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1 Some results on very small variation of Mann’s method
Let H be a real Hilbert space, (αn)n∈N ⊂ (,α] ⊂ (, ) and (βn)n∈N, (μn)n∈N ⊂ (, ]. In the
sequel, we will use the following notation:

• We say that ζn = o(ηn) if ζn
ηn

→  as n → ∞.
• We say that ζn = O(ηn) if there exist K , N >  such that N ≤ | ζn

ηn
| ≤ K .

Iterative schemes to approximate fixed points of nonlinear mappings have a long history
and they still are an active research area of the nonlinear operator theory.

Here we are interested in the Mann iterative method introduced by Mann [] in .
The method generates a sequence (xn)n∈N via the recursive formula

xn+ = αnxn + ( – αn)Txn, (.)

where the coefficients sequence (αn)n∈N is in the real interval [, ], T is a self-mapping of
a closed and convex subset of C of a real Hilbert space H , and the value x ∈ C is chosen
arbitrarily.

Mann’s method has been studied in the literature chiefly for nonexpansive mappings T
(i.e., ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C). Due to Reich [] it is known that if T is nonexpan-
sive and

∑
n αn( – αn) = +∞, then the sequence (xn)n∈N generated by Mann’s algorithm

(.) converges weakly to a fixed point of T . Thanks to the celebrated counterexample of
Genel and Linderstrauss [], we know that Mann’s algorithm fails, in general, to converge
strongly also in the setting of a Hilbert space.

In order to ensure strong convergence, in the past years, the method has been modified
in several directions: by Ishikawa [] using a double convex-combination, by Halpern []
using an anchor, by Moudafi [] using a contraction mapping, by Nakajo and Takahashi
[] using projections. These are just a few (but extremely relevant) of such modifications.

In this section we propose a variation of Mann’s method (Theorem . and Theorem .)
which differs from all those present in the literature, and it is closest to the original method
(.). Moreover, we give several corollaries that are concrete and meaningful applications.
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In the next section we see that the proof of all these results can be obtained by a very
general two-step iterative algorithm. In the last section we give the proof of our main
theorem and compare the rate of convergence of our method with that of Halpern on a
specific case.

To our knowledge, Theorem . below provides a method that is almost the Mann
method but ensures strong convergence.

Theorem . Let αn,μn ∈ (, ] such that
• limn→∞ αn = ,

∑
n∈N αnμn = ∞;

• |μn– – μn| = o(μn), and |αn– – αn| = o(αnμn).
Then the sequence (xn)n∈N generated by

xn+ = αnxn + ( – αn)Txn – αnμnxn

strongly converges to a point x∗ ∈ Fix(T) with minimum norm ‖x∗‖ = minx∈Fix(T) ‖x‖.

Taking μn =  we obtain the following.

Corollary . Let αn ∈ (, ] such that

lim
n→∞αn = ,

∑

n∈N
αn = ∞, |αn– – αn| = o(αn).

Then the sequence (xn)n∈N generated by

xn+ = ( – αn)Txn

strongly converges to a point x∗ ∈ Fix(T) with minimum norm ‖x∗‖ = minx∈Fix(T) ‖x‖.

We can see x∗ as the point in Fix(T) nearest to  ∈ H . If we search for the point in Fix(T)
nearest to an arbitrary u ∈ H , then we have the following theorem.

Theorem . Under the same assumptions on the coefficients αn,μn of Theorem ., the
sequence (xn)n∈N generated by

xn+ = αnxn + ( – αn)Txn + αnμn(u – xn)

strongly converges to a point x∗
u ∈ Fix(T) nearest to u, ‖x∗

u – u‖ = minx∈Fix(T) ‖x – u‖.

Taking again μn = , we obtain the following.

Corollary . (Halpern’s method) Under the same assumptions on the coefficients αn of
Corollary ., the sequence (xn)n∈N generated by

xn+ = αnu + ( – αn)Txn

strongly converges to a point x∗
u ∈ Fix(T) nearest to u, ‖x∗

u – u‖ = minx∈Fix(T) ‖x – u‖ too.
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If A is a δ-inverse strongly monotone operator with A–() 	= ∅, then (I – δA) is nonex-
pansive [, p.] with fixed points Fix(I – δA) = A–(). By Theorem . with T = (I – δA),
we have the following.

Corollary . Under the same assumptions on the coefficients αn, μn of Theorem ., the
sequence (xn)n∈N generated by

xn+ = αnxn + ( – αn)(I – δA)xn + αnμn(u – xn)

strongly converges to a point x∗
A,u ∈ A–() nearest to u, ‖x∗

A,u – u‖ = minx∈A–() ‖x – u‖.

The first interesting example of a monotone δ-inverse strongly monotone operator with
A–() 	= ∅ is the gradient of a convex function. Precisely, let φ : H → R be a convex and
Fréchet differentiable function. Let us suppose that ∇φ(x) is an L-Lipschitzian mapping.
We are interested in approximate solutions of the variational inequality (in the sequel
(VIP))

〈∇φ
(
x∗), y – x∗〉 ≥ , ∀y ∈ H , (.)

since it is the optimality condition for the minimum problem

min
x∈H

φ(x).

In our hypotheses, ∇φ(x) is a 
L -inverse strongly monotone operator. Then the mapping

(I – 
L∇φ) is nonexpansive, and it results that the following can be obtained by Corol-

lary ..

Corollary . Let Fix((I – 
L∇φ)) 	= ∅ and u ∈ H . Let us suppose that

• limn→∞ αn = ,
∑

n∈N αnμn = ∞;
• |μn– – μn| = o(μn), and |αn– – αn| = o(αnμn).

Then the sequence generated by the iteration

xn+ = αnxn + ( – αn)
(

I –

L

∇φ

)

xn + αnμn(u – xn), n ≥  (.)

strongly converges to x∗ ∈ Fix((I – 
L∇φ)) that is the unique solution of the variational in-

equality

〈
x∗ – u, y – x∗〉 ≥ , ∀y ∈ Fix(S), (.)

i.e., x∗ is the solution of (.) nearest to u.

A further interesting result concerns a Tikhonov regularized-constrained least squares
defined as follows:

min
x∈C



‖Ax – b‖ +



ε‖x‖, where ε > , (.)
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that aims the (ill-posed) constrained least squares problem

min
x∈C



‖Ax – b‖, (.)

where C =
⋂

n∈N Fix(Tn), A is a linear and bounded operator on H , b ∈ H and (Tn)n∈N are
nonexpansive satisfying the following:

(h) Tn : H → H are nonexpansive mappings, uniformly asymptotically regular on
bounded subsets B ⊂ H , i.e.,

lim
n→∞ sup

x∈B
‖Tn+x – Tnx‖ = ;

(h) it is possible to define a nonexpansive mapping T : H → H with Tx := limn→∞ Tnx
such that if F :=

⋂
n∈N Fix(Tn) 	= ∅, then Fix(T) = F .

Reich and Xu in [] proved, among others, that the unique solution of (.) strongly
converges, when ε → , to the solution of (.) that has minimum norm. The optimality
condition to solve (.) is to solve the following variational inequality:

〈
A∗Ax – A∗b + εx, y – x

〉 ≥ , ∀y ∈
⋂

n∈N
Fix(Tn), (.)

where A∗ is the adjoint of A.
In light of Reich and Xu’s results, it would be interesting to approximate a solution of

(.) (for small ε).
Let B := A∗A – A∗b. Note that since B is firmly nonexpansive, i.e., -inverse strongly

monotone so I – B is firmly nonexpansive [], hence nonexpansive. We are able to prove
the following results.

Theorem . Assume that
• limn→∞ αn = ,

∑
n∈N αnμn = ∞;

• |βn – βn–| = o(αnβnμn), |μn – μn–| = o(αnβnμn) and |αn – αn–| = o(αnβnμn);
• | 

βn
– 

βn–
| = O(αnμn).

Let us suppose limn→∞ βn
αnμn

= τ ∈ (, +∞).
(These hypotheses are satisfied, for instance, by αn = μn = 

√n , βn = √
n , n ≥ .)

Then (xn)n∈N defined by (.), i.e.,
⎧
⎨

⎩

yn = βn(I – A∗A)xn + ( – βn)xn + βnA∗b,

xn+ = αn( – μn)xn + ( – αn)Tnyn, n ≥ 
(.)

strongly converges to x̃ ∈ ⋂
n∈N Fix(Tn) that is the unique solution of the variational in-

equality
〈


τ

Dx̃ + (I – S)x̃, y – x̃
〉

≥ , ∀y ∈
⋂

n∈N
Fix(Tn), (.)

i.e.,
〈


τ

x̃ + A∗Ax̃ – A∗b, y – x̃
〉

≥ , ∀y ∈
⋂

n∈N
Fix(Tn).
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Note that we do not assume any hypotheses on the commutativity of the mappings in
spite of the main theorem in [] (see also [, ]).

2 A general iterative method
In this section we study the convergence of the following general two-step iterative algo-
rithm in a Hilbert space H :

⎧
⎨

⎩

yn = βnSxn + ( – βn)xn,

xn+ = αn(I – μnD)xn + ( – αn)Wnyn, n ≥ ,
(.)

where
• D : H → H is a σ -strongly monotone and L-Lipschitzian operator on H , i.e., D

satisfies

〈Dx – Dy, x – y〉 ≥ σ‖x – y‖ and ‖Dx – Dy‖ ≤ L‖x – y‖.

• S : H → H is a nonexpansive mapping.
• (Wn)n∈N is defined on H and such that

(h) Wn : H → H are nonexpansive mappings, uniformly asymptotically regular on
bounded subsets B ⊂ H , i.e.,

lim
n→∞ sup

x∈B
‖Wn+x – Wnx‖ = ,

(h) it is possible to define a nonexpansive mapping W : H → H , with
Wx := limn→∞ Wnx such that if F :=

⋂
n∈N Fix(Wn) 	= ∅ then Fix(W ) = F .

• The coefficients (αn)n∈N ⊂ (,α] ⊂ (, ), (βn)n∈N ⊂ (, ) and (μn)n∈N ⊂ (,μ), where
μ < σ

L .

Remark . If (Tn)n∈N does not satisfy (h) and (h), then it is always possible to con-
struct a family of nonexpansive mappings (Wn)n∈N satisfying (h) and (h) and such that
⋂

n∈N Fix(Tn) =
⋂

n∈N Fix(Wn) (see [, ]).

All the previous results easily follow from our main theorem below.

Theorem . Let H be a Hilbert space. Let D, S, (Wn)n∈N be defined as above. Then:
() Let τ = limn→∞ βn

αnμn
= . Assume that

(H) limn→∞ αn = ,
∑

n∈N αnμn = ∞;
(H) supx∈B ‖Wnz – Wn–z‖ = o(αnμn), where B ⊂ H is bounded;
(H) |μn– – μn| = o(μn) and |αn– – αn| = o(αnμn).

(These hypotheses are satisfied, for instance, by αn = μn = √
n and βn = 

n , n ≥ .)
Then the sequence generated by iteration (.) strongly converges to x∗ ∈ F that is the

unique solution of the variational inequality

〈
Dx∗, y – x∗〉 ≥ , ∀y ∈ F . (.)

() Let us suppose limn→∞ βn
αnμn

= τ ∈ (, +∞). Assume that
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(H) limn→∞ αn = ,
∑

n∈N αnμn = ∞;
(H) supx∈B ‖Wnz – Wn–z‖ = o(αnμnβn), where B ⊂ H is bounded;
(H) |βn – βn–| = o(αnβnμn), |μn – μn–| = o(αnβnμn) and |αn – αn–| = o(αnβnμn);
(H) | 

βn
– 

βn–
| = O(αnμn).

(These hypotheses are satisfied, for instance, by αn = μn = 
√n , βn = √

n , n ≥  and (Wn) and
(λn) are as in Stm.)

Then xn → x̃, as n → ∞, where x̃ ∈ F is the unique solution of the variational inequality

〈

τ

Dx̃ + (I – S)x̃, y – x̃
〉

≥ , ∀y ∈ F . (.)

() If τ = limn→∞ βn
αnμn

= ∞ and Fix(S)
⋂

F 	= ∅. Let us suppose that
(H) limn→∞ αn = ,

∑
n∈N αnμn = ∞;

(H) supx∈B ‖Wnz – Wn–z‖ = o(αnμn), where B ⊂ H is bounded.
(H) |μn– – μn| = o(μn), and |αn– – αn| = o(αnμn).

If βn → β 	= , as n → ∞, and |βn– – βn| = o(αnμn), then the sequence generated by itera-
tion (.) strongly converges to x∗ ∈ F ∩ Fix(S) that is the unique solution of the variational
inequality

〈
Dx∗, y – x∗〉 ≥ , ∀y ∈ F ∩ Fix(S). (.)

Proof We give the proof in the next (and last) section. �

Proof of Theorem . It follows by Theorem .() choosing D = I , μ = , Wn = T and
S = I . �

Proof of Theorem . If we take Dx = x – u, S = I , μ =  and Wn = T , the proofs follow by
Theorem .(). �

Proof of Corollary . Easily follows by Corollary . when A = ∇φ and δ = 
L . �

Remark . It is interesting to note that the convergence in Corollary . can be obtained
from Theorem .() when S = Wn = (I – δA).

The last application of our main theorem concerns the problem to minimize a quadratic
function over a closed and convex subset C of H

min
x∈C



〈Ax, x〉 – h(x), (.)

where h is a potential function for a contraction mapping f , i.e., h′ = f on H (for references,
one can read [, ]).

Let A be a strongly positive bounded linear operator on H , i.e., there exists γ̄ >  such
that 〈Ax, x〉 ≥ γ̄ ‖x‖ for all x ∈ H .

Let us take as a subset C the set of common fixed points of a given semigroup of non-
expansive mappings. Let T be a one-parameter continuous semigroup of nonexpansive
mappings defined on H with a common fixed points set F 	= ∅. Let (λn)n∈N be a sequence
in (, ) such that limn→∞ λn = λ ∈ (, ).
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We know the fact, due to Suzuki [], that Wnx := λnT()x + ( – λn)T(
√

)x is a nonex-
pansive mapping such that Fix(Wn) = Fix(T()) ∩ Fix(T(

√
)) = F . Moreover,

‖Wn+x – Wnx‖ ≤ |λn+ – λn|
∥
∥T()x – T(

√
)x

∥
∥.

Further, if x lies in a bounded set B ⊂ X, the uniform asymptotic regularity on B follows.
If Sx := λT()x + ( – λ)T(

√
)x, then Fix(S) = F and, for all x ∈ H ,

lim
n→∞ Wnx = Vx.

In light of [, , ], we consider

min
x∈F



〈Ax, x〉 – h(x). (.)

We are able to prove the following new convergence result.

Theorem . Let us suppose that
• limn→∞ αn = ,

∑
n∈N αnμn = ∞;

• |λn+ – λn| = o(αnμn);
• |μn– – μn| = o(μn), and |αn– – αn| = o(αnμn).

If βn → β 	= , as n → ∞, and |βn– – βn| = o(αnμn), then the sequence generated by itera-
tion (.), i.e.,

⎧
⎨

⎩

xn+ = αn(I – μnA)xn + αnμnf (xn) + ( – αn)Wnyn, n ≥ ,

yn = βn(λT() + ( – λ)T(
√

))xn + ( – βn)xn
(.)

strongly converges to x∗ ∈ F that is the unique solution of the variational inequality

〈
(A – γ f )x∗, y – x∗〉 ≥ , ∀y ∈ F , (.)

which is the optimality condition to solve

min
x∈F



〈Ax, x〉 – h(x).

Proof of Theorem . Easily follows by Theorem . statement  when S = λT() + ( –
λ)T(

√
), Wn = λnT() + ( – λn)T(

√
) and D = A – f (see []). �

3 Proof of Theorem 2.2
Lemma . Let (xn)n∈N be defined by iteration (.) and (αn)n∈N, (βn)n∈N ⊂ [, ] and
(μn)n∈N ⊂ (,μ). Assume that

(H) βn = O(αnμn)
holds. Then (xn)n∈N and (yn)n∈N are bounded.

Proof Putting Bn := (I – μnD), we then have

∥
∥(I – μnD)x – (I – μnD)y

∥
∥ ≤ ( – μnρ)‖x – y‖,
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i.e., (I – μnD) is a ( – μnρ)-contraction (see []). Let z ∈ F . Then, for sufficiently large
N and for γ > , we have

‖xn+ – z‖ ≤ αn‖Bnxn – Bnz‖ + αn‖Bnz – z‖ + ( – αn)‖Wnyn – z‖
≤ αn( – μnρ)‖xn – z‖ + αnμn‖Dz‖ + ( – αn)βn‖Sxn – z‖

+ ( – αn)( – βn)‖xn – z‖
≤ αn( – μnρ)‖xn – z‖ + αnμn‖Dz‖ + ( – αn)βn‖Sz – z‖ + ( – αn)‖xn – z‖
≤ ( – μnαnρ)‖xn – z‖ + αnμn‖Dz‖ + βn‖Sz – z‖
≤ ( – μnαnρ)‖xn – z‖ + αnμn

(‖Dz‖ + γ ‖Sz – z‖)

(by convexity of the norm)

≤ max

{

‖xn – z‖,
‖Dz‖ + γ ‖Sz – z‖

ρ

}

.

So, by an inductive process, one can see that

‖xn – z‖ ≤ max

{

‖xi – z‖,
‖Dz‖ + γ ‖Sz – z‖

ρ
: i = , . . . , N

}

.

As a rule (yn)n∈N is bounded too. �

We recall the following lemma.

Lemma . In the hypotheses of Theorem .(), we have that the sequence generated by
z ∈ H and the iteration

zn+ = αn(I – μnD)zn + ( – αn)Wnzn

strongly converge to x∗ ∈ F that is the unique solution of the variational inequality

〈
Dx∗, y – x∗〉 ≥ , ∀y ∈ F . (.)

Proof The proof is given in [, Theorem .]. �

Proof of Theorem .
Proof of . Let us note that since τ = , then (H) holds so (xn)n∈N is bounded by

Lemma .. Let us consider the iteration generated by

⎧
⎨

⎩

z = x,

zn+ = αn(I – μnD)zn + ( – αn)Wnzn, n ≥ .
(.)

By Lemma ., (zn)n∈N strongly converges to the unique solution of VIP (.). Then if we
compute

‖xn+ – zn+‖ ≤ αn‖Bnxn – Bnzn‖ + ( – αn)‖Wnyn – Wnzn‖
≤ αn( – μnρ)‖xn – zn‖ + ( – αn)‖yn – zn‖
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≤ αn( – μnρ)‖xn – zn‖ + ( – αn)βn‖Sxn – zn‖ + ( – αn)‖xn – zn‖
≤ ( – αnμnρ)‖xn – zn‖ + ( – αn)βn‖Sxn – zn‖
≤ ( – αnμnρ)‖xn – zn‖ + βnO().

Calling sn := ‖xn – zn‖, an := αnμnρ , we have that

sn+ ≤ ( – an)sn + βnO().

Since
∑

n αnμn = ∞ and τ = , we can apply Xu’s Lemma . in [] to obtain the required
result.

Proof of . It is not difficult to observe that, by Byrne [], (I – S) is a 
 -inverse strongly

monotone operator, so ( 
τ

D + (I – S)) is a σ
τ

-strongly monotone operator. Then (VIP) (.)
has a unique solution by the celebrated results of Browder and Petryshyn [] and Deim-
ling Theorem . in [].

We next prove that (xn)n∈N is asymptotically regular with respect to (βn)n∈N, i.e.,

lim
n→∞

‖xn+ – xn‖
βn

= .

In order to prove the previous limit, we first compute

‖xn+ – xn‖ ≤ αn‖Bnxn – Bn–xn–‖ + ‖Bn–xn– – Wn–yn–‖|αn – αn–|
+ ( – αn)‖Wnyn – Wn–yn–‖

≤ αn‖Bnxn – Bnxn–‖ + αn‖Bnxn– – Bn–xn–‖
+ ‖Bn–xn– – Wn–yn–‖|αn – αn–|
+ ( – αn)‖Wnyn – Wnyn–‖ + ( – αn)‖Wnyn– – Wn–yn–‖

≤ αn( – μnρ)‖xn – xn–‖ + αn|μn – μn–|‖Dxn–‖
+ ‖Bn–xn– – Wn–yn–‖|αn – αn–|
+ ( – αn)‖yn – yn–‖ + ‖Wnyn– – Wn–yn–‖. (.)

By definition of yn one obtains that

‖yn – yn–‖ = βn‖Sxn – Sxn–‖ + ‖Sxn– – xn–‖|βn – βn–| + ( – βn)‖xn – xn–‖
≤ βn‖xn – xn–‖ + ‖Sxn– – xn–‖|βn – βn–|

+ ( – βn)‖xn – xn–‖
= ‖xn – xn–‖ + ‖Sxn– – xn–‖|βn – βn–|. (.)

So, substituting (.) in (.), we obtain

‖xn+ – xn‖ ≤ αn( – μnρ)‖xn – xn–‖
+

(
αn|μn – μn–| + |αn – αn–| + |βn – βn–|

)
O()
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+ ( – αn)‖xn – xn–‖ + ‖Wnyn– – Wn–yn–‖
= ( – μnαnρ)‖xn – xn–‖ + ‖Wnyn– – Wn–yn–‖

+
(
αn|μn – μn–| + |αn – αn–| + |βn – βn–|

)
O(). (.)

Let us observe that by (H)

lim
n→∞

αn|μn – μn–| + |αn – αn–| + |βn – βn–|
αnμn

= 

and (H) guarantees that

lim
n→∞

‖Wnyn– – Wn–yn–‖
αnμn

= .

Putting sn := ‖xn – xn–‖, an := μnαnρ and bn = ‖Wnyn– – Wn–yn–‖+ (αn|μn –μn–|+ |αn –
αn–| + |βn – βn–|)O(), we can write (.) as

sn+ ≤ ( – an)sn + bn.

Thus (H), (H) and (H) are enough to apply Xu’s Lemma . in [] to assure that (xn)n∈N
is asymptotically regular. Moreover, dividing by βn in (.), one observes that

‖xn+ – xn‖
βn

≤ ( – μnαnρ)
‖xn – xn–‖

βn
+

‖Wnyn– – Wn–yn–‖
βn

+
αn|μn – μn–| + |αn – αn–| + |βn – βn–|

βn
M

≤ ( – μnαnρ)
‖xn – xn–‖

βn
+ ‖xn– – xn‖

∣
∣
∣
∣


βn

–


βn–

∣
∣
∣
∣

+
‖Wnyn– – Wn–yn–‖

βn

+ M
[ |αn – αn–|

βn
+

αn|μn – μn–|
βn

+
|βn – βn–|

βn

]

by (H) ≤ ( – μnαnρ)
‖xn – xn–‖

βn–
+ O(αnμn)‖xn– – xn‖

+
‖Wnyn– – Wn–yn–‖

βn

+ M
[ |αn – αn–|

βn
+

αn|μn – μn–|
βn

+
|βn – βn–|

βn

]

.

Since (H), (H) and (H) hold, by using again Xu’s Lemma . in [], we have

lim
n→∞

‖xn+ – xn‖
βn

= .

Moreover, by the asymptotic regularity of (xn)n∈N, we show that the weak limits ωw(xn) ⊂ F .
Let p ∈ ωw(xn) and (xnk )k∈N be a subsequence of (xn)n∈N weakly converging to p. If p /∈ F ,
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then by the Opial property of a Hilbert space

lim inf
k→∞

‖xnk – p‖ < lim inf
k→∞

‖xnk – Wp‖

≤ lim inf
k→∞

[‖xnk – xnk +‖ + ‖xnk + – Wnk ynk ‖

+ ‖Wnk ynk – Wnk p‖ + ‖Wnk p – Wp‖
]

≤ lim inf
k→∞

[‖xnk – xnk +‖ + αnk ‖Bnk xnk – Wnk ynk ‖

+ ‖ynk – p‖ + ‖Wnk p – Wp‖
] ≤ lim inf

k→∞
‖ynk – p‖

≤ lim inf
k→∞

[
βnk ‖Sxnk – p‖ + ‖xnk – p‖

]
.

Since βn →  as n → ∞, then

lim inf
k→∞

‖xnk – p‖ < lim inf
k→∞

‖xnk – Wp‖ ≤ lim inf
k→∞

‖xnk – p‖,

which is absurd. Then p ∈ F .
On the other hand,

xn+ – xn = αn(Bnxn – xn) + ( – αn)(Wnyn – xn)

= –αnμnDxn + ( – αn)(Wnyn – yn) + ( – αn)(yn – xn)

= –αnμnDxn + ( – αn)(Wnyn – yn) + ( – αn)βn(Sxn – xn),

so that we define

vn :=
xn – xn+

( – αn)βn
= (I – S)xn +


βn

(I – Wn)yn +
αnμn

( – αn)βn
Dxn. (.)

As a rule vn := xn–xn+
(–αn)βn

is also a null sequence as n → ∞.
Now we prove that ωw(xn) = ωs(xn), i.e., every weak limit is a strong limit too. We only

need to prove that ωw(xn) ⊂ ωs(xn).
Let us fix z ∈ ωw(xn), then z ∈ F , and by (.) it results

〈vn, xn – z〉 =
〈
(I – S)xn, xn – z

〉
+


βn

〈
(I – Wn)yn, xn – z

〉
+

αnμn

( – αn)βn
〈Dxn, xn – z〉

=
〈
(I – S)xn – (I – S)z, xn – z

〉
+

〈
(I – S)z, xn – z

〉

+

βn

〈
(I – Wn)yn, xn – yn

〉
+


βn

〈
(I – Wn)yn, yn – z

〉

+
αnμn

( – αn)βn
〈Dxn – Dz, xn – z〉 +

αnμn

( – αn)βn
〈Dz, xn – z〉.

Since the operator (I – Wn) is monotone for all n ∈N, we obtain that

〈vn, xn – z〉 ≥ 〈
(I – S)z, xn – z

〉
+


βn

〈
(I – Wn)yn, xn – yn

〉

+

βn

〈
(I – Wn)yn – (I – Wn)z, yn – z

〉
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+
αnμn

( – αn)βn
〈Dz, xn – z〉 +

αnμnσ

( – αn)βn
‖xn – z‖

≥ 〈
(I – S)z, xn – z

〉
+

〈
(I – Wn)yn, xn – Sxn

〉

+
αnμnσ

( – αn)βn
‖xn – z‖ +

αnμn

( – αn)βn
〈Dz, xn – z〉,

and so we can write

‖xn – z‖ ≤ ( – αn)βn

αnμnσ

[〈vn, xn – z〉 –
〈
(I – S)z, xn – z

〉
–

〈
(I – Wn)yn, xn – Sxn

〉]

–

σ

〈Dz, xn – z〉.

Let us note that

‖yn – Wnyn‖ ≤ ‖yn – xn‖ + ‖xn – xn+‖ + ‖xn+ – Wnyn‖
≤ βn‖Sxn – xn‖ + ‖xn – xn+‖ + αn‖Bnxn – Wnyn‖
≤ (

βn + ‖xn – xn+‖ + αn
)
O().

So, by the hypotheses, ‖yn – Wnyn‖ →  as n → ∞. So if (xnk )k is such that xnk → z as
k → ∞, it follows that

‖xnk – z‖ ≤ ( – αnk )βnk

αnk μnk σ

[〈vnk , xnk – z〉 –
〈
(I – S)z, xnk – z

〉
–

〈
(I – Wnk )ynk , xnk – Sxnk

〉]

–

σ

〈Dz, xnk – z〉.

Since vn →  and (I – Wn)yn →  as n → ∞, then every weak cluster point of (xn)n∈N (that
lies in F) is also a strong cluster point.

We prove that ωw = ωs(xn) is a singleton. By the boundedness of (xn)n∈N, let (xnk )k∈N be a
subsequence of (xn)n∈N converging (weakly and strongly) to x′. For all z ∈ F , again by (.)

〈Dxnk , xnk – z〉 =
( – αnk )βnk

αnk μnk

〈vnk , xnk – z〉 –
( – αnk )βnk

αnk μnk

〈
(I – S)xnk , xnk – z

〉

–
( – αnk )
αnk μnk

〈
(I – Wnk )ynk , xnk – z

〉

(by monotonicity) ≤ ( – αnk )βnk

αnk μnk

〈vnk , xnk – z〉 –
( – αnk )βnk

αnk μnk

〈
(I – S)z, xnk – z

〉

–
( – αnk )βnk

αnk μnk

〈
(I – Wnk )ynk , xnk – ynk

〉

≤ ( – αnk )βnk

αnk μnk

〈vnk , xnk – z〉 –
( – αnk )βnk

αnk μnk

〈
(I – S)z, xnk – z

〉

–
( – αnk )βnk

αnk μnk

〈
(I – Wnk )ynk , xnk – Sxnk

〉
.

Passing to limit as k → ∞, we obtain

〈
Dx′, x′ – z

〉 ≤ –τ
〈
(I – S)z, x′ – z

〉 ∀z ∈ Fix(T),
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that is, (.) holds. Thus, since (.) cannot have more than one solution, it follows that
ωw(xn) = ωs(xn) = {x̃} and this, of course, ensures that xn → x̃ as n → ∞.

Now we investigate the case

τ := lim
n→∞

βn

αnμn
= +∞.

Proof of . Let z ∈ F ∩ Fix(S). Then

‖xn+ – z‖ ≤ αn‖Bnxn – Bnz‖ + αn‖Bnz – z‖ + ( – αn)‖Wnyn – z‖
≤ αn( – μnρ)‖xn – z‖ + αnμn‖Dz‖ + ( – αn)βn‖Sxn – z‖

+ ( – αn)( – βn)‖xn – z‖
≤ αn( – μnρ)‖xn – z‖ + αnμn‖Dz‖ + ( – αn)‖xn – z‖
≤ ( – μnαnρ)‖xn – z‖ + αnμn‖Dz‖.

So, by an inductive process, one can see that

‖xn – z‖ ≤ r.

By (.) in Proof of , we have

‖xn+ – xn‖ ≤ ( – μnαnρ)‖xn – xn–‖ + ‖Wnyn– – Wn–yn–‖
+

(
αn|μn – μn–| + |αn – αn–| + |βn – βn–|

)
O(). (.)

Let us observe that by (H) we have

lim
n→∞

αn|μn – μn–| + |αn – αn–| + |βn – βn–|
αnμn

= ,

and (H) guarantees that

lim
n→∞

‖Wnyn– – Wn–yn–‖
αnμn

= .

Then, calling sn = ‖xn – xn–‖, an = μnαnρ and bn = ‖Wnyn– – Wn–yn–‖ + (αn|μn – μn–| +
|αn – αn–| + |βn – βn–|)O(), we can write (.) as

sn+ ≤ ( – an)sn + bn,

and (H), (H) and (H) are enough to apply Xu’s Lemma . in [] and to assure that
(xn)n∈N is asymptotically regular.

For every v ∈ Fix(S) ∩ F , it results that

‖xn+ – v‖ ≤ αn‖Bnxn – v‖ + ‖yn – v‖

≤ αn‖Bnxn – v‖ + βn‖Sxn – v‖
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+ ( – βn)‖xn – v‖ – βn( – βn)‖Sxn – xn‖

≤ αn‖Bnxn – v‖ + ‖xn – v‖ – βn( – βn)‖Sxn – xn‖. (.)

So, by the boundedness we get

βn( – βn)‖Sxn – xn‖ ≤ αn‖Bnxn – v‖ + ‖xn – v‖ – ‖xn+ – v‖

≤ (
αn + ‖xn – xn+‖

)
O(). (.)

Then ‖Sxn – xn‖ →  as n → ∞ and, by the demiclosedness principle, the weak cluster
points of (xn)n∈N are fixed points of S, i.e., ωw(xn) ⊂ Fix(S). Let us show that there are more
ωw(xn) ⊂ F . If not, let p ∈ ωw(xn) and p /∈ F . By the Opial property of a Hilbert space, we
have

lim inf
k→∞

‖xnk – p‖ < lim inf
k→∞

‖xnk – Wp‖

≤ lim inf
k→∞

[‖xnk – xnk +‖ + ‖xnk + – Wnk ynk ‖

+ ‖Wnk ynk – Wnk p‖ + ‖Wnk p – Wp‖
]

≤ lim inf
k→∞

[‖xnk – xnk +‖ + αnk ‖Bnk xnk – Wnk ynk ‖

+ ‖ynk – p‖ + ‖Wnk p – Wp‖
] ≤ lim inf

k→∞
‖ynk – p‖

≤ lim inf
k→∞

[
βnk ‖Sxnk – p‖ + ( – βnk )‖xnk – p‖

]

= lim inf
k→∞

‖xnk – p‖,

which is absurd, so p ∈ F . To conclude, if z is the unique solution of VIP (.), then

‖xn+ – z‖ =
∥
∥αn

(
Bn(xn) – Bnz

)
+ αn(Bnz – z) + ( – αn)(Wnyn – z)

∥
∥

≤ ∥
∥αn(Bnxn – Bnz) + ( – αn)(Wnyn – z)

∥
∥

+ αnμn〈–Dz, xn+ – z〉
≤ αn( – μnρ)‖xn – z‖ + ( – αn)‖yn – z‖

+ αnμn〈–Dz, xn+ – z〉
= ( – αnμnρ)‖xn – z‖ + αnμn〈–Dz, xn+ – z〉.

Since every weak cluster point of (xn)n∈N lies in F ∩ Fix(S), then for an opportune subse-
quence (xnk ) ⇀ p

lim sup
n→∞

〈–Dz, xn+ – z〉 = lim
k→∞

〈–Dz, xnk – z〉 = 〈–Dz, p – z〉 ≤ .

Thus, calling sn := ‖xn – z‖, an = αnμnρ and bn = αnμn〈–Dz, xn+ – z〉, we can write

sn+ ≤ ( – an)sn + bn,

and by Xu’s Lemma . in [], xn → z as n → ∞. �



Hussain et al. Fixed Point Theory and Applications  (2015) 2015:17 Page 15 of 16

Table 1 Comparison of convergence rate of Halpern’s iteration and iteration (2.1)

n Halpern’s iteration Iteration (2.1)

0 2 2
1 –0.5 0
2 0.625 0.4375
3 –0.354166667 –0.105324074

100 0.080072898 0.041831478
200 0.056139484 0.029059296
300 0.04566033 0.0233554023
400 0.039450573 0.020290332
500 0.035228918 0.018089615
700 0.029710616 0.015223559

To us, applications of Theorem . are a well-known problem, and also we know that
there exist several iterative approaches to approximate the solutions. Nevertheless, our
iterative scheme summarizes a lot of them assuming very simple hypotheses on the nu-
merical sequences, and it can be applied to a wide class of mappings thanks to hypotheses
(h) and (h). However the reader could ask for a comparison of scheme (.) and the
well-known iterative approach cited here. We do not known the rate of convergence of
our method, but it is enough to see the numerical examples in [, ] to conclude that
it is not possible to compare two iterative schemes. However, for the sake of complete-
ness, we include a very simple case which shows that our scheme is faster than Halpern’s
scheme.

Example . Let H = R, u = , Wnx := –x (hence F = {}), Dx := x – , Sx := x – . Let
αn = 

n , μn =  and z = . Then Halpern’s iterative method

zn+ = αnu + ( – αn)Wnzn

becomes

zn+ =


n
–

(

 –


n

)

zn.

If βn = 
n , from our scheme (.) we obtain

xn+ =


n
–

(

 –


n

)(

xn –


n

)

.

Thus our iterative scheme is slightly faster as shown in Table  (see also []).
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