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1 Introduction and preliminaries
In , Rhoades [] introduced the concept of ϕ-weakly contractive mappings and proved
the following fixed point theorem, which is a generalization of the Banach fixed point
theorem.

Theorem . ([]) Let (X, d) be a complete metric space, and let T : X → X be a mapping
such that

d(Tx, Ty) ≤ d(x, y) – ϕ
(
d(x, y)

)
, ∀x, y ∈ X,

where ϕ : R+ →R
+ is continuous and nondecreasing, and ϕ(t) =  if and only if t = . Then

T has a unique fixed point.

Afterwards, the researchers [–] continued the study of Rhoades by introducing a few
ϕ- and (ψ ,ϕ)-weakly contractive conditions relative to one, two or three mappings and
discussed the existence of fixed and common fixed point for these mappings. In particu-
lar, Abbas and Dorić [], Abbas and Khan [], and Dutta and Choudhury [] proved the
following fixed and common fixed point theorems for the ϕ- and (ψ ,ϕ)-weakly contractive
mappings.

Theorem . ([]) Let (X, d) be a complete metric space, and let T : X → X be a mapping
satisfying the inequality

ψ
(
d(Tx, Ty)

) ≤ ψ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
, ∀x, y ∈ X,
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where ψ ,ϕ : R+ → R
+ are both continuous and monotone nondecreasing functions with

ψ(t) = ϕ(t) =  if and only if t = . Then T has a unique fixed point.

Theorem . ([]) Let T , S be two self mappings in a metric space (X, d) satisfying

ψ
(
d(Tx, Ty)

) ≤ ψ
(
d(Sx, Sy)

)
– ϕ

(
d(Sx, Sy)

)
, ∀x, y ∈ X,

where ψ ,ϕ : R+ → R
+ are both continuous and monotone nondecreasing functions with

ψ(t) = ϕ(t) =  if and only if t = . If range of S contains the range of T and S(X) is a
complete subspace of X, then T and S have a unique point of coincidence in X. Moreover,
if T and S are weakly compatible, then T and S have a unique common fixed point.

Theorem . ([]) Suppose that A, B, S, and T are selfmaps of a complete metric space
(X, d), T(X) ⊆ B(X), S(X) ⊆ A(X) and the pairs {A, T} and {B, S} are weakly compatible. If

ψ
(
d(Tx, Sy)

) ≤ ψ
(
M(x, y)

)
– ϕ

(
M(x, y)

)
, ∀x, y ∈ X,

where

M(x, y) = max

{
d(Ax, By), d(Ax, Tx), d(By, Sy),



[
d(Ax, Sy) + d(Tx, By)

]
}

, ∀x, y ∈ X,

ϕ : R+ → R
+ is lower semi-continuous, ϕ() = , ϕ(t) >  for all t > , ψ : R+ → R

+ is
continuous and nondecreasing with ψ(t) =  if and only if t = , then A, B, S and T have a
unique common fixed point in X provided one of the ranges of A(X), B(X), S(X) and T(X)
is closed.

Motivated by the results in [–], in this paper, we introduce the concepts of ψ- and
(ψ ,ϕ)-weakly contractive conditions relative to four mappings A, B, S and T :

d(Tx, Sy) ≤ ψ
(
Mi(x, y)

)
, ∀x, y ∈ X, (.)

ψ
(
d(Tx, Sy)

) ≤ ψ
(
Mi(x, y)

)
– ϕ

(
Mi(x, y)

)
, ∀x, y ∈ X, (.)

where i ∈ {, , }, ψ ∈ �, (ψ ,ϕ) ∈ � × �, respectively,

M(x, y) = max

{
d(Ax, By), d(Ax, Tx), d(By, Sy),



[
d(Ax, Sy) + d(Tx, By)

]
,

d(Ax, Sy)d(Tx, By)
 + d(Ax, By)

,

d(Ax, Tx)d(By, Sy)
 + d(Ax, By)

,
 + d(Ax, Sy) + d(Tx, By)
 + d(Ax, Tx) + d(By, Sy)

d(Ax, Tx)
}

, ∀x, y ∈ X, (.)

M(x, y) = max

{
d(Ax, By), d(Ax, Tx), d(By, Sy),



[
d(Ax, Sy) + d(Tx, By)

]
,

 + d(Ax, Tx)
 + d(Ax, By)

d(By, Sy),
 + d(By, Sy)
 + d(Ax, By)

d(Ax, Tx),

 + d(Ax, Sy) + d(Tx, By)
 + d(Ax, Tx) + d(By, Sy)

d(By, Sy)
}

, ∀x, y ∈ X (.)
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and

M(x, y) = max

{
d(Ax, By), d(Ax, Tx), d(By, Sy),



[
d(Ax, Sy) + d(Tx, By)

]
}

,

∀x, y ∈ X (.)

and establish sufficient conditions which ensure the existence and uniqueness of common
fixed points for the four mappings A, B, S and T satisfying ψ- and (ψ ,ϕ)-weakly contrac-
tive conditions, respectively, in metric spaces. Our results extend, improve and unify the
corresponding results in [–]. Four nontrivial examples are included.

Throughout this paper, N denotes the set of all positive integers, N = {} ∪ N, R+ =
[, +∞) and

� =
{
ψ : ψ : R+ →R

+ is continuous and nondecreasing,

and ψ(t) =  if and only if t = 
}

,

� =
{
ϕ : ϕ : R+ → R

+ is lower semi-continuous, and ϕ(t) =  if and only if t = 
}

,

� =
{
ψ : ψ : R+ →R

+ is upper semi-continuous,

and lim
n→∞ an =  for each sequence {an}n∈N ⊂R

+ with an+ ≤ ψ(an),∀n ∈N

}
.

Definition . ([]) A pair of self mappings f and g in a metric space (X, d) are said to be
weakly compatible if for all t ∈ X the equality ft = gt implies fgt = gft.

Lemma . ([]) Let ψ ∈ �. Then ψ() =  and ψ(t) < t for all t > .

Lemma . Let A, B, S and T be self mappings in a metric space (X, d) satisfying (.),
where (ψ ,ϕ) ∈ � × � and i ∈ {, , }. Assume that I : R+ → R

+ is the identity mapping
and

ψ(t) = (ψ + I)–(ψ + I – ϕ)(t), ∀t ∈R
+. (.)

Then ψ ∈ � and

d(Tx, Sy) ≤ ψ
(
Mi(x, y)

)
, ∀x, y ∈ X. (.)

Proof It follows from ψ ∈ � that ψ + I : R+ → R
+ is continuous and increasing and

(ψ + I)(t) =  if and only if t = . So does (ψ + I)–. Obviously, (ψ ,ϕ) ∈ � × � and (.)
guarantee

ψ is upper semi-continuous and ψ() = . (.)

Assume that {an}n∈N is an arbitrary sequence in R
+ with

an+ ≤ ψ(an), ∀n ∈ N. (.)

Suppose that an =  for some n ∈N. It follows from (.), (.) and (.) that

 ≤ an+ ≤ ψ(an ) = ψ() = ,
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that is, an+ = . Similarly we have an = an– = · · · = an =  for each n > n, that is,
limn→∞ an = . Suppose that an >  for all n ∈ N. If ak+ ≥ ak for some k ∈ N, it follows
from (.), (.) and (ψ ,ϕ) ∈ � × � that

ψ(ak) + ak ≤ ψ(ak+) + ak+ = (ψ + I)(ak+) ≤ (ψ + I)ψ(ak) = (ψ + I – ϕ)(ak)

= ψ(ak) + ak – ϕ(ak) < ψ(ak) + ak ,

which is a contradiction. Consequently, {an}n∈N is positive and decreasing, which implies
that {an}n∈N converges to some a ≥ . Suppose that a > . By means of (.) and (.), we
find

 < a = lim sup
n→∞

an+ ≤ lim sup
n→∞

ψ(an) ≤ ψ(a),

which together with (.) and (ψ ,ϕ) ∈ � × � means

ψ(a) + a ≤ ψ(a) + a – ϕ(a) < ψ(a) + a,

which is a contradiction. Hence a = . Consequently, ψ ∈ �.
In order to prove (.), we have to consider two possible cases as follows:
Case . Mi(x, y) =  for some x, y ∈ X. It is easy to verify

d(Ax, By) = d(Ax, Tx) = d(By, Sy) = ,

which yields

Tx = Ax = By = Sy,

and

d(Tx, Sy) =  = ψ
(
Mi(x, y)

)
;

Case . Mi(x, y) >  for all x, y ∈ X. It follows from (.), (.) and (ψ ,ϕ) ∈ � × � that

ψ
(
d(Tx, Sy)

) ≤ ψ
(
Mi(x, y)

)
– ϕ

(
Mi(x, y)

)
< ψ

(
Mi(x, y)

)
, ∀x, y ∈ X,

which yields

d(Tx, Sy) < Mi(x, y), ∀x, y ∈ X

and

(ψ + I)
(
d(Tx, Sy)

)
= ψ

(
d(Tx, Sy)

)
+ d(Tx, Sy) < ψ

(
Mi(x, y)

)
– ϕ

(
Mi(x, y)

)
+ Mi(x, y)

= (ψ + I – ϕ)
(
Mi(x, y)

)
, ∀x, y ∈ X,

which together with (.) gives (.). This completes the proof. �

Remark . It follows from Lemma . that the (ψ ,ϕ)-weakly contractive conditions (.)
relative to four mappings A, B, S and T implies the ψ-weakly contractive conditions (.)
relative to four mappings A, B, S and T .
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2 Common fixed point theorems
Our main results are as follows.

Theorem . Let A, B, S, and T be self mappings in a metric space (X, d) such that

{A, T} and {B, S} are weakly compatible; (.)

T(X) ⊆ B(X) and S(X) ⊆ A(X); (.)

one of A(X), B(X), S(X), and T(X) is complete; (.)

d(Tx, Sy) ≤ ψ
(
M(x, y)

)
, ∀x, y ∈ X, (.)

where ψ is in � and M is defined by (.). Then A, B, S, and T have a unique common
fixed point in X.

Proof Let x ∈ X. It follows from (.) that there exist two sequences {yn}n∈N and {xn}n∈N

in X such that

yn+ := Bxn+ = Txn, yn+ := Axn+ = Sxn+, ∀n ∈ N. (.)

Put dn = d(yn, yn+) for all n ∈N.
Now we prove

lim
n→∞ dn = . (.)

Using (.) and (.), we derive

dn = d(Txn, Sxn–) ≤ ψ
(
M(xn, xn–)

)
, ∀n ∈ N (.)

and

M(xn, xn–)

= max

{
d(Axn, Bxn–), d(Axn, Txn), d(Bxn–, Sxn–),



[
d(Axn, Sxn–) + d(Txn, Bxn–)

]
,

d(Axn, Sxn–)d(Txn, Bxn–)
 + d(Axn, Bxn–)

,
d(Axn, Txn)d(Bxn–, Sxn–)

 + d(Axn, Bxn–)
,

 + d(Axn, Sxn–) + d(Txn, Bxn–)
 + d(Axn, Txn) + d(Bxn–, Sxn–)

d(Axn, Txn)
}

= max

{
d(yn, yn–), d(yn, yn+), d(yn–, yn),



[
d(yn, yn) + d(yn+, yn–)

]
,

d(yn, yn)d(yn+, yn–)
 + d(yn, yn–)

,
d(yn, yn+)d(yn–, yn)

 + d(yn, yn–)
,

 + d(yn, yn) + d(yn+, yn–)
 + d(yn, yn+) + d(yn–, yn)

d(yn, yn+)
}
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= max

{
dn–, dn, dn–,




d(yn+, yn–), ,
dndn–

 + dn–
,

 + d(yn+, yn–)
 + dn + dn–

dn

}

= max{dn–, dn}, ∀n ∈N. (.)

Suppose that dn– < dn for some n ∈ N. It follows from (.), (.), ψ ∈ �, and
Lemma . that

dn ≤ ψ
(
M(xn , xn–)

)
= ψ

(
max{dn–, dn}

)
= ψ(dn ) < dn ,

which is a contradiction. Hence

dn ≤ dn– = M(xn, xn–), ∀n ∈N. (.)

Similarly we infer

dn+ ≤ dn = M(xn, xn+), ∀n ∈ N,

which together with (.) ensures

dn+ ≤ dn, ∀n ∈N,

which means that the sequence {dn}n∈N is nonincreasing and bounded. Consequently
there exists r ≥  with limn→∞ dn = r. Suppose that r > . It follows from (.), (.),
ψ ∈ �, and Lemma . that

r = lim sup
n→∞

dn ≤ lim sup
n→∞

ψ
(
M(xn, xn–)

)

= lim sup
n→∞

ψ(dn–) ≤ ψ(r) < r,

which is a contradiction. Hence r = , that is, (.) holds.
Next we prove that {yn}n∈N is a Cauchy sequence. Because of (.) it is sufficient to verify

that {yn}n∈N is a Cauchy sequence. Suppose that {yn}n∈N is not a Cauchy sequence. It
follows that there exist ε >  and two subsequences {ym(k)}k∈N and {yn(k)}k∈N of {yn}n∈N
such that

n(k) > m(k) > k, d(ym(k), yn(k)) ≥ ε, ∀k ∈N, (.)

where n(k) is the smallest index satisfying (.). It follows that

d(ym(k), yn(k)–) < ε, ∀k ∈N. (.)

Taking advantage of (.), (.), and the triangle inequality, we get

ε ≤ d(ym(k), yn(k))

≤ d(ym(k), yn(k)–) + d(yn(k)–, yn(k)–) + d(yn(k)–, yn(k))

< ε + dn(k)– + dn(k)–, ∀k ∈N (.)



Liu et al. Fixed Point Theory and Applications  (2015) 2015:20 Page 7 of 22

and

∣∣d(ym(k), yn(k)–) – d(ym(k), yn(k))
∣∣ ≤ dn(k)–, ∀k ∈N;

∣∣d(ym(k)+, yn(k)) – d(ym(k), yn(k))
∣∣ ≤ dm(k), ∀k ∈N; (.)

∣∣d(ym(k)+, yn(k)–) – d(ym(k), yn(k)–)
∣∣ ≤ dm(k), ∀k ∈N.

Letting k → ∞ in (.) and (.) and using (.), we deduce

lim
k→∞

d(ym(k), yn(k)) = lim
k→∞

d(ym(k), yn(k)–) = lim
k→∞

d(ym(k)+, yn(k))

= lim
k→∞

d(ym(k)+, yn(k)–) = ε. (.)

Note that (.) and (.) yield

M(xm(k), xn(k)–)

= max

{
d(Axm(k), Bxn(k)–), d(Axm(k), Txm(k)), d(Bxn(k)–, Sxn(k)–),



[
d(Axm(k), Sxn(k)–) + d(Txm(k), Bxn(k)–)

]
,

d(Axm(k), Sxn(k)–)d(Txm(k), Bxn(k)–)
 + d(Axm(k), Bxn(k)–)

,

d(Axm(k), Txm(k))d(Bxn(k)–, Sxn(k)–)
 + d(Axm(k), Bxn(k)–)

,

 + d(Axm(k), Sxn(k)–) + d(Txm(k), Bxn(k)–)
 + d(Axm(k), Txm(k)) + d(Bxn(k)–, Sxn(k)–)

d(Axm(k), Txm(k))
}

= max

{
d(ym(k), yn(k)–), d(ym(k), ym(k)+), d(yn(k)–, yn(k)),



[
d(ym(k), yn(k)) + d(ym(k)+, yn(k)–)

]
,

d(ym(k), yn(k))d(ym(k)+, yn(k)–)
 + d(ym(k), yn(k)–)

,
d(ym(k), ym(k)+)d(yn(k)–, yn(k))

 + d(ym(k), yn(k)–)
,

 + d(ym(k), yn(k)) + d(ym(k)+, yn(k)–)
 + d(ym(k), ym(k)+) + d(yn(k)–, yn(k))

d(ym(k), ym(k)+)
}

→ max

{
ε, , ,




(ε + ε),
ε

 + ε
, , 

}

= ε as k → ∞. (.)

In view of (.), (.), (.), ψ ∈ �, and Lemma ., we gain

ε = lim sup
k→∞

d(ym(k)+, yn(k)) = lim sup
k→∞

d(Txm(k), Sxn(k)–)

≤ lim sup
k→∞

ψ
(
M(xm(k), xn(k)–)

) ≤ ψ(ε) < ε,

which is a contradiction. Hence {yn}n∈N is a Cauchy sequence.
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Assume that A(X) is complete. Observe that {yn}n∈N is a Cauchy sequence in A(X).
Consequently there exists (z, v) ∈ A(X) × X with limn→∞ yn = z = Av. It is easy to see

z = lim
n→∞ yn = lim

n→∞ Txn = lim
n→∞ Bxn+ = lim

n→∞ Sxn– = lim
n→∞ Axn. (.)

Suppose that Tv �= z. Note that (.) and (.) imply

M(v, xn+)

= max

{
d(Av, Bxn+), d(Av, Tv), d(Bxn+, Sxn+),



[
d(Av, Sxn+) + d(Tv, Bxn+)

]
,

d(Av, Sxn+)d(Tv, Bxn+)
 + d(Av, Bxn+)

,
d(Av, Tv)d(Bxn+, Sxn+)

 + d(Av, Bxn+)
,

 + d(Av, Sxn+) + d(Tv, Bxn+)
 + d(Av, Tv) + d(Bxn+, Sxn+)

d(Av, Tv)
}

→ max

{
d(Av, z), d(Av, Tv), d(z, z),



[
d(Av, z) + d(Tv, z)

]
,

d(Av, z)d(Tv, z)
 + d(Av, z)

,
d(Av, Tv)d(z, z)

 + d(Av, z)
,

 + d(Av, z) + d(Tv, z)
 + d(Av, Tv) + d(z, z)

d(Av, Tv)
}

= max

{
, d(z, Tv), ,




d(Tv, z), , , d(z, Tv)
}

= d(Tv, z) as n → ∞,

which together with (.), ψ ∈ �, and Lemma . gives

d(Tv, z) = lim sup
n→∞

d(Tv, yn+) = lim sup
n→∞

d(Tv, Sxn+)

≤ lim sup
n→∞

ψ
(
M(v, xn+)

) ≤ ψ
(
d(Tv, z)

)
< d(Tv, z),

which is a contradiction. Hence Tv = z. It follows from (.) that there exists a point w ∈ X
with z = Bw = Tv. Suppose that Sw �= z. In light of (.) and (.), we deduce

M(xn, w)

= max

{
d(Axn, Bw), d(Axn, Txn), d(Bw, Sw),



[
d(Axn, Sw) + d(Txn, Bw)

]
,

d(Axn, Sw)d(Txn, Bw)
 + d(Axn, Bw)

,
d(Axn, Txn)d(Bw, Sw)

 + d(Axn, Bw)
,

 + d(Axn, Sw) + d(Txn, Bw)
 + d(Axn, Txn) + d(Bw, Sw)

d(Axn, Txn)
}

→ max

{
d(z, Bw), d(z, z), d(Bw, Sw),



[
d(z, Sw) + d(z, Bw)

]
,

d(z, Sw)d(z, Bw)
 + d(z, Bw)

,
d(z, z)d(Bw, Sw)

 + d(z, Bw)
,

 + d(z, Sw) + d(z, Bw)
 + d(z, z) + d(Bw, Sw)

d(z, z)
}
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= max

{
, , d(z, Sw),




d(z, Sw), , , 
}

= d(z, Sw) as n → ∞,

which together with (.), ψ ∈ �, and Lemma . yields

d(z, Sw) = lim sup
n→∞

d(yn+, Sw) = lim sup
n→∞

d(Txn, Sw)

≤ lim sup
n→∞

ψ
(
M(xn, w)

) ≤ ψ
(
d(z, Sw)

)
< (d(z, Sw),

which is impossible, and hence Sw = z. Thus (.) means Az = ATv = TAv = Tz and Bz =
BSw = SBw = Sz. Suppose that Tz �= Sz. It follows from (.), (.), ψ ∈ �, and Lemma .
that

M(z, z)

= max

{
d(Az, Bz), d(Az, Tz), d(Bz, Sz),



[
d(Az, Sz) + d(Tz, Bz)

]
,

d(Az, Sz)d(Tz, Bz)
 + d(Az, Bz)

,
d(Az, Tz)d(Bz, Sz)

 + d(Az, Bz)
,

 + d(Az, Sz) + d(Tz, Bz)
 + d(Az, Tz) + d(Bz, Sz)

d(Az, Tz)
}

= max

{
d(Tz, Sz), , ,



[
d(Tz, Sz) + d(Tz, Sz)

]
,

d(Tz, Sz)
 + d(Tz, Sz)

, , 
}

= d(Tz, Sz)

and

d(Tz, Sz) ≤ ψ
(
M(z, z)

)
= ψ

(
d(Tz, Sz)

)
< d(Tz, Sz),

which is a contradiction, and hence Tz = Sz.
Suppose that Tz �= z. It follows from (.) that

M(z, w)

= max

{
d(Az, Bw), d(Az, Tz), d(Bw, Sw),



[
d(Az, Sw) + d(Tz, Bw)

]
,

d(Az, Sw)d(Tz, Bw)
 + d(Az, Bw)

,
d(Az, Tz)d(Bw, Sw)

 + d(Az, Bw)
,

 + d(Az, Sw) + d(Tz, Bw)
 + d(Az, Tz) + d(Bw, Sw)

d(Az, Tz)
}

= max

{
d(Tz, z), , ,



[
d(Tz, z) + d(Tz, z)

]
,

d(Tz, z)
 + d(Tz, z)

, , 
}

= d(Tz, z),
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which together with (.), ψ ∈ �, and Lemma . implies

d(Tz, z) = d(Tz, Sw) ≤ ψ
(
M(z, w)

)
= ψ

(
d(Tz, z)

)
< d(Tz, z),

which is impossible and hence Tz = z, that is, z is a common fixed point of A, B, S, and T .
Suppose that A, B, S, and T have another common fixed point u ∈ X \ {z}. It follows

from (.), (.), ψ ∈ �, and Lemma . that

M(u, z)

= max

{
d(Au, Bz), d(Au, Tu), d(Bz, Sz),



[
d(Au, Sz) + d(Tu, Bz)

]
,

d(Au, Sz)d(Tu, Bz)
 + d(Au, Bz)

,
d(Au, Tu)d(Bz, Sz)

 + d(Au, Bz)
,

 + d(Au, Sz) + d(Tu, Bz)
 + d(Au, Tu) + d(Bz, Sz)

d(Au, Tu)
}

= max

{
d(u, z), , ,



[
d(u, z) + d(u, z)

]
,

d(u, z)
 + d(u, z)

, , 
}

= d(u, z)

and

d(u, z) = d(Tu, Sz) ≤ ψ
(
M(u, z)

)
= ψ

(
d(u, z)

)
< d(u, z),

which is a contradiction and hence z is a unique common fixed point of A, B, S, and T
in X.

Similarly we conclude that A, B, S, and T have a unique common fixed point in X if one
of B(X), S(X), and T(X) is complete. This completes the proof. �

Theorem . Let A, B, S, and T be self mappings in a metric space (X, d) satisfying (.)-
(.) and

d(Tx, Sy) ≤ ψ
(
M(x, y)

)
, ∀x, y ∈ X, (.)

where ψ is in � and M is defined by (.). Then A, B, S, and T have a unique common
fixed point in X.

Proof Let x ∈ X. It follows from (.) that there exist two sequences {yn}n∈N and {xn}n∈N

in X satisfying (.). Put dn = d(yn, yn+) for all n ∈N.
Now we prove that (.) holds. In view of (.) and (.), we deduce

dn = d(Txn, Sxn–) ≤ ψ
(
M(xn, xn–)

)
, ∀n ∈N (.)

and

M(xn, xn–)

= max

{
d(Axn, Bxn–), d(Axn, Txn), d(Bxn–, Sxn–),



Liu et al. Fixed Point Theory and Applications  (2015) 2015:20 Page 11 of 22



[
d(Axn, Sxn–) + d(Txn, Bxn–

]
,

 + d(Axn, Txn)
 + d(Axn, Bxn–)

d(Bxn–, Sxn–),
 + d(Bxn–, Sxn–)
 + d(Axn, Bxn–)

d(Axn, Txn),

 + d(Axn, Sxn–) + d(Txn, Bxn–)
 + d(Axn, Txn) + d(Bxn–, Sxn–)

d(Bxn–, Sxn–)
}

= max

{
d(yn, yn–), d(yn, yn+), d(yn–, yn),



[
d(yn, yn) + d(yn+, yn–)

]
,

 + d(yn, yn+)
 + d(yn, yn–)

d(yn–, yn),

 + d(yn–, yn)
 + d(yn, yn–)

d(yn, yn+),
 + d(yn, yn) + d(yn+, yn–)
 + d(yn, yn+) + d(yn–, yn)

d(yn–, yn)
}

= max

{
dn–, dn, dn–,




d(yn+, yn–),
 + dn

 + dn–
dn–, dn,

 + d(yn+, yn–)
 + dn + dn–

dn–

}

= max

{
dn–, dn,

 + dn

 + dn–
dn–

}
, ∀n ∈N.

Suppose that dn– < dn for some n ∈N. It follows that

dn ( + dn–) = dn + dn dn– > dn– + dn dn– = dn–( + dn ),

that is,

dn >
 + dn

 + dn–
dn–,

which implies M(xn , xn–) = dn . By means of (.), ψ ∈ �, and Lemma ., we con-
clude

dn ≤ ψ
(
M(xn , xn–)

)
= ψ(dn ) < dn ,

which is a contradiction. Consequently, we deduce

dn ≤ dn– = M(xn, xn–), ∀n ∈N. (.)

Similarly we have

dn+ ≤ dn = M(xn, xn+), ∀n ∈N. (.)

It follows from (.) and (.) that

dn+ ≤ dn, ∀n ∈N,

which means that the sequence {dn}n∈N is nonincreasing and bounded. Consequently
there exists r ≥  with limn→∞ dn = r. Suppose that r > . It follows from (.), (.),
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ψ ∈ �, and Lemma . that

r = lim sup
n→∞

dn ≤ lim sup
n→∞

ψ
(
M(xn, xn–)

)

= lim sup
n→∞

ψ(dn–) ≤ ψ(r) < r,

which is a contradiction. Hence r = , that is, (.) holds.
In order to prove that {yn}n∈N is a Cauchy sequence, we need only to show that {yn}n∈N

is a Cauchy sequence. Suppose that {yn}n∈N is not a Cauchy sequence. It follows that there
exist ε >  and two subsequences {ym(k)}k∈N and {yn(k)}k∈N of {yn}n∈N satisfying (.)-
(.) and

M(xm(k), xn(k)–)

= max

{
d(Axm(k), Bxn(k)–), d(Axm(k), Txm(k)), d(Bxn(k)–, Sxn(k)–),



[
d(Axm(k), Sxn(k)–) + d(Txm(k), Bxn(k)–)

]
,

 + d(Axm(k), Txm(k))
 + d(Axm(k), Bxn(k)–)

d(Bxn(k)–, Sxn(k)–),

 + d(Bxn(k)–, Sxn(k)–)
 + d(Axm(k), Bxn(k)–)

d(Axm(k), Txm(k)),

 + d(Axm(k), Sxn(k)–) + d(Txm(k), Bxn(k)–)
 + d(Axm(k), Txm(k)) + d(Bxn(k)–, Sxn(k)–)

d(Bxn(k)–, Sxn(k)–)
}

= max

{
d(ym(k), yn(k)–), d(ym(k), ym(k)+), d(yn(k)–, yn(k)),



[
d(ym(k), yn(k)) + d(ym(k)+, yn(k)–)

]
,

 + d(ym(k), ym(k)+)
 + d(ym(k), yn(k)–)

d(yn(k)–, yn(k)),

 + d(yn(k)–, yn(k))
 + d(ym(k), yn(k)–)

d(ym(k), ym(k)+),

 + d(ym(k), yn(k)) + d(ym(k)+, yn(k)–)
 + d(ym(k), ym(k)+) + d(yn(k)–, yn(k))

d(yn(k)–, yn(k))
}

→ max

{
ε, , ,




(ε + ε), , , 
}

= ε as k → ∞. (.)

By virtue of (.), (.), (.), ψ ∈ �, and Lemma ., we infer

ε = lim sup
k→∞

d(ym(k)+, yn(k)) = lim sup
k→∞

d(Txm(k), Sxn(k)–)

≤ lim sup
k→∞

ψ
(
M(xm(k), xn(k)–)

) ≤ ψ(ε) < ε,

which is impossible. Hence {yn}n∈N is a Cauchy sequence.
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Assume that A(X) is complete. Observe that {yn}n∈N ⊆ A(X) is a Cauchy sequence. It
follows that there exists (z, v) ∈ A(X) × X with limn→∞ yn = z = Av. It is easy to show that
(.) holds.

Suppose that Tv �= z. Note that (.), (.), (.), and ψ ∈ � imply

M(v, xn+)

= max

{
d(Av, Bxn+), d(Av, Tv), d(Bxn+, Sxn+),



[
d(Av, Sxn+) + d(Tv, Bxn+)

]
,

 + d(Av, Tv)
 + d(Av, Bxn+)

d(Bxn+, Sxn+),
 + d(Bxn+, Sxn+)

 + d(Av, Bxn+)
d(Av, Tv),

 + d(Av, Sxn+) + d(Tv, Bxn+)
 + d(Av, Tv) + d(Bxn+, Sxn+)

d(Bxn+, Sxn+)
}

→ max

{
d(Av, z), d(Av, Tv), d(z, z),



[
d(Av, z) + d(Tv, z)

]
,

 + d(Av, Tv)
 + d(Av, z)

d(z, z),
 + d(z, z)

 + d(Av, z)
d(Av, Tv),

 + d(Av, z) + d(Tv, z)
 + d(Av, Tv) + d(z, z)

d(z, z)
}

= max

{
, d(z, Tv), ,




d(Tv, z), , d(z, Tv), 
}

= d(Tv, z) as n → ∞,

which together with (.), ψ ∈ �, and Lemma . gives

d(Tv, z) = lim sup
n→∞

d(Tv, yn+) = lim sup
n→∞

d(Tv, Sxn+)

≤ lim sup
n→∞

ψ
(
M(v, xn+)

) ≤ ψ
(
d(Tv, z)

)
< d(Tv, z),

which is a contradiction. Hence Tv = z.
Since T(X) ⊆ B(X), it follows that there exists a point w ∈ X such that z = Bw = Tv.

Suppose that Sw �= z. In light of (.) and (.), we obtain

M(xn, w)

= max

{
d(Axn, Bw), d(Axn, Txn), d(Bw, Sw),



[
d(Axn, Sw) + d(Txn, Bw)

]
,

 + d(Axn, Txn)
 + d(Axn, Bw)

d(Bw, Sw),
 + d(Bw, Sw)

 + d(Axn, Bw)
d(Axn, Txn),

 + d(Axn, Sw) + d(Txn, Bw)
 + d(Axn, Txn) + d(Bw, Sw)

d(Bw, Sw)
}

→ max

{
d(z, z), d(z, z), d(z, Sw),



[
d(z, Sw) + d(z, Bw)

]
,

 + d(z, z)
 + d(z, z)

d(z, Sw),
 + d(z, Sw)
 + d(z, z)

d(z, z),

 + d(z, Sw) + d(z, z)
 + d(z, z) + d(z, Sw)

d(z, Sw)
}
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= max

{
, , d(z, Sw),




d(z, Sw), d(z, Sw), , d(z, Sw)
}

= d(z, Sw) as n → ∞,

which together with (.), ψ ∈ �, and Lemma . yields

d(z, Sw) = lim sup
n→∞

d(yn+, Sw) = lim sup
n→∞

d(Txn, Sw)

≤ lim sup
n→∞

ψ
(
M(xn, w)

) ≤ ψ
(
d(z, Sw)

)
< d(z, Sw),

which is impossible, and hence Sw = z. Clearly, (.) yields Az = ATv = TAv = Tz and Bz =
BSw = SBw = Sz. Suppose that Tz �= Sz. It follows from (.) that

M(z, z) = max

{
d(Az, Bz), d(Az, Tz), d(Bz, Sz),



[
d(Az, Sz) + d(Tz, Bz)

]
,

 + d(Az, Tz)
 + d(Az, Bz)

d(Bz, Sz),
 + d(Bz, Sz)
 + d(Az, Bz)

d(Az, Tz),

 + d(Az, Sz) + d(Tz, Bz)
 + d(Az, Tz) + d(Bz, Sz)

d(Bz, Sz)
}

= max

{
d(Tz, Sz), , ,



[
d(Tz, Sz) + d(Tz, Sz)

]
, , , 

}

= d(Tz, Sz).

Taking account of (.), ψ ∈ �, and Lemma ., we conclude

d(Tz, Sz) ≤ ψ
(
M(z, z)

)
= ψ

(
d(Tz, Sz)

)
< d(Tz, Sz),

which is a contradiction, and hence Tz = Sz.
Suppose that Tz �= z. It follows from (.) that

M(z, w) = max

{
d(Az, Bw), d(Az, Tz), d(Bw, Sw),



[
d(Az, Sw) + d(Tz, Bw)

]
,

 + d(Az, Tz)
 + d(Az, Bw)

d(Bw, Sw),
 + d(Bw, Sw)
 + d(Az, Bw)

d(Az, Tz),

 + d(Az, Sw) + d(Tz, Bw)
 + d(Az, Tz) + d(Bw, Sw)

d(Bw, Sw)
}

= max

{
d(Tz, z), , ,



[
d(Tz, z) + d(Tz, z)

]
, , , 

}

= d(Tz, z),

which together with (.), ψ ∈ �, and Lemma . means

d(Tz, z) = d(Tz, Sw) ≤ ψ
(
M(z, w)

)
= ψ

(
d(Tz, z)

)
< d(Tz, z),

which is impossible, and hence Tz = z, that is, z is a common fixed point of A, B, S, and T .
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Suppose that A, B, S, and T have another common fixed point u ∈ X \ {z}. It follows
from (.) that

M(u, z) = max

{
d(Au, Bz), d(Au, Tu), d(Bz, Sz),



[
d(Au, Sz) + d(Tu, Bz)

]
,

 + d(Au, Tu)
 + d(Au, Bz)

d(Bz, Sz),
 + d(Bz, Sz)
 + d(Au, Bz)

d(Au, Tu),

 + d(Au, Sz) + d(Tu, Bz)
 + d(Au, Tu) + d(Bz, Sz)

d(Bz, Sz)
}

= max

{
d(u, z), , ,



[
d(u, z) + d(u, z)

]
, , , 

}

= d(u, z),

which together with (.), ψ ∈ �, and Lemma . ensures

d(u, z) = d(Tu, Sz) ≤ ψ
(
M(u, z)

)
= ψ

(
d(u, z)

)
< d(u, z),

which is a contradiction, and hence z is a unique common fixed point of A, B, S, and T
in X.

Similarly we conclude that A, B, S, and T have a unique common fixed point in X if one
of B(X), S(X), and T(X) is complete. This completes the proof. �

Similar to the proofs of Theorems . and ., we have the following result and omit its
proof.

Theorem . Let A, B, S, and T be self mappings in a metric space (X, d) satisfying (.)-
(.) and

d(Tx, Sy) ≤ ψ
(
M(x, y)

)
, ∀x, y ∈ X, (.)

where ψ is in � and M is defined by (.). Then A, B, S, and T have a unique common
fixed point in X.

Utilizing Theorems .-., Lemma ., and Remark ., we get the following results.

Theorem . Let A, B, S, and T be self mappings in a metric space (X, d) satisfying (.)-
(.) and

ψ
(
d(Tx, Sy)

) ≤ ψ
(
M(x, y)

)
– ϕ

(
M(x, y)

)
, ∀x, y ∈ X, (.)

where (ψ ,ϕ) is in � × � and M is defined by (.). Then A, B, S, and T have a unique
common fixed point in X.

Theorem . Let A, B, S, and T be self mappings in a metric space (X, d) satisfying (.)-
(.) and

ψ
(
d(Tx, Sy)

) ≤ ψ
(
M(x, y)

)
– ϕ

(
M(x, y)

)
, ∀x, y ∈ X, (.)
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where (ψ ,ϕ) is in � × � and M is defined by (.). Then A, B, S, and T have a unique
common fixed point in X.

Theorem . Let A, B, S, and T be self mappings in a metric space (X, d) satisfying (.)-
(.) and (.), where (ψ ,ϕ) is in � × � and M is defined by (.). Then A, B, S, and T
have a unique common fixed point in X.

Remark . Condition (.) in Theorem . is weaker than the conditions of (X, d) is
complete and one of the ranges of the four mappings A, B, S, and T is closed in Theo-
rem . in []. Hence Theorem . is a slight generalizations of Theorem . in []. Note
that Theorem . generalizes Theorems . and . in []. Example . below shows that
Theorem . is a substantial generalization of Theorem . in [] and Theorems . and
. in [].

Example . Let X = (–, ) be endowed with the Euclidean metric d(x, y) = |x – y| for all
x, y ∈ X. Let A, B, S, T : X → X be defined by

Ax = x, Bx = x, Sx = , ∀x ∈ X, Tx =

⎧
⎨

⎩
, ∀x ∈ X \ { 

 },
– 

 , x = 
 .

Since the metric space (X, d) is not complete, it follows that Theorem . in [] is useless
in proving the existence of common fixed points of A, B, S, and T in X and Theorems .
and . in [] are unapplicable in proving the existence of common fixed points of S and
T and fixed points of T , respectively.

Now we use Theorem . to prove the existence of common fixed points of A, B, S, and
T in X. Define ψ ,ϕ : R+ →R

+ by

ψ(t) =

⎧
⎨

⎩

√
t, ∀t ∈ [, 

 ),
√


 , ∀t ∈ [ 

 , +∞)

and

ϕ(t) =

⎧
⎨

⎩
t, ∀t ∈ [, 

 ),


 , ∀t ∈ [ 
 , +∞).

It is easy to verify that (.)-(.) holds, (ψ ,ϕ) ∈ � × �, ψ(t) ≥ ϕ(t) for each t ∈R
+. Put

x, y ∈ X. In order to verify (.), we consider two cases as follows:
Case . x ∈ X \ { 

 }. It is clear that

ψ
(
d(Tx, Sy)

)
= ψ() =  ≤ ψ

(
M(x, y)

)
– ϕ

(
M(x, y)

)
;

Case . x = 
 . Clearly we have

M(x, y) = max

{
d(Ax, By), d(Ax, Tx), d(By, Sy),



[
d(Ax, Sy) + d(Tx, By)

]
}

≥ d(Ax, Tx) = d
(




, –



)
=




.
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It follows that

ψ
(
d(Tx, Sy)

)
= ψ

(
d
(

–



, 
))

= ψ

(



)
=




≤
√




–



= ψ

(
M(x, y)

)
– ϕ

(
M(x, y)

)
.

That is, (.) holds. Hence the conditions of Theorem . are satisfied. It follows from
Theorem . that A, B, S, and T in X possess a unique common fixed point  ∈ X.

Remark . Theorems .-. extend, improve and unify Theorem . in [], Theo-
rem . in [] and Theorem  in []. Note that Examples .-. below deal with the ex-
istence of common fixed points of four mappings A, B, S, and T , but Theorem . in [],
Theorem . in [] and Theorem  in [] deal with the existence of fixed and common fixed
points of at most three mappings, therefore the results in [, , ] are useless in proving
the existence of common fixed points of four mappings A, B, S, and T . That is, Theorems
.-. extend indeed Theorem . in [], Theorem . in [] and Theorem  in [].

Example . Let X = R
+ be endowed with the Euclidean metric d(x, y) = |x – y| for all

x, y ∈ X. Let B, T : X → X be defined by

Bx = x, ∀x ∈ X and Tx =

⎧
⎨

⎩
, ∀x ∈R

+ – { 
 },


 , x = { 

 }.

Firstly we claim that Theorem . in [] and Theorem  in [] and Theorem . in []
cannot be used to prove the existence of fixed and common fixed points for the mapping
T and the mappings B and T , respectively, in the complete metric space X.

Suppose that there exist ϕ ∈ � satisfying

d(Tx, Ty) ≤ d(x, y) – ϕ
(
d(x, y)

)
, ∀x, y ∈ X,

which implies




= d
(

,



)
= d

(
T, T




)
≤ d

(
,




)
– ϕ

(
d
(

,




))

=



– ϕ

(




)
,

that is,

 < ϕ

(




)
≤ 


–




= –



,

which is a contradiction.
Suppose that there exists ψ ,ϕ ∈ � satisfying

ψ
(
d(Tx, Ty)

) ≤ ψ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
, ∀x, y ∈ X,
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which yields

ψ

(




)
= ψ

(
 –




)
= ψ

(
d
(

T



, T




))

≤ ψ

(
d
(




,




))
– ϕ

(
d
(




,




))
= ψ

(




)
– ϕ

(




)
,

that is,

 < ϕ

(




)
≤ ψ

(




)
– ψ

(




)
= ,

which is impossible.
Suppose that there exists (ψ ,ϕ) ∈ � × � satisfying

ψ
(
d(Tx, Ty)

) ≤ ψ
(
d(Bx, By)

)
– ϕ

(
d(Bx, By)

)
, ∀x, y ∈ X,

which gives

ψ

(




)
= ψ

(
 –




)
= ψ

(
d
(

T



, T




))

≤ ψ

(
d
(

B



, B




))
– ϕ

(
d
(

B



, B




))

= ψ

((




)

–
(




))
– ϕ

((




)

–
(




))

= ψ

(


,

)
– ϕ

(


,

)

< ψ

(


,

)
≤ ψ

(


,

)
= ψ

(




)

≤ ψ

(




)
,

which is impossible.
Secondly we claim that the mappings A, B, S, and T satisfy the conditions of Theo-

rem ., where A, S : X → X and ψ ,ϕ : R+ →R
+ are defined by

Ax = x, Sx = , ∀x ∈ X

and

ψ(t) =

⎧
⎨

⎩
t, ∀t ∈ [, 

 ),

t – , ∀t ∈ [ 
 , +∞),

ϕ(t) =

⎧
⎨

⎩
t, ∀t ∈ [, 

 ),
t

+t , ∀t ∈ [ 
 , +∞).

Clearly, (.)-(.) hold, (ψ ,ϕ) ∈ � × �, ψ(t) ≥ ϕ(t) for any t ∈ R
+, and ϕ(R+) ⊂ [, 

 ).
Put x, y ∈ X. In order to verify (.), we have to consider the following two possible cases:

Case . x ∈ X \ { 
 }. It follows that

ψ
(
d(Tx, Sy)

)
= ψ() =  ≤ ψ

(
M(x, y)

)
– ϕ

(
M(x, y)

)
;
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Case . x = 
 . It follows that

M

(



, y

)
= max

{∣∣
∣∣


 – y

∣∣
∣∣,

∣∣
∣∣


 –




∣∣
∣∣,

∣
∣ – y∣∣,




(∣∣
∣∣


 – 

∣∣
∣∣ +

∣∣
∣∣



– y
∣∣
∣∣

)}

≥ 


–


 =
,
,

>




and

ψ

(
d
(

T



, Sy

))
= ψ

(
d
(




, 
))

= ψ

(




)
= 

<  <
,,

,,
–




< ψ

(
,
,

)
– ϕ

(
M

(



, y

))

≤ ψ

(
M

(



, y

))
– ϕ

(
M

(



, y

))
.

That is, (.) holds. Thus the conditions of Theorem . are satisfied. It follows from
Theorem . that the mappings A, B, S, and T have a unique common fixed point  ∈ X.

Example . Let X = [, ] be endowed with the Euclidean metric d(x, y) = |x – y| for all
x, y ∈ X. Let A, B, S, T : X → X and ψ ,ϕ : R+ →R

+ be defined by

Ax = x, Bx =



x, Sx = , ∀x ∈ X, Tx =

⎧
⎨

⎩
, ∀x ∈ [, ),

 , x = 

and

ψ(t) =

⎧
⎨

⎩
t, ∀t ∈ [, 

 ),

t – , ∀t ∈ [ 
 , +∞),

ϕ(t) =

⎧
⎨

⎩
t, ∀t ∈ [, 

 ),


+
√

t , ∀t ∈ [ 
 , +∞).

It is easy to see that (.)-(.) hold, (ψ ,ϕ) ∈ � × �, ψ(t) ≥ ϕ(t) for each t ∈ R
+ and

ϕ(R+) ⊂ [, 
 ). Let x, y ∈ X. In order to verify (.), we have to consider two possible

cases as follows:
Case . x ∈ X \ {}. It is clear that

ψ
(
d(Tx, Sy)

)
= ψ() =  ≤ ψ

(
M(x, y)

)
– ϕ

(
M(x, y)

)
;

Case . x = . It follows that

M(, y) = max

{∣∣
∣∣ –

y



∣∣
∣∣,




,
y


,




(
 +

∣∣
∣∣




–
y



∣∣
∣∣

)
,

| 
 – y

 |
 + | – y

 |
,


 · y



 + | – y

 |
,

 +  + | 
 – y

 |
 + 

 + y



· 


}

≥ 
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and

ψ
(
d(T, Sy)

)
= ψ

(



)
=  <  –




≤ ψ

(



)
– ϕ

(
M(, y)

)

≤ ψ
(
M(, y)

)
– ϕ

(
M(, y)

)
.

That is, (.) holds. It follows from Theorem . that the mappings A, B, S, and T have a
unique common fixed point  ∈ X. However, we neither use Theorem  in [] nor employ
Theorem . in [] to show the existence of fixed points of the mapping T in X.

Suppose that there exists ϕ ∈ � satisfying

d(Tx, Ty) ≤ d(x, y) – ϕ
(
d(x, y)

)
, ∀x, y ∈ X,

which implies




= d
(




, 
)

= d
(

T, T



)
≤ d

(
,




)
– ϕ

(
d
(

,



))
=




– ϕ

(



)
,

which means

 < ϕ

(



)
≤ 


–




= –



,

which is a contradiction.
Suppose that there exist ψ ,ϕ ∈ � satisfying

ψ
(
d(Tx, Ty)

) ≤ ψ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
, ∀x, y ∈ X,

which yields

ψ

(



)
= ψ

(
d
(

,



))
= ψ

(
d(Tx, T)

) ≤ ψ
(
d(x, )

)
– ϕ

(
d(x, )

)

= ψ( – x) – ϕ( – x), ∀x ∈ X \ {},

which gives

 < ψ

(



)
≤ lim sup

x→

[
ψ( – x) – ϕ( – x)

]

≤ lim sup
x→

ψ( – x) – lim inf
x→

ϕ( – x) ≤ ψ() – ϕ() = ,

which is impossible.

Example . Let X = [–, ] be endowed with the Euclidean metric d(x, y) = |x – y| for all
x, y ∈ X. Let A, B, S, T : X → X and ψ ,ϕ : R+ →R

+ be defined by

Ax =
x


, Tx = , ∀x ∈ X,

Bx =

⎧
⎨

⎩
, ∀x ∈ [–, ),

 , x = ,

Sx =

⎧
⎨

⎩
, ∀x ∈ [–, ),

 , x = ,
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and

ψ(t) =

⎧
⎨

⎩
t, ∀t ∈ [, 

 ),

t – , ∀t ∈ [ 
 , +∞),

ϕ(t) =

⎧
⎨

⎩
t, ∀t ∈ [, 

 ),

 sin π

+t , ∀t ∈ [ 
 , +∞).

Clearly, (.)-(.) holds, (ψ ,ϕ) ∈ � × �, ψ(t) ≥ ϕ(t) for each t ∈ R
+ and ϕ(t) ≤

√


 < 


for all t ∈ [ 
 , +∞). Let x, y ∈ X. In order to verify (.), we have to consider two possible

cases as follows:
Case . y ∈ X \ {}. Obviously

ψ
(
d(Tx, Sy)

)
= ψ() =  ≤ ψ

(
M(x, y)

)
– ϕ

(
M(x, y)

)
;

Case . y = . It follows that

M(x, ) = max

{
 – x


,

x


,




–



,



(∣∣
∣∣
x


–




∣∣
∣∣ +




)
,

 + x



 + –x


· 


,

 + 


 + –x


· x


,

 + | x

 – 
 | + 



 + x
 + 



· 


}

≥ 


and

ψ
(
d(Tx, S)

)
= ψ

(



)
=  × 

 =



<  =  ×
(




)

–  –



< ψ
(
M(x, )

)
– ϕ

(
M(x, )

)
.

That is, (.) holds. Consequently, Theorem . guarantees that the mappings A, B, S, and
T have a unique common fixed point  ∈ X. However, we do not invoke that Theorem .
in [] proves the existence of fixed points of the mapping S in X. Otherwise there exist
ψ ,ϕ ∈ � satisfying

ψ
(
d(Sx, Sy)

) ≤ ψ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
, ∀x, y ∈ X,

which yields

ψ

(



)
= ψ

(
d
(

S



, S
))

≤ ψ

(
d
(




, 
))

– ϕ

(
d
(




, 
))

= ψ

(




)
– ϕ

(




)
< ψ

(




)

≤ ψ

(



)
,

which is a contradiction.
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2. Abbas, M, Dorić, D: Common fixed point theorem for four mappings satisfying generalized weak contractive

condition. Filomat 24, 1-10 (2010)
3. Abbas, M, Khan, MA: Common fixed point theorem of two mappings satisfying a generalized weak contractive

condition. Int. J. Math. Math. Sci. 2009, Article ID 131068 (2009)
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