) (0.0000031,0.0000015)
56 (0.0000033,0.0000065) (0.0000027,0.0000053) (0.0000012,0.0000023)
57 (0.0000054,0.0000020) (0.0000044,0.0000017) (0.0000019,0.0000007)
58 (0.0000022,0.0000036) (0.0000018,0.0000030) (0.0000008,0.0000013)
59 (0.0000033,0.0000009) (0.0000030,0.0000008) (0.0000012,0.0000003)
60 (0.0000015,0.0000020) (0.0000012,0.0000017) (0.0000005,0.0000007)
61 (0.0000020,0.0000004) (0.0000016,0.0000003) (0.0000007,0.0000001)
62 (0.0000010,0.0000011) (0.0000008,0.0000009) (0.0000004,0.0000004)

Table 3 The values of the sequences {xn}, {yn}, and {zn} with the initial point x1 = (0, 75.6) in
Example 5.2

n xn yn zn

1 (0.0000000,75.6000000) (0.0000000,63.1943178) (0.0000000,30.7677335)
2 (0.0000000,46.9810256) (0.0000000,38.9211840) (0.0000000,17.7780617)
3 (0.0000000,28.3496228) (0.0000000,23.4156103) (0.0000000,10.4605987)
4 (0.0000000,16.9381045) (0.0000000,13.9691137) (0.0000000,6.1704195)
5 (0.0000000,10.0697666) (0.0000000,8.2971795) (0.0000000,3.6400418)
6 (0.0000000,5.9686106) (0.0000000,4.9149845) (0.0000000,2.1463806)
7 (0.0000000,3.5306826) (0.0000000,2.9061647) (0.0000000,1.2649601)
8 (0.0000000,2.0855624) (0.0000000,1.7161061) (0.0000000,0.7451208)
9 (0.0000000,1.2306135) (0.0000000,1.0123560) (0.0000000,0.4387110)
...

...
...

...
15 (0.0000000,0.0512698) (0.0000000,0.0421428) (0.0000000,0.0181501)
...

...
...

...
30 (0.0000000,0.0000175) (0.0000000,0.0000144) (0.0000000,0.0000062)
31 (0.0000000,0.0000103) (0.0000000,0.0000084) (0.0000000,0.0000036)
32 (0.0000000,0.0000060) (0.0000000,0.0000049) (0.0000000,0.0000021)
33 (0.0000000,0.0000035) (0.0000000,0.0000029) (0.0000000,0.0000012)
34 (0.0000000,0.0000021) (0.0000000,0.0000017) (0.0000000,0.0000007)
35 (0.0000000,0.0000012) (0.0000000,0.0000010) (0.0000000,0.0000004)
36 (0.0000000,0.0000007) (0.0000000,0.0000006) (0.0000000,0.0000003)
37 (0.0000000,0.0000004) (0.0000000,0.0000003) (0.0000000,0.0000001)
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