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Abstract
In 1994, Matthews obtained an extension of the celebrated Banach fixed point
theorem to the partial metric framework (Ann. N.Y. Acad. Sci. 728:183-197, 1994).
Motivated by the Matthews extension of the Banach theorem, we present a
Nemytskii-Edelstein type fixed point theorem for self-mappings in partial metric
spaces in such a way that the classical one can be retrieved as a particular case of our
new result. We give examples which show that the assumed hypothesis in our new
result cannot be weakened. Moreover, we show that our new fixed point theorem
allows one to find fixed points of mappings in some cases in which the Matthews
result and the classical Nemytskii-Edelstein one cannot be applied. Furthermore, we
provide a negative answer to the question about whether our new result can be
retrieved as a particular case of the classical Nemytskii-Edelstein one whenever the
metrization technique, developed by Hitzler and Seda (Mathematical Aspects of Logic
Programming Semantics, 2011), is applied to partial metric spaces.

1 Introduction
In , S Banach proved in the context of metric spaces his celebrated fixed point result.
Let us recall his result below. To this end, we denote by R

+ the set of nonnegative real
numbers.

Theorem  Let f be a mapping of a complete metric space (X, d) into itself such that there
is s ∈ R

+ with  ≤ s < , satisfying

d
(
f (x), f (y)

) ≤ sd(x, y) ()

for all x, y ∈ X. Then f has a unique fixed point.

The origins of the preceding theorem lies in the methods for solving differential equa-
tions via successive approximations. However, since Banach proved the above fixed point
result, a wide range of applications has been given in very different frameworks. A class of
such applications are obtained mainly through two extensions of Theorem . One of them
to the context of quasi-metric spaces and the other one to the framework of partial metric
spaces (for a detailed discussion see, for instance, []).

In order to recall the aforesaid extension to the quasi-metric framework, let us fix a few
pertinent concepts about quasi-metric spaces.

Following [], a quasi-metric on a nonempty set X is a function d : X × X → R
+ such

that for all x, y, z ∈ X:
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(i) d(x, y) = d(y, x) =  ⇔ x = y.
(ii) d(x, y) ≤ d(x, z) + d(z, y).
If, in addition, a quasi-metric d satisfies (iii) d(x, y) =  ⇔ x = y, then d is called a T

quasi-metric.
Obviously a metric on a set X is a quasi-metric d on X satisfying (iv) d(x, y) = d(y, x) for

all x, y ∈ X.
Of course, a (T) quasi-metric space is a pair (X, d) such that X is a nonempty set and d

is a (T) quasi-metric on X.
Each quasi-metric d on X generates a T-topology T (d) on X which has as a base the

family of open d-balls {Bd(x, ε) : x ∈ X, ε > }, where Bd(x, ε) = {y ∈ X : d(x, y) < ε} for all
x ∈ X and ε > . Clearly, if the quasi-metric space (X, d) is T, then the topology T (d) is T.

Given a quasi-metric d on X, then the function d– : X × X → R
+ defined by d–(x, y) =

d(y, x) for all x, y ∈ X is also a quasi-metric on X that is called the conjugate quasi-metric
of d. Furthermore the function ds : X × X →R

+ defined by ds(x, y) = max{d(x, y), d–(x, y)}
for all x, y ∈ X is a metric on X.

A quasi-metric space (X, d) is called bicomplete if the metric space (X, ds) is complete.
The next example of quasi-metric space will play a central role in the sequel.

Example  Consider the function du : R+ × R
+ → R

+ given by du(x, y) = max{y – x, }
for all x, y ∈ R

+. It is not hard to see that (R+, du) is a quasi-metric space which is called
the upper quasi-metric space. Note that T (du) is the so-called upper topology on R

+ (see
[] and []). Moreover, the quasi-metric d–

u is defined on R
+ by d–

u (x, y) = max{x – y, }
for all x, y ∈ R

+. The quasi-metric space (R+, d–
u ) is called the lower quasi-metric space.

Furthermore, the upper quasi-metric induces the Euclidean metric on R
+, i.e., ds

u(x, y) =
|y – x| for all x, y ∈R

+. Thus the upper quasi-metric space (R+, du) is bicomplete.

As we have announced before, Theorem  can be generalized in the following easy way.

Theorem  Let f be a mapping from a bicomplete quasi-metric space (X, d) into itself such
that there is s ∈R

+ with  ≤ s < , satisfying

d
(
f (x), f (y)

) ≤ sd(x, y) ()

for all x, y ∈ X. Then f has a unique fixed point.

Applications of the above quasi-metric version of the Banach fixed point theorem to
asymptotic complexity of algorithms can be found in [] and [].

With the aim of introducing the second aforementioned extension of the Banach fixed
point theorem, let us recall a few notions about partial metric spaces.

According to [], a partial metric on a nonempty set X is a function p : X ×X →R
+ such

that for all x, y, z ∈ X:
(i) p(x, x) = p(x, y) = p(y, y) ⇔ x = y.

(ii) p(x, x) ≤ p(x, y).
(iii) p(x, y) = p(y, x).
(iv) p(x, z) ≤ p(x, y) + p(y, z) – p(y, y).
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A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial
metric on X. Clearly, a metric on a set X is a partial metric p on X such that p(x, x) =  for
all x ∈ X.

From now on, we will denote by N the set of positive integer numbers.
Each partial metric p on X generates a T topology T (p) on X which has as a base the

family of open p-balls {Bp(x, ε) : x ∈ X, ε > }, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}
for all x ∈ X and ε > . From this fact it immediately follows that a sequence (xn)n in a
partial metric space (X, p) converges to a point x ∈ X if and only if p(x, x) = limn→∞ p(x, xn).

A sequence (xn)n∈N in a partial metric space (X, p) is called a Cauchy sequence if there
exists limn,m→∞ p(xn, xm).

A partial metric space (X, p) is said to be complete if every Cauchy sequence (xn)n∈N in
X converges, with respect to T (p), to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

Given a partial metric p on X, then the function ps : X × X → R
+ defined by ps(x, y) =

p(x, y) – p(x, x) – p(y, y) for all x, y ∈ X is a metric on X. In addition, on account on [], a
partial metric space (X, p) is complete if and only if its associated metric space (X, ps) is
complete.

The next example will be needed in the sequel.

Example  Consider the function pmax : R+ ×R
+ →R

+ given by pmax(x, y) = max{x, y} for
all x, y ∈ R

+. It is not hard to see that (R+, pmax) is a partial metric space. Moreover, it is
clear that ps

max(x, y) = |y – x| and, thus, (R+, pmax) is complete.

The aforementioned partial metric version of Banach fixed point theorem can be stated
as follows.

Theorem  Let f be a mapping from a complete partial metric space (X, p) into itself such
that there is s ∈R

+ with  ≤ s < , satisfying

p
(
f (x), f (y)

) ≤ sp(x, y) ()

for all x, y ∈ X. Then f has a unique fixed point.

An application of the preceding partial metric version of the Banach fixed point theorem
to program correctness can be found in [] (see also []).

In , M Edelstein put forth a natural question about the possibility of obtaining a
fixed point theorem by keeping the completeness of the metric space and replacing the
contractive condition () in Theorem  by another slightly modified condition. In partic-
ular he proposed the following contractive condition for a mapping f from a metric space
(X, d) into itself:

d
(
f (x), f (y)

)
< d(x, y) ()

for all x, y ∈ X with x �= y.
A negative answer to this query was given when he showed that completeness of the

metric space is not sufficient to guarantee even the existence of a fixed point whenever the
Banach contractive condition () is replaced by (). However, Edelstein himself proved a
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positive result, Theorem  below, for self-mappings satisfying the new contractive condi-
tion (), although the class of spaces to which it applies is much more restrictive (see []
and []). This result was proved independently by Nemytskii [].

Theorem  Let f be a mapping from a compact metric space (X, d) into itself satisfying

d
(
f (x), f (y)

)
< d(x, y) ()

for all x, y ∈ X with x �= y. Then f has a unique fixed point.

The preceding theorem, just like Theorem , is a powerful tool to obtain relevant ap-
plications of fixed point theory to different fields of science. Some of the aforementioned
applications can be found in [] (and references therein), [, ], and [].

Inspired by the Matthews extension of the Banach theorem (Theorem  above), many
fixed point theorems for self-mappings in metric spaces have been extended to the partial
metric framework. A few recent works in this direction can be found, for example, in [,
–] and []. For details, we refer to []. Motivated by this intense research activity
in fixed point theory in partial metric spaces, we present a Nemytskii-Edelstein type fixed
point theorem for self-mappings in partial metric spaces in such a way that the classical
one can be retrieved as a particular case of our new result. Moreover, we show that our
new fixed point theorem allows one to find fixed points of mappings in some cases in
which the Matthews result and the classical Nemytskii-Edelstein one cannot be applied.
Furthermore, a discussion about whether our new results can be retrieved as a particular
case of the Nemytskii-Edelstein classical fixed point result through the application of the
metrization technique introduced in [] (see also []) is performed.

2 Statement of the problem
The natural attempt to extend the classical Nemytskii-Edelstein fixed point theorem to the
context of partial metric spaces would consist of replacing in Theorem  the contractive
condition () by a strict one and the completeness of the partial metric space by a suitable
notion of compactness. Thus one may conjecture that the next result would be desirable.

Conjecture  Let (X, p) be a compact partial metric space and let f be a mapping from
(X, p) into itself satisfying

p
(
f (x), f (y)

)
< p(x, y) ()

for all x, y ∈ X with x �= y. Then f has a unique fixed point.

In [] (see also []), it was showed that, given a partial metric space (X, p), the function
dp : X × X → R

+, defined by dp(x, y) = p(x, y) – p(x, x) for all x, y ∈ X, is a quasi-metric on
X such that T (p) = T (dp).

In the light of the preceding relationship between partial metric spaces and quasi-
metrics, it also seems natural to wonder whether the following quasi-metric version of
the Nemytskii-Edelstein fixed point theorem holds.
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Conjecture  Let (X, p) be a compact partial metric space and let f be a mapping from
(X, p) into itself satisfying

dp
(
f (x), f (y)

)
< dp(x, y) ()

for all x, y ∈ X with dp(x, y) �=  and x �= y. Then f has a unique fixed point.

In the remainder of the paper we provide a negative answer to the posed question. Con-
cretely, in Section  we provide counterexamples that show that such conjectures are not
true when we consider a few possible notions of compactness in partial metric spaces. In
spite of this handicap, we prove that an additional assumption, which is not too much re-
strictive, on the self-mapping is enough to provide Nemytskii-Edelstein type fixed point
theorems in the spirit of the above conjectures. In addition, we give examples that show
that the additional hypothesis on the self-mapping in our new results cannot be weakened.
Furthermore, in Section , we provide a negative answer to the question about whether
our new result can be retrieved as a particular case of the classical Nemytskii-Edelstein
one whenever the metrization technique, given in [], is applied to partial metric spaces.

3 The new fixed point theorem
In order to achieve our aim we need to introduce an appropriate notion of compactness in
the context of partial metric spaces. Thus, from now on, we will say that a partial metric
space (X, p) is compact provided that the quasi-metric space (X, d–

p ) is compact, i.e., the
topological space (X,T (d–

p )) is compact. As we will see later on, Theorem , our main
result, justifies the definition of compactness introduced.

Next we provide an example of compact partial metric space.

Example  Let pmax be the partial metric introduced in Example . Consider the partial
metric space ([, [, pmax) where we have also denoted by pmax the restriction of the partial
metric pmax to [, [. It is clear that ([, [, pmax) is compact, since Bd–

pmax
(, ε) = [, [ for

each ε > .

In [], O’Neill defined a different notion of compactness in partial metric spaces. Con-
cretely, a partial metric space (X, p) is said to be compact in the O’Neill sense whenever the
metric space (X, ps) is compact (or equivalently (X, ds

p) is compact). In the sequel, compact
partial metric spaces in the O’Neill sense will be called O-compact partial metric spaces.

Next we give an example of O-compact partial metric spaces.

Example  Consider the partial metric space ([, ], pmax), where pmax is defined as in Ex-
ample . It is obvious that ps

max(x, y) = |y – x| for all x, y ∈ [, ]. Therefore ([, ], pmax) is an
O-compact partial metric space.

Clearly O-compact partial metric spaces are compact but the converse is not true. Ex-
ample  provides an instance of compact partial metric space which is not O-compact,
since the partial metric space ([, [, ps

max) is not compact.
In the light of the different notions of compactness introduced, we are able to discuss

whether the conjectures given in Section , ‘Conjecture ’ and ‘Conjecture ’, are foolproof.
Regarding ‘Conjecture ’, the next example shows that it does not hold.
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Example  Consider the complete partial metric space (C, pC) introduced in [], where

C =

{

f : N → ],∞] :
∞∑

n=

–n 
f (n)

< ∞
}

and

pC(f , g) =
∞∑

n=

–n max

{


f (n)
,


g(n)

}

for all f , g ∈ C . Of course, it is adopted the convention that 
∞ = . Next consider the subset

C ⊆ C given by C = {f ∈ C :  ≤ f () < 
 and f (n) = ∞ for all n ∈ N} where N = {n ∈ N :

n ≥ }. According to [, ] and [], the pair (C, ps
C) is totally bounded (note that we

have also denoted by ps
C the restriction of ps

C to C). In addition, it is not hard to see that
the subset C is closed in (C, ps

C), and, thus, complete. Whence we find that the metric
space (C, ps

C) is compact. So the partial metric space (C, pC) is O-compact.
Now define the mapping F : C → C by

F(f )(n) =

{
 – f ()

 if n = ,
∞ if n > .

Then is clear that F satisfies the required contractive condition, i.e.,

pC
(
F(f ), F(g)

)
< pC(f , g)

for all f , g ∈ C with f �= g . However, F has no fixed point.

In the light of the preceding example ‘Conjecture ’ is not true even when we consider
O-compactness instead of compactness.

Unfortunately ‘Conjecture ’ does not hold as the next example shows.

Example  Consider the compact partial metric space ([, ], pmax) introduced in Exam-
ple . Define the mapping f : [, ] → [, ] by

f (x) =

{
x
 if x �= ,
 if x = .

It is clear that

dpmax

(
f (x), f (y)

)
< dpmax (x, y)

for all x, y ∈ [, ] with x �= y and dpmax (x, y) �= . But the mapping f is fixed point free.

Of course, the preceding example shows that ‘Conjecture ’ is not also satisfied even
when one considers O-compactness.

In the light of the preceding discussion we yield sufficient conditions in order to guaran-
tee that the Nemytskii-Edelstein contractive type conditions () and () provide a unique
fixed point.
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To this end let us recall that, given a partial metric space (X, p), a mapping from (X, p)
into itself is said to be continuous provided that it is continuous from (X,T (p)) to (X,T (p)).
Moreover, we will say that f is conjugate continuous if f is continuous from (X,T (d–

p )) to
(X,T (d–

p )). Besides, let us recall that a function f from a topological space (X,T ) into
(R+,T (| · |)) is lower semicontinuous on (X,T ) if and only if f is continuous from (X,T ) to
(R+,T (d–

u )) (see []), where du is the upper quasi-metric introduced in Example . Fur-
thermore, it is well known that every lower semicontinuos function on a compact topo-
logical space attains a minimum value (see Theorem . in []).

Next we prove our announced fixed point result.

Theorem  Let (X, p) be a compact partial metric space. If f is a mapping from (X, p)
into itself which is conjugate continuous and satisfies

p
(
f (x), f (y)

)
< p(x, y) ()

for all x, y ∈ X with x �= y, then f has a unique fixed point.

Proof First we show the existence of fixed point. Define the function F : X →R
+ by F(x) =

p(x, f (x)). Next we show that F is lower semicontinuous on (X,T (d–
p )). Indeed, let (xn)n∈N

be a sequence in X such that limn→+∞ d–
p (x, xn) = . Then, given ε > , since f is a conjugate

continuous mapping there exists n ∈ N such that dp(xn, x) < ε and d–
p (f (x), f (xn)) < ε for

all n ≥ n. Whence

F(x) – F(xn) = p
(
x, f (x)

)
– p

(
xn, f (xn)

)

≤ p(x, xn) + p
(
xn, f (x)

)
– p(xn, xn) – p

(
xn, f (xn)

)

= d–
p (x, xn) + p

(
xn, f (x)

)
– p

(
xn, f (xn)

)

< ε + p
(
xn, f (x)

)
– p

(
xn, f (xn)

)

≤ ε + p
(
xn, f (xn)

)
+ p

(
f (xn), f (x)

)
– p

(
f (xn), f (xn)

)
– p

(
xn, f (xn)

)

= ε + d–
p

(
f (x), f (xn)

)

< ε

whenever n ≥ n. So d–
u (F(x), F(xn)) < ε for all n ≥ n and, thus, F is lower semicontinuous

on (X,T (d–
p )). Since (X, d–

p ) is a compact quasi-metric space, F attains its minimum, say
at x ∈ X. Consequently, we find that x = f (x), because otherwise p(x, f (x)) �=  and,
thus by (),

F
(
f (x)

)
= p

(
f (x), f

(
f (x)

))
< p

(
x, f (x)

)
= F(x).

This contradicts the fact that F attains its minimum at x.
Now we prove the uniqueness. Suppose that there exists y ∈ X such that f (y) = y and

y �= x. Then p(x, y) �=  and, by (),

p(x, y) = p
(
f (x), f (y)

)
< p(x, y).

Therefore the fixed point of f is unique. �
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Example  shows that the conjugate continuity of the mapping cannot be deleted from
the hypotheses of Theorem  in order to guarantee the existence of a fixed point.

Remark  Note that as a particular case of Theorem  we obtain the Nemytskii-
Edelstein fixed point theorem (Theorem  in Section ) when the partial metric is, in fact,
a metric.

The next example shows that Theorem  cannot be deduced, in general, from Theo-
rem  when an O-compact partial metric space and its associated metric space are con-
sidered.

Example  Consider the O-compact partial metric space ([, ], pmax) introduced in Ex-
ample . Define the mapping f : [, ] → [, ] by

f (x) =

{
 if x ≤ 

 ,

 if x > 

 .

It is clear that

pmax
(
f (x), f (y)

)
< pmax(x, y)

for all x, y ∈ [, ] such that x �= y. Nevertheless,




= ps
max

(
f (), f

(



))
≮ ps

max

(
,




)
=




.

From Theorem  we obtain the following results.

Corollary  Let (X, p) be a compact partial metric space and let f be a mapping from
(X, p) into itself satisfying

p
(
f (x), f (y)

)
< p(x, y) ()

for all x, y ∈ X with x �= y and

p
(
f (x), f (x)

) ≥ p(x, x) ()

for all x ∈ X, then f has a unique fixed point.

Proof We only have to prove that the mapping f is conjugate continuous. Indeed,
let (xn)n∈N be a sequence in X such that limn→+∞ d–

p (x, xn) = . Next we show that
limn→+∞ d–

p (f (x), f (xn)) = . Obviously we can assume that f (x) �= f (xn) for all n ≥ n,
because otherwise we immediately obtain d–

p (f (x), f (xn)) =  for all n ∈ N such that
n ≥ n and f (x) = f (xn). Since limn→+∞ d–

p (x, xn) =  there exists n ∈ N such that
p(x, xn) – p(xn, xn) < ε for all n ≥ n. Whence we find that

d–
p

(
f (x), f (xn)

)
= p

(
f (x), f (xn)

)
– p

(
f (xn), f (xn)

)

≤ p
(
f (x), f (xn)

)
– p(xn, xn) < p(x, xn) – p(xn, xn) < ε
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for all n ≥ n, which is the desired conclusion. By Theorem  we obtain the existence and
uniqueness of a fixed point. �

Example  proves that the contractive condition () cannot be deleted in statement of
Corollary .

Motivated by the fact that Example  shows that the proposed quasi-metric version of
the Nemytskii-Edelstein fixed point theorem given in ‘Conjecture ’ does not hold, we end
the section focusing our attention on the study of the aforesaid version.

Corollary  Let (X, p) be a compact partial metric space and let f be a mapping from
(X, p) into itself satisfying

dp
(
f (x), f (y)

) ≤ dp(x, y) ()

for all x, y ∈ X and

p
(
f (x), f (y)

)
< p(x, y) ()

for all x, y ∈ X with x �= y, then f has a unique fixed point.

Proof Consider a sequence (xn)n∈N in X such that limn→+∞ d–
p (x, xn) = . By condition ()

we deduce that dp(f (xn), f (x)) ≤ dp(xn, x) for all n ∈N. Therefore,

lim
n→+∞ d–

p
(
f (x), f (xn)

)
= lim

n→+∞ dp
(
f (xn), f (x)

)

≤ lim
n→+∞ dp(xn, x) = lim

n→+∞ d–
p (x, xn) = .

It follows that f is conjugate continuous and, hence, by Theorem , we obtain the existence
and uniqueness of a fixed point. �

Example  shows that the contractive condition () cannot be deleted in statement of
the preceding result.

Corollary  Let (X, p) be a compact partial metric space. If f is a mapping from (X, p)
into itself which satisfies

dp(x, y) =  ⇒ dp
(
f (x), f (y)

)
=  ()

for all x, y ∈ X and

dp
(
f (x), f (y)

)
< dp(x, y) ()

for all x, y ∈ X such that x �= y with dp(x, y) �=  and, in addition,

p
(
f (x), f (x)

) ≤ p(x, x) ()

for all x ∈ X, then f has a unique fixed point in X.
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Proof It is a simple matter to check that the mapping f is conjugate continuous. Next we
show that f holds the contractive condition (). To this end, consider x, y ∈ X such that
x �= y. Then

p
(
f (x), f (y)

)
– p(x, x) ≤ dp

(
f (x), f (y)

)
< dp(x, y) = p(x, y) – p(x, x).

It follows that

p
(
f (x), f (y)

)
< p(x, y).

Whence, by Theorem , we deduce that f has a unique fixed point. �

The next example shows that the contractive condition () cannot be deleted in the
statement of Corollary .

Example  Let (C, pC) be the partial metric space introduced in Example . Next con-
sider the subset C ⊆ C given by C = C \ {f}, where f(n) =  for all n ∈ N. It is clear that
(C, pC) is compact, where the restriction of pC to C has also been denoted by pC . Note
that Bd–

pC
(f∞, ε) = C for each ε > , where f∞ is the element of C given by f∞(n) = ∞ for

all n ∈N.
Now define the mapping F : C → C by

F(f )(n) =

{
 if n = ,
f (n – ) if n > .

Then it is clear that dpC (F(f ), F(g)) =  whenever dpC (f , g) = . Moreover,

dpC
(
F(f ), F(g)

)
< dpC (f , g)

for all f , g ∈ C with f �= g and dpC (f , g) �= . Nevertheless,

pC
(
F(f ), F(f )

)
≮ pC(f , f )

for all f ∈ C. Of course, F has not fixed point.

The next result will be needed in order to provide another quasi-metric version of the
Nemytskii-Edelstein fixed point theorem given in ‘Conjecture ’.

Theorem  Let (X, d) be a quasi-metric space such that the metric space (X, ds) is com-
pact. If f is a mapping from (X, d) into itself which satisfies

d(x, y) =  ⇒ d
(
f (x), f (y)

)
=  ()

for all x, y ∈ X and

d
(
f (x), f (y)

)
< d(x, y) ()

for all x, y ∈ X such that x �= y with d(x, y) �= , then f has a unique fixed point in X.
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Proof Define the function F : X → R
+ by F(x) = d(x, f (x)). Next we show that F is lower

semicontinuous on (X,T (ds)). Indeed, let (xn)n∈N ⊂ X such that limn→+∞ ds(x, xn) = .
Then, given ε > , there exists n ∈N such that

max
{

d(x, xn), d(xn, x)
}

< ε

for all n ≥ n. Moreover, for each n ∈N we can distinguish two cases:
Case . d(xn, x) = . Then, by (), d(f (xn), f (x)) = .
Case . d(xn, x) �= . Then, by (),

d
(
f (xn), f (x)

)
< d(xn, x) < ε.

From the preceding assertions we have

F(x) – F(xn) = d
(
x, f (x)

)
– d

(
xn, f (xn)

)

≤ d(x, xn) + d
(
xn, f (x)

)
– d

(
xn, f (xn)

)

< ε + d
(
xn, f (x)

)
– d

(
xn, f (xn)

)

≤ ε + d
(
xn, f (xn)

)
+ d

(
f (xn), f (x)

)
– d

(
xn, f (xn)

)

≤ ε + d
(
f (xn), f (x)

)

< ε

whenever n ≥ n. So d–
u (F(x), F(xn)) < ε for all n ≥ n and, thus, F is lower semicontinuous

on (X,T (ds)). Since (X, ds) is compact we deduce that F attains its minimum, say at x ∈ X.
Hence we deduce that x = f (x) because otherwise

F
(
f (x)

)
= d

(
f (x), f

(
f (x)

))
< d

(
x, f (x)

)
= F(x),

which contradicts the fact that F attains its minimum at x.
Finally, we suppose that there exists y ∈ X such that f (y) = y and y �= x. Then

ds(x, y) �= . Suppose that ds(x, y) = d(x, y). By () we obtain

d(x, y) = d
(
f (x), f (y)

)
< d(x, y).

Therefore the fixed point of f is unique. Of course, the same conclusion is concluded if
ds(x, y) = d(y, x). �

Example  shows that the separation condition () cannot be deleted in the statement
of Theorem .

Remark  Observe that, in general, the contractive conditions () and () do not imply
the contractive condition () for the metric case. Indeed, consider the O-compact partial
metric space ([, ], pmax) given in Example . Define the mapping f : [, ] → [, ] by

f (x) =

{
 if x < 

 ,

 if x ≥ 

 .



Shahzad and Valero Fixed Point Theory and Applications  (2015) 2015:26 Page 12 of 15

It is clear that

dpmax

(
f (x), f (y)

)
< dpmax (x, y)

for all x, y ∈ [, ] with x �= y and dp max(x, y) �= . Moreover,

dpmax (x, y) =  ⇒ dpmax

(
f (x), f (y)

)
= .

Nevertheless




= ds
pmax

(
f (), f

(



))
≮ ds

pmax

(
,




)
=




.

As a direct consequence of Theorem  we obtain the following one for partial metric
spaces in the spirit of ‘Conjecture ’.

Corollary  Let (X, p) be an O-compact partial metric space. If f is a mapping from (X, p)
into itself which satisfies

dp(x, y) =  ⇒ dp
(
f (x), f (y)

)
=  ()

for all x, y ∈ X and

dp
(
f (x), f (y)

)
< dp(x, y) ()

for all x, y ∈ X such that x �= y with dp(x, y) �= , then f has a unique fixed point in X.

We end the section giving an instance in which our new fixed point theorem allows
one to find the fixed point of a mapping where, however, the Matthews fixed point result
cannot be applied. Moreover, the classical Nemytskii-Edelstein fixed point theorem also
cannot be applied when the metric induced by the partial metric is considered.

Example  Consider the O-compact partial metric space ([, ], pmax) and the mapping f
introduced in Example . It is not hard to check that f is conjugate continuous. Moreover,
as we have pointed out in the aforesaid example, it is easy to see that

pmax
(
f (x), f (y)

)
< pmax(x, y)

for all x, y ∈ [, ] such that x �= y. Therefore all conditions in Theorem  are satisfied and,
thus, f has a unique fixed point which is obviously x = .

Next we show that Theorem  also cannot be applied to show the existence and unique-
ness of the fixed point of f . Assume that there exists c ∈ [, [ such that

pmax
(
f (x), f (y)

) ≤ cpmax(x, y)

for all x, y ∈ [, ]. Then




= pmax

(
f
(




)
, f

(



+

n

))
≤ cpmax

(



,



+

n

)
= c

(



+

n

)
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for all n ∈N with n ≥ . Hence

c ≥




 + 

n

for all n ≥ . Consequently c ≥ limn→∞




 + 

n
= , which contradicts the fact that c ∈ [, [.

Finally we prove that Theorem  cannot be applied to show the existence and unique-
ness of the fixed point of f when the metric space ([, ], ps

max) is considered. Observe that
ps

max(x, y) = |y – x| for all x, y ∈ [, ]. In addition,

ps
max

(
f
(




)
, f ()

)
= ps

max

(



, 
)

=



.

Whence we conclude that

ps
max

(
f
(




)
, f ()

)
≮ ps

max

(



, 
)

.

4 A reflection
This section is devoted to a discussion of the possibility of retrieving our new result,
Theorem , from the classical Nemytskii-Edelstein fixed point result whenever a special
metrization technique of partial metrics is considered.

In [], Hitzler and Seda have proved that each partial metric p on a nonempty set X
induces a metric mp on X such that T (ds

p) ⊆ T (mp), where

mp(x, y) =

{
 if x = y,
p(x, y) if x �= y.

()

In [], Haghi et al., inspired by the work of Hiztler and Seda, stressed that the preced-
ing technique to generate a metric from a partial metric allows one to retrieve many fixed
point results for self-mappings in the partial metric context from the known counterpart
fixed point results for self-mappings in the metric framework. Taking into account the pre-
ceding comment, we show that this is not the situation regarding the Nemytskii-Edelstein
fixed point result.

Let (X, p) be a compact partial metric space and let f be a mapping from (X, p) into itself
which holds the contractive condition introduced in Theorem , i.e.,

p
(
f (x), f (y)

)
< p(x, y) ()

for all x, y ∈ X such that x �= y. Then we immediately find that f satisfies in addition the
next contractive condition

mp
(
f (x), f (y)

)
< mp(x, y) ()

for all x, y ∈ X with x �= y. However, the existence and uniqueness of fixed point of f cannot
be deduced in general from Theorem  (the classical Nemytskii-Edelstein result) through
the use of the metric mp. This is due to the fact that given a compact partial metric space
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(X, p), the associated metric space (X, mp) is not compact in general. The following exam-
ples illustrate this fact.

First we give an example of a compact partial metric space whose induced metric space,
obtained following (), is not compact.

Example  Consider the compact partial metric space ([, [, pmax) introduced in Exam-
ple . The associated metric space ([, [, mpmax ) is not compact. Indeed, let x ∈ [, [ and
consider the sequence (xn)n∈N such that xn = 

 – 
n for all n ∈N. Then we have, on the one

hand, mp(x, xn) = x provided that x ≥ 
 . On the other hand, if x < 

 then there exists n ∈N

such that mp(x, xn) = 
 – 

n for all n ≥ n. Therefore every subsequence of the sequence
(xn)n∈N is not convergent in ([, [, mpmax ). Consequently ([, [, mpmax ) is not compact.

Next we give an example of an O-compact partial metric space whose induced metric
space, obtained following (), is not compact.

Example  Consider the O-compact partial metric space ([, ], pmax) introduced in Ex-
ample . Clearly ([, ], mpmax ) is not compact, since every subsequence of the sequence
(xn)n∈N introduced in Example  is not convergent.
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