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Abstract
In this paper, we present a new iterative algorithm with errors to solve the problems
of finding zeros of the sum of finitely manym-accretive operators and finitely many
α-inversely strongly accretive operators in a real smooth and uniformly convex
Banach space. Strong convergence theorems are established, which extend the
corresponding works given by some authors. Moreover, the relationship among the
zero of the sum ofm-accretive operator and α-inversely strongly accretive operator,
the solution of one kind variational inequality, and the solution of the capillarity
equation is investigated.
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1 Introduction and preliminaries
Let E be a real Banach space with norm ‖ · ‖ and let E∗ denote the dual space of E. We use
‘→’ and ‘⇀’ to denote strong and weak convergence either in E or in E∗, respectively. We
denote the value of f ∈ E∗ at x ∈ E by 〈x, f 〉.

A Banach space E is said to be uniformly convex if, for each ε ∈ (, ], there exists δ > 
such that

‖x‖ = ‖y‖ = , ‖x – y‖ ≥ ε ⇒
∥
∥
∥
∥

x + y


∥
∥
∥
∥

≤  – δ.

A Banach space E is said to be smooth if

lim
t→

‖x + ty‖ – ‖x‖
t

exists for each x, y ∈ {z ∈ E : ‖z‖ = }.
In addition, we define a function ρE : [, +∞) → [, +∞) called the modulus of smooth-

ness of E as follows:

ρE(t) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x, y ∈ E,‖x‖ = ,‖y‖ ≤ t

}

.
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It is well known that E is uniformly smooth if and only if ρE(t)
t → , as t → . Let q > 

be a real number. A Banach space E is said to be q-uniformly smooth if there exists a
positive constant C such that ρE(t) ≤ Ctq. It is obvious that q-uniformly smooth Banach
space must be uniformly smooth.

The normalized duality mapping J : E → E∗ is defined by

Jx :=
{

f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}, x ∈ E.

It is well known that J is single-valued and norm-to-norm uniformly continuous on each
bounded subsets of E if E is a real smooth and uniformly convex Banach space; see [].
Moreover, J(cx) = cJx, for all x ∈ E and c ∈ R. In what follows, we still denote by J the
single-valued normalized duality mapping. If, E is reduced to the Hilbert space H , then
J ≡ I is the identity mapping. The normalized duality mapping J is said to be weakly se-
quentially continuous if {xn} is a sequence in E which converges weakly to x it follows that
{Jxn} converges in weak∗ to Jx. J is said to be weakly sequentially continuous at zero if {xn}
is a sequence in E which converges weakly to  it follows that {Jxn} converges in weak∗

to .
Let C be a nonempty, closed, and convex subset of E and let Q be a mapping of E onto C.

Then Q is said to be sunny [] if Q(Q(x) + t(x – Q(x))) = Q(x), for all x ∈ E and t ≥ .
A mapping Q of E into E is said to be a retraction [] if Q = Q. If a mapping Q is a

retraction, then Q(z) = z for every z ∈ R(Q), where R(Q) is the range of Q.
For a mapping U : C → C, we use Fix(U) to denote the fixed point set of it; that is,

Fix(U) := {x ∈ C : Ux = x}.
For an operator A : D(A) ⊂ E → E , we use A– to denote the set of zeros of it; that is,

A– := {x ∈ D(A) : Ax = }.
Let T : C → E be a mapping. Then T is said to be
() nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, for ∀x, y ∈ C;

() k-Lipschitz if there exists k >  such that

‖Tx – Ty‖ ≤ k‖x – y‖, for ∀x, y ∈ C.

In particular, if  < k < , then T is called a contraction and if k = , then T reduces
to a nonexpansive mapping;

() accretive if for all x, y ∈ C, there exists j(x – y) ∈ J(x – y) such that

〈

Tx – Ty, j(x – y)
〉 ≥ ,

where J is the normalized duality mapping;
() α-inversely strongly accretive if for all x, y ∈ C, there exists j(x – y) ∈ J(x – y) such

that

〈

Tx – Ty, j(x – y)
〉 ≥ α‖Tx – Ty‖,

for some α > ;
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() m-accretive if T is accretive and R(I + λT) = E, for ∀λ > ;
() strongly positive (see []) if E is a real smooth Banach space and there exists γ > 

such that

〈Tx, Jx〉 ≥ γ ‖x‖, for ∀x ∈ C.

In this case,

‖aI – bT‖ = sup
‖x‖≤

∣
∣
〈

(aI – bT)x, J(x)
〉∣
∣,

where I is the identity mapping and a ∈ [, ], b ∈ [–, ].
We denote by JA

r (for r > ) the resolvent of the accretive operator A; that is, JA
r := (I +

rA)–. It is well known that JA
r is nonexpansive and Fix(JA

r ) = A–.
A subset C of E is said to be a sunny nonexpansive retract of E if there exists a sunny

nonexpansive retraction of E onto C.
Many practical problems can be reduced to finding zeros of the sum of two accretive op-

erators; that is,  ∈ (A + B)x. Forward-backward splitting algorithms, which have recently
received much attention to many mathematicians, were proposed by Lions and Mercier
[], by Passty [], and, in a dual form for convex programming, by Han and Lou [].

The classical forward-backward splitting algorithm is given in the following way:

xn+ = (I + rnB)–(I – rnA)xn, n ≥ . ()

Based on iterative algorithm (), much work has been done for finding x ∈ H such that
x ∈ (A + B)–, where A and B are α-inversely strongly accretive operator and m-accretive
operator defined in the Hilbert space H , respectively. However, most of the existing work
are undertaken in the frame of Hilbert spaces; see [–], etc.

Recently, Qin et al., presented the following iterative algorithm in the frame of q-uni-
formly smooth Banach spaces E in []:

x ∈ C, xn+ = αnf (xn) + βn(I + rnB)–[(I – rnA)xn + en
]

+ γnfn, n ≥ , ()

where {en} is the error sequence, f is a contraction, A and B are α-inversely strongly accre-
tive operator and m-accretive operator, respectively. If (A+B)– �= ∅, they proved that {xn}
converges strongly to x = Q(A+B)–f (x), where Q(A+B)– is the unique sunny nonexpansive
retraction of E onto (A + B)–, under some conditions.

On the other hand, there are some excellent work done on approximating fixed points of
nonexpansive mappings. For example, in , Yao et al. presented the following iterative
algorithm in the frame of Hilbert space in []:

⎧

⎪⎪⎨

⎪⎪⎩

x ∈ C,

yn = PC[( – αn)xn],

xn+ = ( – βn)xn + βnTyn, n ≥ ,

()

where PC is the metric projection from H onto C and T : C → C is a nonexpansive map-
ping with Fix(T) �= ∅. They proved that {xn} constructed by () converges strongly to a
fixed point of T .



Wei and Duan Fixed Point Theory and Applications  (2015) 2015:25 Page 4 of 19

In , Marino and Xu, presented the following iterative algorithm in the frame of
Hilbert spaces in []:

x ∈ C, xn+ = αnγ f (xn) + (I – αnA)Txn, n ≥ , ()

where f is a contraction, A is a strongly positive linear bounded operator, and T is nonex-
pansive. If Fix(T) �= ∅, they proved that {xn} converges strongly to p ∈ Fix(T), which solves
the variational inequality 〈(γ f – A)p, z – p〉 ≤ , for ∀z ∈ Fix(T), under some conditions.

Our paper is organized in the following way: in Section , inspired by the work in [–
], we shall present the following iterative algorithm with errors in a real smooth and
uniformly convex Banach space:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x ∈ C,

yn = QC[( – αn)(xn + en)],

zn = ( – βn)xn + βn[ayn +
∑N

i= aiJ
Ai
rn,i (yn – rn,iBiyn)],

xn+ = γnηf (xn) + (I – γnT)zn, n ≥ ,

(A)

where C is a nonempty, closed, and convex sunny nonexpansive retract of E, QC is the
sunny nonexpansive retraction of E onto C, {en} ⊂ E is the error sequence, {Ai}N

i= is a fi-
nite family of m-accretive operators and {Bi}N

i= is a finite family of α-inversely strongly
accretive operators. T : E → E is a strongly positive linear bounded operator with coef-
ficient γ and f : E → E is a contraction with coefficient k ∈ (, ). JAi

rn,i = (I + rn,iAi)–, for
i = , , . . . , N ,

∑N
m= am = ,  < am < , for m = , , , . . . , N . More detail of iterative al-

gorithm (A) will be presented in Section . Then {xn} is proved to converge strongly to
p ∈ ⋂N

i=(Ai + Bi)–, which is also a solution of one kind variational inequality.
Our main contributions in Section  are:

(i) the discussion is undertaken in the frame of real smooth and uniformly convex
Banach space, which is more general than that in Hilbert space or in q-uniformly
smooth Banach space;

(ii) the assumption that ‘the normalized duality mapping J is weakly sequentially
continuous’ in most of the existing related work is weaken to ‘J is weakly
sequentially continuous at zero’;

(iii) a new path convergence theorem (Lemma ) is obtained which is a direct extension
of the corresponding result in [] from Hilbert space to real smooth and uniformly
convex Banach space;

(iv) the connection between zeros of the sum of m-accretive operators and α-inversely
strongly accretive operators and the solution of one kind variational inequalities is
being set up.

In Section , one kind capillarity equation is discussed, from which we can see the con-
nection among the unique solution of this equation, the unique solution of one kind vari-
ational inequality and the iterative algorithm presented in Section .

Next, we list some results we need in sequel:

Lemma  (see []) Let E be a Banach space and f : E → E be a contraction. Then f has a
unique fixed point u ∈ E.
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Lemma  (see []) Let E be a real uniformly convex Banach space, C be a nonempty,
closed, and convex subset of E and T : C → E be a nonexpansive mapping such that
Fix(T) �= ∅, then I – T is demiclosed at zero.

Lemma  (see []) In a real Banach space E, the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈

y, j(x + y)
〉

, ∀x, y ∈ E,

where j(x + y) ∈ J(x + y).

Lemma  (see []) Let {an} and {cn} be two sequences of nonnegative real numbers satis-
fying

an+ ≤ ( – tn)an + bn + cn, ∀n ≥ ,

where {tn} ⊂ (, ) and {bn} is a number sequence. Assume that
∑∞

n= tn = +∞,
lim supn→∞

bn
tn

≤ , and
∑∞

n= cn < +∞. Then limn→∞ an = .

Lemma  (see []) Let E be a Banach space and let A be an m-accretive operator. For
λ > , μ > , and x ∈ E, one has

Jλx = Jμ
(

μ

λ
x +

(

 –
μ

λ

)

Jλx
)

,

where Jλ = (I + λA)– and Jμ = (I + μA)–.

Lemma  (see []) Let E be a real Banach space and let C be a nonempty, closed, and
convex subset of E. Suppose A : C → E is a single-valued operator and B : E → E is
m-accretive. Then

Fix
(

(I + rB)–(I – rA)
)

= (A + B)–, for ∀r > .

Lemma  (see []) Assume T is a strongly positive bounded operator with coefficient γ > 
on a real smooth Banach space E and  < ρ ≤ ‖T‖–. Then ‖I – ρT‖ ≤  – ργ .

2 Strong convergence theorems
Lemma  Let E be a real smooth and uniformly convex Banach space and C be a
nonempty, closed, and convex sunny nonexpansive retract of E, and let QC be the sunny
nonexpansive retraction of E onto C. Let f : E → E be a fixed contractive mapping with
coefficient k ∈ (, ), T : E → E be a strongly positive linear bounded operator with coef-
ficient γ and U : C → C be a nonexpansive mapping. Suppose that the duality mapping
J : E → E∗ is weakly sequentially continuous at zero,  < η < γ

k and Fix(U) �= ∅. If for each
t ∈ (, ), define Tt : E → E by

Ttx := tηf (x) + (I – tT)UQCx, ()

then Tt has a fixed point xt , for each  < t ≤ ‖T‖–, which is convergent strongly to the fixed
point of U , as t → . That is, limt→ xt = p ∈ Fix(U). Moreover, p satisfies the following
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variational inequality: for ∀z ∈ Fix(U),

〈

(T – ηf )p, J(p – z)
〉 ≤ . ()

Proof Step . Tt is a contraction, for  < t < ‖T‖–.
In fact, noticing Lemma , we have

‖Ttx – Tty‖ ≤ tη
∥
∥f (x) – f (y)

∥
∥ +

∥
∥(I – tT)(UQCx – UQCy)

∥
∥

≤ ktη‖x – y‖ + ( – tγ )‖x – y‖
=

[

 – t(γ – kη)
]‖x – y‖,

which implies that Tt is a contraction since  < η < γ

k .
Then Lemma  implies that Tt has a unique fixed point, denoted by xt , which uniquely

solves the fixed point equation xt = tηf (xt) + (I – tT)UQCxt .
Step . {xt} is bounded, for t ∈ (,‖T‖–).
For p ∈ Fix(U) ⊂ C, we have p = UQCp, then

‖xt – p‖ =
∥
∥(I – tT)(UQCxt – p) + t

(

ηf (xt) – Tp
)∥
∥

≤ ( – tγ )‖xt – p‖ + t
∥
∥ηf (xt) – Tp

∥
∥

= ( – tγ )‖xt – p‖ + t
∥
∥η

(

f (xt) – f (p)
)

+
(

ηf (p) – Tp
)∥
∥

≤ ( – tγ )‖xt – p‖ + t
(

kη‖xt – p‖ +
∥
∥ηf (p) – Tp

∥
∥
)

=
[

 – t(γ – kη)
]‖xt – p‖ + t

∥
∥ηf (p) – Tp

∥
∥.

This ensures that

‖xt – p‖ ≤ ‖ηf (p) – Tp‖
γ – kη

.

Thus {xt} is bounded, which implies that both {f (xt)} and {TUQCxt} are bounded.
Step . xt – UQCxt → , as t → .
Noticing the result of Step , we have ‖xt –UQCxt‖ = t‖ηf (xt)–TUQCxt‖ → , as t → .
Step . 〈(T – ηf )x – (T – ηf )y, J(x – y)〉 ≥ (γ – kη)‖x – y‖, for ∀x, y ∈ E.
In fact,

〈

(T – ηf )x – (T – ηf )y, J(x – y)
〉

=
〈

Tx – Ty, J(x – y)
〉

– η
〈

f (x) – f (y), J(x – y)
〉

≥ γ ‖x – y‖ – kη‖x – y‖ = (γ – kη)‖x – y‖.

Step . If the variational inequality () has a solution, then the solution must be unique.
Suppose both u ∈ Fix(U) and v ∈ Fix(U) are the solutions of the variational inequality

(). Then we have

〈

(T – ηf )v, J(v – u)
〉 ≤  ()
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and

〈

(T – ηf )u, J(u – v)
〉 ≤ . ()

Adding up () and (), we obtain

〈

(T – ηf )u – (T – ηf )v, J(u – v)
〉 ≤ .

In view of the result of Step , we have u = v.
Step . xt → p ∈ Fix(U), as t → , which satisfies the variational inequality ().
For ∀z ∈ Fix(U), xt – z = t(ηf (xt) – Tz) + (I – tT)(UQCxt – z). Thus Lemma  implies that

‖xt – z‖ ≤ ‖I – tT‖‖UQCxt – UQCz‖ + t
〈

ηf (xt) – Tz, J(xt – z)
〉

≤ ( – tγ )‖xt – z‖ + t
〈

ηf (xt) – Tz, J(xt – z)
〉

.

Then

‖xt – z‖ ≤ 
γ

〈

ηf (xt) – Tz, J(xt – z)
〉

=

γ

[

η
〈

f (xt) – f (z), J(xt – z)
〉

+
〈

ηf (z) – T(z), J(xt – z)
〉]

≤ 
γ

[

ηk‖xt – z‖ +
〈

ηf (z) – Tz, J(xt – z)
〉]

.

Therefore, for ∀z ∈ Fix(U), we have

‖xt – z‖ ≤ 
γ – kη

〈

ηf (z) – Tz, J(xt – z)
〉

. ()

Since {xt} is bounded as t → +, we can choose {tn} ⊂ (, ) such that tn → + and
xtn ⇀ p. From Lemma  and the result of Step , we see that p = UQCp = Up. Thus
p ∈ Fix(U). Substituting z by p in (), then we can deduce that xtn → p since J is weakly
sequentially continuous at zero. Next, we shall prove that p solves the variational inequal-
ity ().

Since xt = tηf (xt) + (I – tT)UQCxt ,

(T – ηf )xt = –

t

(I – tT)(I – UQC)xt .

For ∀z ∈ Fix(U), since U is nonexpansive,

〈

(T – ηf )xt , J(xt – z)
〉

= –

t
〈

(I – tT)(I – UQC)xt , J(xt – z)
〉

= –

t
〈

(I – UQC)xt – (I – UQC)z, J(xt – z)
〉

+
〈

T(I – UQC)xt , J(xt – z)
〉

= –

t
[‖xt – z‖ –

〈

UQCxt – UQCz, J(xt – z)
〉]

+
〈

T(I – UQC)xt , J(xt – z)
〉

≤ 〈

T(I – UQC)xt , J(xt – z)
〉

. ()
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Since xtn → p, we have (I – UQC)xtn → (I – UQC)p = , as n → ∞. Since {xtn} is
bounded, (T – ηf )xtn → (T – ηf )p and J is uniformly continuous on each bounded sub-
set of E, taking the limits on both sides of () we have 〈(T – ηf )p, J(p – z)〉 ≤ , for
z ∈ Fix(U). Thus p satisfies ().

In a summary, we infer that each cluster point of {xt} is equal to p, which is the unique
solution of the variational inequality ().

This completes the proof. �

Remark  Lemma  is a direct extension of Theorem . in [] from Hilbert space to
real smooth and uniformly convex Banach space.

Theorem  Let E be a real smooth and uniformly convex Banach space and C be a
nonempty, closed, and convex sunny nonexpansive retract of E, and let QC be the sunny
nonexpansive retraction of E onto C. Let f : E → E be a fixed contractive mapping with
coefficient k ∈ (, ), T : E → E be a strongly positive linear bounded operator with coeffi-
cient γ . Suppose that the duality mapping J : E → E∗ is weakly sequentially continuous at
zero, and  < η < γ

k . Let Ai : C → E be m-accretive operator and Bi : C → E be α-inversely
strongly accretive operator, where i = , , . . . , N . Suppose that, for ∀r >  and i = , , . . . , N ,

〈

Bix – Biy, J
[

(I – rBi)x – (I – rBi)y
]〉 ≥ .

Let {xn} be generated by the iterative algorithm (A),  < am < , for m = , , , . . . , N ,
∑N

m= am = . Suppose {en}∞n= ⊂ E, {αn}, {βn}, and {γn} are three sequences in (, ) and
{rn,i} ⊂ (, +∞) satisfying the following conditions:

(i)
∑∞

n= γn = ∞, γn → , γn–
γn

→ , βn → , αn → , as n → ∞;
(ii)

∑∞
n= |αn+ – αn| < +∞,

∑∞
n= |βn+ – βn| < +∞,

∑∞
n=( – γnγ )αnβn < +∞;

(iii)
∑∞

n= |rn+,i – rn,i| < +∞ and rn,i ≥ ε > , for n ≥  and i = , , . . . , N ;
(iv)

∑∞
n= ‖en‖ < +∞.

If
⋂N

i=(Ai + Bi)– �= ∅, then {xn} converges strongly to a point p ∈ ⋂N
i=(Ai + Bi)–, which

is the unique solution of the following variational inequality: for ∀z ∈ ⋂N
i=(Ai + Bi)–,

〈

(T – ηf )p, J(p – z)
〉 ≤ . (∗)

Proof Let un,i = (I – rn,iBi)yn, vn = ayn +
∑N

i= aiJ
Ai
rn,i un,i, for n ≥ , where i = , , . . . , N .

We shall split the proof into five steps:
Step . {xn}, {un,i} (i = , , . . . , N ), {yn}, {vn}, and {zn} are all bounded.
From the assumptions on Bi, in view of Lemma , we have, for ∀x, y ∈ C,

∥
∥(I – rBi)x – (I – rBi)y

∥
∥

 ≤ ‖x – y‖ – r
〈

Bix – Biy, J
[

(I – rBi)x – (I – rBi)y
]〉

≤ ‖x – y‖,

which implies that (I – rBi) is nonexpansive, for r > .
Then noticing the facts that both (I – rn,iBi) and JAi

rn,i are nonexpansive, for i = , , . . . , N ,
we have, for ∀p ∈ ⋂N

i=(Ai + Bi)– ⊂ C,

‖yn – p‖ ≤ ( – αn)‖xn – p‖ + ‖en‖ + αn‖en + p‖. ()
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Using Lemma , we have, for p ∈ ⋂N
i=(Ai + Bi)–,

‖zn – p‖ ≤ ( – βn)‖xn – p‖ + βn

(

a‖yn – p‖ +
N

∑

i=

ai
∥
∥JAi

rn,i
(I – rn,iBi)(yn – p)

∥
∥

)

≤ ( – βn)‖xn – p‖ + βna‖yn – p‖ + βn

N
∑

i=

ai‖yn – p‖

= ( – βn)‖xn – p‖ + βn‖yn – p‖. ()

Then Lemma  implies that for n ≥ ,

‖xn+ – p‖ ≤ γn
∥
∥ηf (xn) – Tp

∥
∥ +

∥
∥(I – γnT)(zn – p)

∥
∥

≤ γnηk‖xn – p‖ + γn
∥
∥ηf (p) – Tp

∥
∥ + ( – γnγ )‖zn – p‖. ()

Noticing ()-(), we have, for n ≥ ,

‖xn+ – p‖
≤ γnηk‖xn – p‖ + γn

∥
∥ηf (p) – Tp

∥
∥

+ ( – γnγ )
[

( – βn)‖xn – p‖ + βn‖yn – p‖]

≤ [

γnηk + ( – γnγ )( – βn) + ( – γnγ )( – αn)βn
]‖xn – p‖ + γn

∥
∥ηf (p) – Tp

∥
∥

+ ( – γnγ )βn‖en‖ + ( – γnγ )βnαn‖en + p‖
=

[

 – αnβn( – γnγ ) – γn(γ – kη)
]‖xn – p‖ + γn

∥
∥ηf (p) – Tp

∥
∥

+ ( – γnγ )βn‖en‖ + ( – γnγ )αnβn‖en + p‖
≤ [

 – γn(γ – kη)
]‖xn – p‖ + γn

∥
∥ηf (p) – Tp

∥
∥ + ‖en‖ + ( – γnγ )αnβn‖p‖

≤ max

{

‖xn – p‖,
‖ηf (p) – Tp‖

γ – kη

}

+ ‖en‖ + ( – γnγ )αnβn‖p‖. ()

By using the inductive method, we can easily get the following result from ():

‖xn+ – p‖ ≤ max

{

‖x – p‖,
‖ηf (p) – Tp‖

γ – kη

}

+ 
n

∑

k=

‖ek‖ + ‖p‖
n

∑

k=

( – γkγ )αkβk .

Therefore, from assumptions (ii) and (iv), we know that {xn} is bounded.
For ∀p ∈ ⋂N

i=(Ai + Bi)–, since ‖yn – p‖ ≤ ‖( – αn)(xn + en) – p‖ ≤ ‖xn‖ + ‖en‖ + ‖p‖,
{yn} is bounded, which implies that {un,i} is bounded in view of the fact that I – rn,iBi is
nonexpansive, for each i = , , . . . , N .

Moreover, {JAi
rn,i (I –rn,iBi)yn} is bounded since JAi

rn,i is nonexpansive, for i = , , . . . , N . Thus
{vn} is bounded, which ensures that {zn} is bounded. Since rn,i ≥ ε > , Biyn = yn–un,i

rn,i
is

bounded, for n ≥  and i = , , . . . , N .
Set M = sup{‖un,i‖,‖JAi

rn,i un,i‖,‖Biyn‖,‖xn‖,‖vn‖,‖zn‖,‖Tzn‖,η‖f (xn)‖ : n ≥ , i = , ,
. . . , N}.

Step . limn→∞ ‖xn+ – xn‖ = .



Wei and Duan Fixed Point Theory and Applications  (2015) 2015:25 Page 10 of 19

First, we shall discuss ‖JAi
rn,i un,i – JAi

rn–,i un–,i‖, for n ≥ .
If rn–,i ≤ rn,i, then by using Lemma , we have

∥
∥JAi

rn,i
un,i – JAi

rn–,i
un–,i

∥
∥

=
∥
∥
∥
∥

JAi
rn–,i

(
rn–,i

rn,i
un,i +

(

 –
rn–,i

rn,i

)

JAi
rn,i

un,i

)

– JAi
rn–,i

un–,i

∥
∥
∥
∥

≤
∥
∥
∥
∥

rn–,i

rn,i
un,i +

(

 –
rn–,i

rn,i

)

JAi
rn,i

un,i – un–,i

∥
∥
∥
∥

≤ rn–,i

rn,i
‖un,i – un–,i‖ +

(

 –
rn–,i

rn,i

)
∥
∥JAi

rn,i
un,i – un–,i

∥
∥

≤ ‖un,i – un–,i‖ +
rn,i – rn–,i

ε

∥
∥JAi

rn,i
un,i – un–,i

∥
∥. ()

If rn,i ≤ rn–,i, then imitating the proof of (), we have

∥
∥JAi

rn,i
un,i – JAi

rn–,i
un–,i

∥
∥ ≤ ‖un,i – un–,i‖ +

rn–,i – rn,i

ε

∥
∥JAi

rn,i
un,i – un–,i

∥
∥. ()

Combining () and (), we have, for n ≥ ,

∥
∥JAi

rn,i
un,i – JAi

rn–,i
un–,i

∥
∥

≤ ‖un,i – un–,i‖ +
|rn–,i – rn,i|

ε

∥
∥JAi

rn,i
un,i – un–,i

∥
∥

≤ ‖un,i – un–,i‖ +
|rn–,i – rn,i|

ε
M

≤ ∥
∥(I – rn,iBi)(yn – yn–)

∥
∥ + |rn,i – rn–,i|‖Biyn–‖ +

|rn–,i – rn,i|
ε

M

≤ ‖yn – yn–‖ + |rn,i – rn–,i|‖Biyn–‖ +
|rn–,i – rn,i|

ε
M. ()

Let M = ( 
ε

+ )M, and using (), we have, for n ≥ ,

‖vn – vn–‖ ≤ a‖yn – yn–‖ +
N

∑

i=

ai
∥
∥JAi

rn,i
un,i – JAi

rn–,i
un–,i

∥
∥

≤ ‖yn – yn–‖ + M

N
∑

i=

ai|rn,i – rn–,i|. ()

Using (), we have, for n ≥ ,

‖zn – zn–‖ ≤ ( – βn)‖xn – xn–‖ + |βn – βn–|‖xn–‖
+ βn‖vn – vn–‖ + |βn – βn–|‖vn–‖

≤ ( – βn)‖xn – xn–‖ + |βn – βn–|‖xn–‖ + βn‖yn – yn–‖

+ βnM

N
∑

i=

ai|rn,i – rn–,i| + |βn – βn–|‖vn–‖. ()
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Noticing that for n ≥ ,

‖yn – yn–‖ ≤ ( – αn)‖xn – xn–‖ + |αn – αn–|‖xn–‖
+ ( – αn)‖en – en–‖ + |αn – αn–|‖en–‖. ()

Using () and (), we have, for n ≥ ,

‖xn+ – xn‖
≤ γnη

∥
∥f (xn) – f (xn–)

∥
∥ + η|γn – γn–|

∥
∥f (xn–)

∥
∥ + ‖I – γnT‖‖zn – zn–‖

+ |γn – γn–|‖Tzn–‖
≤ γnηk‖xn – xn–‖ + η|γn – γn–|

∥
∥f (xn–)

∥
∥ + ( – γnγ )‖zn – zn–‖

+ |γn – γn–|‖Tzn–‖
≤ [

( – γnγ )( – αnβn) + γnηk
]‖xn – xn–‖ + M|γn – γn–|

+ M( – γnγ )|βn – βn–| + ( – γnγ )Mβn

N
∑

i=

ai|rn,i – rn–,i|

+ ( – γnγ )βn|αn – αn–|
(

M + ‖en–‖
)

+ ( – γnγ )βn( – αn)‖en – en–‖
≤ [

 – γn(γ – ηk)
]‖xn – xn–‖ + M|γn – γn–|

+ M( – γnγ )|βn – βn–| + ( – γnγ )Mβn

N
∑

i=

ai|rn,i – rn–,i|

+ ( – γnγ )βn|αn – αn–|
(

M + ‖en–‖
)

+ ( – γnγ )βn( – αn)‖en – en–‖. ()

From the assumptions on {αn}, {βn}, {γn}, {rn,i}, and {en}, in view of (), and Lemma ,
we have limn→∞ ‖xn+ – xn‖ = .

Step . Set Wn = [aI +
∑N

i= aiJ
Ai
rn,i (I – rn,iBi)], then Wn : C → C is nonexpansive and

Fix(Wn) =
⋂N

i=(Ai + Bi)–.
It is obvious that Wn is nonexpansive and

⋂N
i=(Ai + Bi)– ⊂ Fix(Wn). So we are left to

show that Fix(Wn) ⊂ ⋂N
i=(Ai + Bi)–.

In fact, if p ∈ Fix(Wn), then Wnp = p. For ∀q ∈ ⋂N
i=(Ai + Bi)– ⊂ Fix(Wn), we have

‖p – q‖ ≤ a‖p – q‖ + a
∥
∥JA

rn, (I – rn,B)p – q
∥
∥ + · · · + aN

∥
∥JAN

rn,N
(I – rn,N BN )p – q

∥
∥

≤ (a + a + · · · + aN–)‖p – q‖ + aN
∥
∥JAN

rn,N
(I – rn,N BN )p – q

∥
∥

= ( – aN )‖p – q‖ + aN
∥
∥JAN

rn,N
(I – rn,N BN )p – q

∥
∥

≤ ‖p – q‖.

Therefore, ‖p – q‖ = ( – aN )‖p – q‖ + aN‖JAN
rn,N (I – rn,N BN )p – q‖, which implies that ‖p –

q‖ = ‖JAN
rn,N (I – rn,N BN )p – q‖. Similarly, ‖p – q‖ = ‖JA

rn, (I – rn,B)p – q‖ = · · · = ‖JAN–
rn,N– (I –

rn,N–BN–)p – q‖.
Then ‖p – q‖ = ‖ a

∑N
i= ai

(JA
rn, (I – rn,B)p – q) + a

∑N
i= ai

(JA
rn, (I – rn,B)p – q) + · · · +

aN
∑N

i= ai
(JAN

rn,N (I – rn,N BN )p – q)‖, which implies from the strictly convexity of E that p – q =

JA
rn, (I – rn,B)p – q = JA

rn, (I – rn,B)p – q = · · · = JAN
rn,N (I – rn,N BN )p – q.
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Therefore, JAi
rn,i (I – rn,iBi)p = p, for i = , , . . . , N . Then p ∈ ⋂N

i=(Ai + Bi)–. Thus
Fix(Wn) ⊂ ⋂N

i=(Ai + Bi)–.
Step . Wnyn – yn → , as n → ∞, where Wn is the same as that in Step .
In fact, since both {xn} and {Wnyn} are bounded and βn → , as n → +∞,

zn – Wnyn = ( – βn)(xn – Wnyn) → , as n → +∞.

Since both {f (xn)} and {Tzn} are bounded and γn → , as n → +∞,

xn+ – zn = γn
[

ηf (xn) – Tzn
] → , as n → +∞.

Therefore

xn – Wnyn = (xn – xn+) + (xn+ – zn) + (zn – Wnyn) → ,

as n → +∞, in view of the fact of Step .
Since

∑∞
n= en < +∞ and αn → , as n → ∞,

‖Wnyn – yn‖ =
∥
∥QCWnyn – QC

[

( – αn)(xn + en)
]∥
∥

≤ ‖Wnyn – xn‖ + αn‖xn‖ + ( – αn)‖en‖ → , as n → ∞.

Moreover, xn+ – yn → , as n → ∞.
Step . lim supn→+∞〈ηf (p) – Tp, J(xn+ – p)〉 ≤ , where p ∈ ⋂N

i=(Ai + Bi)–, which
is the unique solution of the variational inequality (∗).

Noticing the result of Step  and using Lemma , we know that there exists zt such that
zt = tηf (zt)+(I – tT)WnQCzt for t ∈ (, ). Moreover, zt → p ∈ Fix(Wn) =

⋂N
i=(Ai +Bi)–,

as t → . And, p is the unique solution of the variational inequality (∗).
Since ‖zt‖ ≤ ‖zt – p‖ + ‖p‖, then {zt} is bounded, as t → . Using Lemma , we have

‖zt – yn‖ = ‖zt – Wnyn + Wnyn – yn‖

≤ ‖zt – Wnyn‖ + 
〈

Wnyn – yn, J(zt – yn)
〉

=
∥
∥tηf (zt) + (I – tT)WnQCzt – Wnyn

∥
∥

 + 
〈

Wnyn – yn, J(zt – yn)
〉

≤ ‖WnQCzt – Wnyn‖ + t
〈

ηf (zt) – TWnQCzt , J(zt – Wnyn)
〉

+ 
〈

Wnyn – yn, J(zt – yn)
〉

≤ ‖zt – yn‖ + t
〈

ηf (zt) – TWnQCzt , J(zt – Wnyn)
〉

+ ‖Wnyn – yn‖‖zt – yn‖,

which implies that

t
〈

TWnQCzt – ηf (zt), J(zt – Wnyn)
〉 ≤ ‖Wnyn – yn‖‖zt – yn‖.

So, limt→ lim supn→+∞〈TWnQCzt – ηf (zt), J(zt – Wnyn)〉 ≤  in view of Step .
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Since zt → p, WnQCzt → WnQCp = p, as t →  in view of Step . Noticing the fact
that

〈

Tp – ηf (p), J(p – Wnyn)
〉

=
〈

Tp – ηf (p), J(p – Wnyn) – J(zt – Wnyn)
〉

+
〈

Tp – ηf (p), J(zt – Wnyn)
〉

=
〈

Tp – ηf (p), J(p – Wnyn) – J(zt – Wnyn)
〉

+
〈

Tp – ηf (p) – TWnQCzt + ηf (zt), J(zt – Wnyn)
〉

+
〈

TWnQCzt – ηf (zt), J(zt – Wnyn)
〉

,

we have lim supn→+∞〈Tp – ηf (p), J(p – Wnyn)〉 ≤ .
Since 〈Tp – ηf (p), J(p – xn+)〉 = 〈Tp – ηf (p), J(p – xn+) – J(p – Wnyn)〉 + 〈Tp –

ηf (p), J(p –Wnyn)〉 and xn+ –Wnyn → , then lim supn→∞〈ηf (p)–Tp, J(xn+ –p)〉 ≤ .
Step . xn → p, as n → +∞, where p ∈ ⋂N

i=(Ai + Bi)– ⊂ C is the same as that in
Step .

Let M = sup{‖( – αn)(xn + en) – p‖ : n ≥ }. By using Lemma  again, we have

‖yn – p‖ ≤ ( – αn)‖xn – p‖ + 
〈

( – αn)en – αnp, J
[

( – αn)(xn + en) – p
]〉

. ()

Using () and the result of Step , we have

‖zn – p‖ ≤ ( – βn)‖xn – p‖ + βn‖Wnyn – Wnp‖

≤ ( – βn)‖xn – p‖ + βn‖yn – p‖

≤ ( – αnβn)‖xn – p‖

+ βn
〈

( – αn)en – αnp, J
[

( – αn)(xn + en) – p
]〉

. ()

Using () and Lemma , we have, for n ≥ ,

‖xn+ – p‖

=
∥
∥γn

(

ηf (xn) – Tp
)

+ (I – γnT)(zn – p)
∥
∥



≤ ( – γnγ )‖zn – p‖ + γn
〈

ηf (xn) – Tp, J(xn+ – p)
〉

≤ ( – γnγ )( – αnβn)‖xn – p‖ + γnη
〈

f (xn) – f (p), J(xn+ – p) – J(xn – p)
〉

+ γnη
〈

f (xn) – f (p), J(xn – p)
〉

+ γn
〈

ηf (p) – Tp, J(xn+ – p)
〉

+ ( – γnγ )βn( – αn)
〈

en, J
[

( – αn)(xn + en) – p
]〉

– αnβn( – γnγ )〈p, J
[

( – αn)(xn + en) – p
]〉

≤ [

 – γn(γ – ηk)
]‖xn – p‖ + M

[‖en‖ + αnβn( – γnγ )‖p‖
]

+ γn
[


〈

ηf (p) – Tp, J(xn+ – p)
〉

+ η‖xn – p‖‖xn+ – xn‖
]

. ()

Let δ
()
n = γn(γ – ηk), δ

()
n = γn[〈ηf (p) – Tp, J(xn+ – p)〉 + η‖xn – p‖‖xn+ – xn‖],

δ
()
n = M[‖en‖ + αnβn( – γnγ )‖p‖]. Then () can be simplified as ‖xn+ – p‖ ≤ ( –

δ
()
n )‖xn – p‖ + δ

()
n + δ

()
n .
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Using the assumptions (ii) and (iv), the results of Steps , , and  and by using Lemma ,
we know that xn → p, as n → +∞.

This completes the proof. �

Remark  The assumption that ‘the α-inversely strongly accretive operator Bi : C → E
satisfies for ∀r >  and i = , , . . . , N , 〈Bix – Biy, J[(I – rBi)x – (I – rBi)y]〉 ≥ ’ is valid, and
we can find an example in Section  (Remark ).

Lemma  (see []) Let E be a real q-uniformly smooth Banach space with constant Kq

and C be a nonempty, closed, and convex subset of E. Let A : C → E be an α-inversely
strongly accretive operator. Then for ∀r ≤ ( qα

Kq
)


q– , (I – rA) is nonexpansive.

Corollary  Let E be a real q-uniformly smooth Banach space with constant Kq and also
be a uniformly convex Banach space. Let C, QC , f , k, η, T , J , Ai, am (m = , , , . . . , N ), γ ,
{en}, {αn}, {βn}, {γn}, and {rn,i} satisfy the same conditions as those in Theorem . Let Bi :
C → E be α-inversely strongly accretive operator, where i = , , . . . , N . Let {xn} be generated
by the iterative algorithm (A). Suppose further that

(v) rn,i ≤ ( qα

Kq
)


q– , for n ≥  and i = , , . . . , N .

If
⋂N

i=(Ai + Bi)– �= ∅, then {xn} converges strongly to a point p ∈ ⋂N
i=(Ai + Bi)–, which

is the unique solution of the variational inequality (∗).

Proof Lemma  ensures that (I –rn,iBi) is nonexpansive, for n ≥  and i = , , . . . , N . Then
copy the proof of Theorem , the result follows.

This completes the proof. �

Corollary  If i ≡ , then iterative algorithm (A) becomes the following one:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x ∈ E,

yn = QC[( – αn)(xn + en)], n ≥ ,

zn = ( – βn)xn + βn[ayn + ( – a)JA
rn (yn – rnByn)], n ≥ ,

xn+ = γnηf (xn) + (I – γnT)zn, n ≥ .

(B)

Let E, C, QC , f , k, η, T , J , γ , {en}, {αn}, {βn}, and {γn} satisfy the same conditions as
those in Theorem . Let A : C → E be m-accretive operator and B : C → E be α-inversely
strongly accretive operator satisfying that

〈

Bx – By, J
[

(I – rB)x – (I – rB)y
]〉 ≥ , for ∀r > ,∀x, y ∈ C.

Suppose that  < a < , {rn} ⊂ (, +∞) such that
∑∞

n= |rn+ – rn| < +∞ and rn ≥ ε >  for
n ≥ .

If (A + B)– �= ∅, then {xn} generated by the iterative algorithm (B) converges strongly
to p ∈ (A + B)–, which is the unique solution of the following variational inequality: for
∀z ∈ (A + B)–,

〈

(T – ηf )p, J(p – z)
〉 ≤ . (∗∗)
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Corollary  If Bi ≡ , then iterative algorithm (A) becomes the following one for approx-
imating common zeros of finitely many m-accretive operators:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x ∈ E,

yn = QC[( – αn)(xn + en)], n ≥ ,

zn = ( – βn)xn + βn(ayn +
∑N

i= aiJ
Ai
rn,i yn), n ≥ ,

xn+ = γnηf (xn) + (I – γnT)zn, n ≥ .

(C)

Let E, C, QC , f , k, η, T , J , γ , am (m = , , . . . , N ), {en}, {αn}, {βn}, and {γn}, {rn,i} satisfy
the same conditions as those in Theorem . Let Ai : C → E be m-accretive operator, i =
, , . . . , N .

If
⋂N

i= A–
i  �= ∅, then {xn} generated by (C) converges strongly to a point p ∈ ⋂N

i= A–
i ,

which is the unique solution of the following variational inequality: for ∀z ∈ ⋂N
i= A–

i ,

〈

(T – ηf )p, J(p – z)
〉 ≤ . (∗∗∗)

Corollary  If Ai ≡ , then iterative algorithm (A) becomes to the following one for ap-
proximating common zeros of finitely many α-inversely strongly accretive operators:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x ∈ E,

yn = QC[( – αn)(xn + en)], n ≥ ,

zn = ( – βn)xn + βn[ayn +
∑N

i= ai(yn – rn,iBiyn)], n ≥ ,

xn+ = γnηf (xn) + (I – γnT)zn, n ≥ .

(D)

Let E, C, QC , f , k, η, T , J , γ , am (m = , , . . . , N ), {en}, {αn}, {βn}, and {γn}, {rn,i} satisfy the
same conditions as those in Theorem . Let Bi : C → E be an α-inversely strongly accretive
operator satisfying for ∀r >  and i = , , . . . , N ,

〈

Bix – Biy, J
[

(I – rBi)x – (I – rBi)y
]〉 ≥ .

If
⋂N

i= B–
i  �= ∅, then {xn} generated by (D) converges strongly to a point p ∈ ⋂N

i= B–
i ,

which is the unique solution of the following variational inequality: for ∀z ∈ ⋂N
i= B–

i ,

〈

(T – ηf )p, J(p – z)
〉 ≤ . (∗∗∗∗)

3 Connection with nonlinear capillarity equation
Remark  In the next of this paper, we have four purposes: () give a new example to
show that the assumption that ‘the set of zeros of the sum of an m-accretive operator
and an α-inversely strongly monotone operator is nonempty’ is valid; that is, (A + B)– �=
∅ is meaningful; () set up the relation between the solution of the capillarity equation
and the zero of the sum of an m-accretive operator and an α-inversely strongly accretive
operator; () apply the iterative algorithm studied in Section  to approximate the solution
of the capillarity equation; () set up the relationship between the solution of the capillarity
equation and the solution of one kind variational inequality.
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Remark  In the following, assume N
N+ < p < +∞,  ≤ q, r < +∞ if p ≥ N , and  ≤ q, r ≤

Np
N–p if p < N , where N ≥ . ‖ · ‖p denotes the norm in Lp(�). Let 

p + 
p′ = .

We shall examine the following capillarity equation, which is a special case in []:

⎧

⎪⎨

⎪⎩

– div[( + |∇u|p√
+|∇u|p

)|∇u|p–∇u] + λ(|u|q–u + |u|r–u) + u(x) = , a.e. in �,

–〈ϑ , ( + |∇u|p√
+|∇u|p

)|∇u|p–∇u〉 = , a.e. on ,
(E)

where � is a bounded conical domain of a Euclidean space RN with its boundary  ∈ C

(cf. []). | · | denotes the Euclidean norm in RN , 〈·, ·〉 the Euclidean inner-product and ϑ

the exterior normal derivative of . λ is a nonnegative constant.

Theorem  (see []) The capillarity equation (E) has a unique solution u(x) ∈ Lp(�).

Lemma  (see []) Define the mapping Bp,q,r : W ,p(�) → (W ,p(�))∗ by

〈v, Bp,q,ru〉 =
∫

�

〈(

 +
|∇u|p

√

 + |∇u|p

)

|∇u|p–∇u,∇v
〉

dx

+ λ

∫

�

∣
∣u(x)

∣
∣
q–u(x)v(x) dx

+ λ

∫

�

∣
∣u(x)

∣
∣
r–u(x)v(x) dx,

for any u, v ∈ W ,p(�). Then Bp,q,r is everywhere defined, strictly monotone, hemi-contin-
uous and coercive.

Lemma  (see []) Define a mapping A : Lp(�) → Lp(�) as follows:

D(A) =
{

u ∈ Lp(�)|there exists an f ∈ Lp(�), such that f ∈ Bp,q,ru
}

.

For u ∈ D(A), let Au = {f ∈ Lp(�)|f ∈ Bp,q,ru}.
Then A : Lp(�) → Lp(�) is m-accretive.

Lemma  Define a mapping C : Lp(�) → Lp(�) by Cu = u(x), for ∀u(x) ∈ Lp(�).
Then C is -inversely strongly accretive.

Proof Let Jp : Lp(�) → Lp′ (�) denote the normalized duality mapping. Then it is easy to
check that Jpu = |u|p– sgn u‖u‖–p

p , ∀u ∈ Lp(�).
Thus for ∀u(x), v(x) ∈ Lp(�), 〈Cu – Cv, Jp(u – v)〉 =

∫

�
|u – v|p‖u – v‖–p

p dx = ‖u – v‖
p,

which implies that C is -inversely strongly accretive.
This completes the proof. �

Theorem  u(x) ∈ Lp(�) is the unique solution of (E) if and only if u(x) ∈ (A + C)–.

Proof If u(x) is the solution of (E), then

– div

[(

 +
|∇u|p

√

 + |∇u|p

)

|∇u|p–∇u
]

+ λ
(|u|q–u + |u|r–u

)

+ u(x) = , a.e. in �.
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Thus for ∀ϕ ∈ C∞
 (�), by using the property of generalized functions, we have

 =
〈

ϕ, – div

[(

 +
|∇u|p

√

 + |∇u|p

)

|∇u|p–∇u
]

+ λ
(|u|q–u + |u|r–u

)

+ u(x)
〉

=
∫

�

– div

[(

 +
|∇u|p

√

 + |∇u|p

)

|∇u|p–∇u
]

ϕ dx

+
∫

�

[

λ
(|u|q–u + |u|r–u

)

+ u(x)
]

ϕ dx

=
∫

�

〈(

 +
|∇u|p

√

 + |∇u|p

)

|∇u|p–∇u,∇ϕ

〉

dx

+
∫

�

[

λ
(|u|q–u + |u|r–u

)

+ u(x)
]

ϕ dx

= 〈ϕ, Bp,q,ru + Cu〉 = 〈ϕ, Au + Cu〉.

Then u(x) ∈ (A + C)–.
On the other hand, if u(x) ∈ (A + C)–, then for ∀ϕ ∈ C∞

 (�),

 = 〈ϕ, Au + Cu〉 = 〈ϕ, Bp,q,ru + Cu〉

=
∫

�

〈(

 +
|∇u|p

√

 + |∇u|p

)

|∇u|p–∇u,∇ϕ

〉

dx

+ λ

∫

�

(|u|q–u + |u|r–u
)

ϕ dx +
∫

�

u(x)ϕ dx

=
〈

ϕ, – div

[(

 +
|∇u|p

√

 + |∇u|p

)

|∇u|p–∇u
]

+ λ
(|u|q–u + |u|r–u

)

+ u(x)
〉

.

Then – div[(+ |∇u|p√
+|∇u|p

)|∇u|p–∇u]+λ(|u|q–u+ |u|r–u)+u(x) = , a.e. x ∈ �. By using

the Green’s formula, we know that for any v ∈ W ,p(�),

∫



〈

ϑ ,
(

 +
|∇u|p

√

 + |∇u|p

)

|∇u|p–∇u
〉

v| d(x)

=
∫

�

div

[(

 +
|∇u|p

√

 + |∇u|p

)

|∇u|p–∇u
]

v dx

+
∫

�

〈(

 +
|∇u|p

√

 + |∇u|p

)

|∇u|p–∇u,∇v
〉

dx

=
∫

�

[

λ
(|u|q–u + |u|r–u

)

+ u(x)
]

dx + 〈v, Bp,q,ru〉

–
∫

�

λ
(|u|q–u + |u|r–u

)

dx

= 〈v, Au + Cu〉 = .

Thus –〈ϑ , ( + |∇u|p√
+|∇u|p

)|∇u|p–∇u〉 = , a.e. on .
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Then u(x) ∈ (A + C)– implies that u(x) is the solution of (E).
This completes the proof. �

Theorem  Suppose A and C are the same as those in Lemmas  and , respectively.
Let T : Lp(�) → Lp(�) be any strongly positive linear bounded operator with coefficient γ

and f : Lp(�) → Lp(�) be a contraction with coefficient k. Suppose the following conditions
are satisfied:

(i)  < η < γ

k , and  < a < ;
(ii) {en}∞n= ⊂ Lp(�),

∑∞
n= ‖en‖ < +∞;

(iii) {αn}, {βn}, and {γn} are three sequences in (, ). γn → , γn–
γn

→ , βn → , αn → ,
as n → ∞.

∑∞
n= γn = ∞,

∑∞
n= |αn+ – αn| < +∞,

∑∞
n= |βn+ – βn| < +∞,

∑∞
n=( – γnγ )αnβn < +∞;

(iv) {rn} ⊂ (, ) such that
∑∞

n= |rn+ – rn| < +∞, and  ≥ rn ≥ ε >  for n ≥ .
If we construct the following iterative algorithm:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(x) ∈ Lp(�),

vn(x) = ( – αn)(un(x) + en(x)),

wn(x) = ( – βn)un(x) + βn[avn(x) + ( – a)JA
rn (vn(x) – rnCvn(x))],

un+(x) = γnηf (un) + (I – γnT)wn(x), n ≥ ,

(F)

then un(x) converges strongly to u(x) ∈ (A + C)–, which is the unique solution of the capil-
larity equation (E) and satisfies the following variational inequality: for ∀z(x) ∈ (A + C)–,

〈

(T – ηf )u(x), Jp
(

u(x) – z
)〉 ≤ .

Remark  From Theorem  we can easily see the relationship among the solution of
the capillarity equation, the solution of a variational inequality, and the zero of sum of an
m-accretive operator and an α-inversely strongly accretive operator.

Remark  Let C be the -inversely strong accretive operator defined in Lemma , then
it is obvious that C satisfies

〈

Cx – Cy, Jp
[

(I – rC)x – (I – rC)y
]〉 ≥ , for  ≥ r > , x, y ∈ Lp(�).

Thus the assumption imposed on Bi in Theorem  is valid.
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