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Abstract
Let C be a nonempty, closed, and convex subset of a complete CAT(0) space X and let
T be an asymptotically nonexpansive mapping of C into itself such that the set of
common fixed points of T is nonempty. We introduce the iterative schemes for
finding the common fixed point of an asymptotically nonexpansive mapping which
is the unique solution of some variational inequalities. The strong convergence
theorem of the proposed iterative schemes is established. Our result improves and
generalizes several other results in the literature.
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1 Introduction
Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly,
a geodesic from x to y) is a map c from a closed interval [, l] ⊂ R to X such that c() = x,
c(l) = y, and d(c(t), c(t′)) = |t – t′| for all t, t′ ∈ [, l]. In particular, c is an isometry and
d(x, y) = l. The image α of c is called a geodesic (or metric) segment joining x and y. When it
is unique this geodesic segment is denoted by [x, y]. The space (X, d) is said to be a geodesic
space if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic
if there is exactly one geodesic joining x and y for each x, y ∈ X. A subset Y ⊆ X is said to
be convex if Y includes every geodesic segment joining any two of its points. A geodesic
triangle �(x, x, x) in a geodesic metric space (X, d) consists of three points x, x, x

in X (the vertices of �) and a geodesic segment between each pair of vertices (the edges
of �). A comparison triangle for the geodesic triangle �(x, x, x) in (X, d) is a triangle
�(x, x, x) := �(x, x, x) E such that dE (xi, xj) = d(xi, xj) for all i, j ∈ {, , }.

A geodesic space is said to be a CAT() space if all geodesic triangles of appropriate size
satisfy the following comparison axiom.

CAT(): Let � be a geodesic triangle in X and let � be a comparison triangle for �.
Then � is said to satisfy the CAT() inequality if for all x, y ∈ � and all comparison points
x, y ∈ �,

d(x, y) ≤ dE (x, y).

© 2015 Wangkeeree et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

http://dx.doi.org/10.1186/s13663-015-0273-x
mailto:rabianw@nu.ac.th


Wangkeeree et al. Fixed Point Theory and Applications  (2015) 2015:23 Page 2 of 15

If x, y, y are points in a CAT() space and if y is the midpoint of the segment [y, y],
then the CAT() inequality implies

d(x, y) ≤ 


d(x, y) +



d(x, y) –



d(y, y). ()

This is the (CN)-inequality of Bruhat and Tits []. In fact (cf. [, p.]), a geodesic space
is a CAT() space if and only if it satisfies the (CN)-inequality.

It is well known that any complete, simply connected Riemannian manifold having non-
positive sectional curvature is a CAT() space. Other examples include Pre-Hilbert spaces,
R-trees (see []), Euclidean buildings (see []), the complex Hilbert ball with a hyperbolic
metric (see []), and many others. Complete CAT() spaces are often called Hadamard
spaces. It is proved in [] that a normed linear space satisfies the (CN)-inequality if and
only if it satisfies the parallelogram identity, i.e., it is a pre-Hilbert space; hence it is not so
unusual to have an inner product-like notion in Hadamard spaces. Berg and Nikolaev []
introduced the concept of quasilinearization as follows:

Let us formally denote a pair (a, b) ∈ X × X by
–→
ab and call it a vector. Then quasilin-

earization is defined as a map 〈·, ·〉 : (X × X) × (X × X) →R defined by

〈–→ab,
–→
cd〉 =



(
d(a, d) + d(b, c) – d(a, c) – d(b, d)

)
(a, b, c, d ∈ X). ()

It is easily seen that 〈–→ab,
–→
cd〉 = 〈–→cd,

–→
ab〉, 〈–→ab,

–→
cd〉 = –〈–→ba,

–→
cd〉 and 〈–→ax,

–→
cd〉 + 〈–→xb,

–→
cd〉 = 〈–→ab,

–→
cd〉

for all a, b, c, d, x ∈ X. We say that X satisfies the Cauchy-Schwarz inequality if

〈–→ab,
–→
cd〉 ≤ d(a, b)d(c, d) ()

for all a, b, c, d ∈ X. It known [, Corollary ] that a geodesically connected metric space is
a CAT() space if and only if it satisfies the Cauchy-Schwarz inequality.

In , Kakavandi and Amini [] introduced the concept of dual space for CAT()
spaces as follows. Consider the map � : R× X × X → C(X) defined by

�(t, a, b)(x) = t〈–→ab, –→ax〉, ()

where C(X) is the space of all continuous real-valued functions on X. Then the Cauchy-
Schwarz inequality implies that �(t, a, b) is a Lipschitz function with Lipschitz semi-norm
L(�(t, a, b)) = |t|d(a, b) for all t ∈R and a, b ∈ X, where

L(f ) = sup

{
f (x) – f (y)

d(x, y)
: x, y ∈ X, x �= y

}

is the Lipschitz semi-norm of the function f : X →R. Now, define the pseudometric D on
R× X × X by

D
(
(t, a, b), (s, c, d)

)
= L

(
�(t, a, b) – �(s, c, d)

)
.

Lemma . [, Lemma .] D((t, a, b), (s, c, d)) =  if and only if t〈–→ab, –→xy〉 = s〈–→cd, –→xy〉 for all
x, y ∈ X.
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For a complete CAT() space (X, d), the pseudometric space (R× X × X, D) can be con-
sidered as a subspace of the pseudometric space (Lip(X, R), L) of all real-valued Lipschitz
functions. Also, D defines an equivalence relation on R × X × X, where the equivalence
class of t

–→
ab := (t, a, b) is

[t
–→
ab] =

{
s
–→
cd : t〈–→ab, –→xy〉 = s〈–→cd, –→xy〉 ∀x, y ∈ X

}
.

The set X∗ := {[t–→
ab] : (t, a, b) ∈R× X × X} is a metric space with metric D, which is called

the dual metric space of (X, d). Recently, Dehghan and Rooin [] introduced the duality
mapping in CAT() spaces and studied its relation with subdifferential, by using the con-
cept of quasilinearization. Then they presented a characterization of metric projection in
CAT() spaces as follows.

Theorem . [, Theorem .] Let C be a nonempty convex subset of a complete CAT()
space X, x ∈ X and u ∈ C. Then

u = PCx if and only if 〈–→yu, –→ux〉 ≥ , for all y ∈ C.

Let C be a nonempty subset of a complete CAT() space X. Then a mapping T of C
into itself is called nonexpansive iff d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C. A point x ∈ C is
called a fixed point of T if x = Tx. We denote by F(T) the set of all fixed points of T . Kirk
[] showed that the fixed point set of a nonexpansive mapping T is closed and convex.
A mapping T of C into itself is called asymptotically nonexpansive if there exists a se-
quence {kn} ⊂ [,∞) with kn →  such that d(Tnx, Tny) ≤ knd(x, y) for all integers n ≥ 
and all x, y ∈ C. A mapping f of C into itself is called a contraction with coefficient α ∈ (, )
iff d(f (x), f (y)) ≤ αd(x, y) for all x, y ∈ C. Banach’s contraction principle [] guarantees that
f has a unique fixed point when C is a nonempty, closed, and convex subset of a com-
plete metric space. The existence of fixed points and convergence theorems for several
mappings in CAT() spaces has been investigated by many authors (see also [–]).

Clearly, every contraction mapping is nonexpansive and every nonexpansive mapping is
asymptotically nonexpansive with sequence kn = , for all n ≥ . However, asymptotically
nonexpansive mappings which are not nonexpansive (see, e.g., []). As a generalization of
the class of nonexpansive mappings, the class of asymptotically nonexpansive mappings
was introduced by Goebel and Kirk []) in  and has been studied by several authors.
Goebel and Kirk proved that if C is a nonempty, closed, convex, and bounded subset of
a uniformly convex Banach space (more general than a Hilbert space, i.e., CAT() space),
then every asymptotically nonexpansive self-mapping of C has a fixed point. The weak and
strong convergence problems to fixed points of nonexpansive and asymptotically nonex-
pansive mappings have been studied by many authors.

One classical way to study nonexpansive mappings is to use contractions to approximate
nonexpansive mappings. More precisely, take t ∈ (, ) and define a contraction Tt : C → C
by

Tt = tu + ( – t)Tx, ∀x ∈ C,

where u ∈ C is an arbitrary fixed element. Banach’s contraction mapping principle guar-
antees that Tt has a unique fixed point xt in C. It is unclear, in general, what the behavior
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of xt is as t → , even if T has a fixed point. However, in the case of T having a fixed point,
Browder [] proved that xt converges strongly to a fixed point of T that is nearest to u in
the frame work of Hilbert spaces. Reich [] extended Browder’s result to the setting of Ba-
nach spaces and proved, in a uniformly smooth Banach space, that xt converges strongly
to a fixed point of T and the limit defines the (unique) sunny nonexpansive retraction
from C onto F(T). Halpern [] introduced the following explicit iterative scheme () for
a nonexpansive mapping T on a subset C of a Hilbert space by taking any points u, x ∈ C,
defining the iterative sequence {xn}:

xn+ = αnu + ( – αn)Txn. ()

He proved that the sequence {xn} generated by () converges to a fixed point of T . In ,
Saejung [] studied the convergence theorems of the following Halpern iterations for a
nonexpansive mapping T in a complete CAT() space: Let u be fixed and xt ∈ C be the
unique fixed point of the contraction x �→ tu ⊕ ( – t)Tx; i.e.

xt = tu ⊕ ( – t)Txt, ()

where t ∈ [, ], x, u ∈ C are arbitrary chosen, and

xn+ = αnu ⊕ ( – αn)Txn, n ≥ , ()

where {αn} → (, ). It is proved in [] that {xt} converges strongly as t →  to x̃ ∈ F(T)
which is nearest to u (x̃ = PF(T)u) and {xn} converges strongly as n → ∞ to x̃ ∈ F(T) which
is nearest to u under certain appropriate conditions on {αn}, where PCx is a metric projec-
tion from X onto C. Moreover, the author applied his result to find a common fixed point
of a countable family of nonexpansive mappings {Tn}∞n=. He proved that the following
iterative scheme () converges strongly to x̃ ∈ ⋂∞

n= F(Tn) which is nearest to u:

xn+ = αnu ⊕ ( – αn)Tnxn, n ≥ . ()

In , Shi and Chen [], studied the convergence theorems of the following Moudafi’s
viscosity iterations for a nonexpansive mapping T : for a contraction f on C and t ∈ (, ),
let xt ∈ C be the unique fixed point of the contraction x �→ tf (x) ⊕ ( – t)Tx; i.e.

xt = tf (xt) ⊕ ( – t)Txt , ()

and x ∈ C is arbitrary chosen and

xn+ = αnf (xn) ⊕ ( – αn)Txn, ∀n ≥ , ()

where {αn} ⊂ (, ). They proved that {xt} defined by () converges strongly as t →  to x̃ ∈
F(T) such that x̃ = PF(T)f (x̃) in the framework of CAT() space satisfying the property P ,
i.e., if for x, u, y, y ∈ X,

d(x, P[x,y]u)d(x, y) ≤ d(x, P[x,y]u)d(x, y) + d(x, u)d(y, y).
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Furthermore, they also found that {xn} defined by () converges strongly as n → ∞ to
x̃ ∈ F(T) under certain appropriate conditions imposed on {αn}. Recently, using the con-
cept of quasilinearization, Wangkeeree and Preechasilp [] studied the strong conver-
gence theorems of the iterative schemes () and () in CAT() spaces without the prop-
erty P . They proved the iterative schemes () and () converge strongly to x̃ such that
x̃ = PF(T)f (x̃) which is the unique solution of the variational inequality (VIP):

〈––→x̃f x̃,
–→
xx̃〉 ≥ , x ∈ F(T). ()

On the other hand, Shi et al. [] studied the �-convergence of the iteration sequence for
asymptotically nonexpansive mappings in CAT() spaces. For related work, see [–].

Motivated and inspired by Saejung [] and Wangkeeree and Preechasilp [] and Shi
et al. [], the purpose of this paper is to study the strong convergence theorems of the
Moudafi’s viscosity approximation methods for an asymptotically nonexpansive mapping
in CAT() spaces. Let C be a closed convex subset of a complete CAT() space X. Let Tn :
C → C be an asymptotically nonexpansive mapping. For given a contraction f on C and
αn ∈ (, ), let xn ∈ C be the unique fixed point of the contraction x �→ αnf (x)⊕ (–αn)Tnx;
i.e.

xn = αnf (xn) ⊕ ( – αn)Tnxn, n ≥ , ()

and x ∈ C is arbitrary chosen and

xn+ = αnf (xn) ⊕ ( – αn)Tnxn, n ≥ . ()

We prove the iterative schemes {xn} defined by () and () converge strongly to the same
point x̃ such that x̃ = PF f (x̃) which is the unique solution of the variational inequality:

〈––––→
x̃f (x̃),

–→
xx̃

〉 ≥ , x ∈ F(T).

2 Preliminaries
In this paper, we write ( – t)x ⊕ ty for the unique point z in the geodesic segment joining
from x to y such that

d(z, x) = td(x, y), and d(z, y) = ( – t)d(x, y).

We also denote by [x, y] the geodesic segment joining from x to y, that is, [x, y] = {( – t)x⊕
ty : t ∈ [, ]}. A subset C of a CAT() space is convex if [x, y] ⊆ C for all x, y ∈ C.

The following lemmas play an important role in our paper.

Lemma . [, Proposition .] Let X be a CAT() space, p, q, r, s ∈ X and λ ∈ [, ]. Then

d
(
λp ⊕ ( – λ)q,λr ⊕ ( – λ)s

) ≤ λd(p, r) + ( – λ)d(q, s).

Lemma . [, Lemma .] Let X be a CAT() space, x, y, z ∈ X and λ ∈ [, ]. Then

d
(
λx ⊕ ( – λ)y, z

) ≤ λd(x, z) + ( – λ)d(y, z).
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Lemma . [, Lemma .] Let X be a CAT() space, x, y, z ∈ X and λ ∈ [, ]. Then

d(λx ⊕ ( – λ)y, z
) ≤ λd(x, z) + ( – λ)d(y, z) – λ( – λ)d(x, y).

The concept of �-convergence introduced by Lim [] in  was shown by Kirk and
Panyanak [] in CAT() spaces to be very similar to the weak convergence in a Banach
space setting. Next, we give the concept of �-convergence and collect some basic proper-
ties.

Let {xn} be a bounded sequence in a CAT() space X. For x ∈ X, we set

r
(
x, {xn}

)
= lim sup

n→∞
d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r
({xn}

)
= inf

{
r
(
x, {xn}

)
: x ∈ X

}
,

and the asymptotic center A({xn}) of {xn} is the set

A
({xn}

)
=

{
x ∈ X : r

(
x, {xn}

)
= r

({xn}
)}

.

It is well known from Proposition  of [] that in a complete CAT() space, A({xn})
consists of exactly one point. A sequence {xn} ⊂ X is said to �-converge to x ∈ X if
A({xnk }) = {x} for every subsequence {xnk } of {xn}. Uniqueness of the asymptotic center
implies that CAT() space X satisfies Opial’s property, i.e., for given {xn} ⊂ X such that
{xn} �-converges to x and given y ∈ X with y �= x,

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y).

Since it is not possible to formulate the concept of demiclosedness in a CAT() setting, as
stated in linear spaces, let us formally say that ‘I –T is demiclosed at zero’ if the conditions,
{xn} ⊆ C �-converges to x and d(xn, Txn) →  imply x ∈ F(T).

Lemma . [] Every bounded sequence in a complete CAT() space always has a �-
convergent subsequence.

Lemma . [] If C is a closed convex subset of a complete CAT() space and if {xn} is a
bounded sequence in C, then the asymptotic center of {xn} is in C.

Lemma . [] If C is a closed convex subset of X and T : C → X is an asymptotically
nonexpansive mapping, then the conditions {xn} �-convergence to x and d(xn, Txn) → ,
and imply x ∈ C and x ∈ F(T).

Having the notion of quasilinearization, Kakavandi and Amini [] introduced the fol-
lowing notion of convergence.

A sequence {xn} in the complete CAT() space (X, d) w-converges to x ∈ X if

lim
n→∞〈––→xxn, –→xy〉 = ,

i.e. limn→∞(d(xn, x) – d(xn, y) + d(x, y)) =  for all y ∈ X.
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It is obvious that convergence in the metric implies w-convergence, and it is easy to
check that w-convergence implies �-convergence [, Proposition .], but it is showed
in [, Example .] that the converse is not valid. However, the following lemma shows
another characterization of �-convergence as well as, more explicitly, a relation between
w-convergence and �-convergence.

Lemma . [, Theorem .] Let X be a complete CAT() space, {xn} be a sequence in X
and x ∈ X. Then {xn} �-converges to x if and only if lim supn→∞〈––→xxn, –→xy〉 ≤  for all y ∈ X.

Lemma . [, Lemma .] Let {an} be a sequence of non-negative real numbers satisfying
the property

an+ ≤ ( – αn)an + αnβn, n ≥ ,

where {αn} ⊆ (, ) and {βn} ⊆R such that
(i)

∑∞
n= αn = ∞;

(ii) lim supn→∞ βn ≤  or
∑∞

n= |αnβn| < ∞.
Then {an} converges to zero, as n → ∞.

The following two vital lemmas can be found in [].

Lemma . [] Let X be a complete CAT() space. Then for all u, x, y ∈ X, the following
inequality holds

d(x, u) ≤ d(y, u) + 〈–→xy, –→xu〉.

Lemma . [] Let X be a CAT() space. For any t ∈ [, ] and u, v ∈ X, let ut = tu ⊕
( – t)v. Then, for all x, y ∈ X,

(i) 〈––→utx, ––→uty〉 ≤ t〈–→ux, ––→uty〉 + ( – t)〈–→vx, ––→uty〉;
(ii) 〈––→utx, –→uy〉 ≤ t〈–→ux, –→uy〉 + ( – t)〈–→vx, –→uy〉 and 〈––→utx, –→vy〉 ≤ t〈–→ux, –→vy〉 + ( – t)〈–→vx, –→vy〉.

3 Viscosity approximation methods
In this section, we present the strong convergence theorems of the Moudafi’s viscosity ap-
proximation methods for asymptotically nonexpansive mapping T : C → C in a complete
CAT() space.

Theorem . Let C be a closed convex subset of a complete CAT() space X, and let T :
C → C be an asymptotically nonexpansive mapping with a sequence {kn} ⊂ [, +∞) and
limn→∞ kn =  such that F(T) �= ∅. Let f be a contraction on C with coefficient  < α < . Let
{αn} be a sequence of real numbers with  < αn < . Then the following statements hold:

(i) For each n ∈N, if kn–
αn

<  – α, then there exists yn such that

yn = αnf (yn) ⊕ ( – αn)Tnyn. ()

(ii) If αn →  and kn–
αn

→  as n → ∞, then {yn} converges strongly as n → ∞ to x̃ such
that x̃ = PF(T)f (x̃), which is equivalent to the following variational inequality:

〈––––→
x̃f (x̃),

–→
xx̃

〉 ≥ , x ∈ F(T). ()
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Proof For each integer n ≤ , define a mapping Gn : C → C by

Gn(x) = αnf (x) ⊕ ( – αn)Tnx, ∀x ∈ C.

We shall show that Gn is a contraction mapping. For any x, y ∈ C

d
(
Gn(x), Gn(y)

)
= d

(
αnf (x) ⊕ ( – αn)Tnx,αnf (y) ⊕ ( – αn)Tny

)

≤ αnd
(
f (x), f (y)

)
+ ( – αn)d

(
Tnx, Tny

)

≤ αnαd(x, y) + ( – αn)knd(x, y)

= (kn – αnkn + ααn)d(x, y).

Since  < kn–
αn

<  – α, we have

 <
kn – 
αn

<  – α ≤ αnkn – ααn.

It follows that  < kn – αnkn + αnα < . We see that Gn is a contraction map with coefficient
(kn –αnkn +αnα). For each integer n ≤ , there exists a unique yn ∈ C such that Gn(yn) = yn,
that is,

yn = αnf (yn) ⊕ ( – αn)Tnyn.

Next, we show that {yn} is bounded. For any p ∈ F(T), we have

d(yn, p) = d
(
αnf (yn) ⊕ ( – αn)Tnyn, p

)

≤ αnd
(
f (yn), f (p)

)
+ αnd

(
f (p), p

)
+ ( – αn)d

(
Tnyn, p

)

≤ ααnd(yn, p) + αnd
(
f (p), p

)
+ kn( – αn)d(yn, p)

=
{

kn – (kn – α)αn
}

d(yn, p) + αnd
(
f (p), p

)
.

Then

d(yn, p) ≤ αn

(kn – α)αn – (kn – )
d
(
f (p), p

) ≤ 
 – α

d
(
f (p), p

)
.

Hence {yn} is bounded, and so are {Tyn} and {f (yn)}. We get

lim
n→∞ d

(
yn, Tnyn

)
= lim

n→∞ d
(
αnf (yn) ⊕ ( – αn)Tnyn, Tnyn

)

≤ lim
n→∞

[
αnd

(
f (yn), Tnyn

)
+ ( – αn)d

(
Tnyn, Tnyn

)]

≤ lim
n→∞αnd

(
f (yn), Tnyn

)
.

Thus

lim
n→∞ d

(
yn, Tnyn

)
= . ()

Let L = supn kn, then we have

d
(
Tnyn, p

) ≤ knd(yn, p) ≤ Ld(yn, p).
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It follows that the sequence {Tnyn} is bounded. We claim that limn→∞ d(yn, Tyn) = . In-
deed, we have

d(yn, yn–) = d
(
αnf (yn) ⊕ ( – αn)Tnyn, yn–

)

≤ ( – αn)d
(
Tnyn, yn–

)

≤ ( – αn)d
(
Tnyn, yn

)
+ ( – αn)d(yn, yn–)

≤ ( – αn)
αn

d
(
Tnyn, yn

) → ,

d
(
yn–, Tn–yn

)
= d

(
αn–f (yn–) ⊕ ( – αn–)Tn–yn–, Tn–yn

)

≤ αn–d
(
f (yn–), Tn–yn

)
+ ( – αn–)d

(
Tn–yn–, Tn–yn

)

≤ ( – αn–)Ld(yn–, yn) → ,

d
(
yn, Tn–yn

) ≤ d(yn, yn–) + d
(
yn–, Tn–yn

) → .

Thus

d(yn, Tyn) ≤ d
(
yn, Tnyn

)
+ d

(
Tnyn, Tyn

)

= d
(
yn, Tnyn

)
+ d

(
TTn–yn, Tyn

)

≤ d
(
yn, Tnyn

)
+ Ld

(
Tn–yn, yn

) →  (as n → ∞).

Next, we will show that {yn} contains a subsequence converging strongly to x̃ such that
x̃ = PF(T)f (x̃), which is equivalent to the following variational inequality:

〈––––→
x̃f (x̃),

–→
xx̃

〉 ≥ , ∀x ∈ F(T).

Since {yn} is bounded, there exists a subsequence {ynj} of {yn} which �-converges to x̃.
By Lemmas ., ., we may assume that {ynj} �-converges to a point x̃ and x̃ ∈ F(T). It
follows from Lemma .(i) that

d(ynj , x̃) = 〈––→ynj x̃,
––→
ynj x̃〉

≤ αnj

〈–––––→
f (ynj )x̃,

––→
ynj x̃

〉
+ ( – αnj )

〈––––––→
Tnj ynj x̃,

––→
ynj x̃

〉

≤ αnj

〈–––––→
f (ynj )x̃,

––→
ynj x̃

〉
+ ( – αnj )d

(
Tnj ynj , x̃

)
d(ynj , x̃)

≤ αnj

〈–––––→
f (ynj )x̃,

––→
ynj x̃

〉
+ ( – αnj )knj d(ynj , x̃)d(ynj , x̃)

= αnj

〈–––––→
f (ynj )x̃,

––→
ynj x̃

〉
+ ( – αnj )knj d

(ynj , x̃).

It follow that

d(ynj , x̃) ≤ αnj

( – ( – αnj )knj )
〈–––––→
f (ynj )x̃,

––→
ynj x̃

〉

=
αnj

( – ( – αnj )knj )
[〈––––––––→

f (ynj )f (x̃),
––→
ynj x̃

〉
+

〈––––→
f (x̃)x̃,

––→
ynj x̃

〉]
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≤ αnj

( – ( – αnj )knj )
[
d
(
f (ynj ), f (x̃)

)
d(ynj , x̃) +

〈––––→
f (x̃)x̃,

––→
ynj x̃

〉]

≤ αnj

( – ( – αnj )knj )
[
αd(ynj , x̃) +

〈––––→
f (x̃)x̃,

––→
ynj x̃

〉]
,

and hence

d(ynj , x̃) ≤ αnj

αnj (knj – α) – (knj – )
〈––––→
f (x̃)x̃,

––→
ynj x̃

〉

≤ 
 – α

〈––––→
f (x̃)x̃,

––→
ynj x̃

〉
. ()

Since {ynj} �-converges to x̃, by Lemma ., we have

lim sup
n→∞

〈––––→
f (x̃)x̃,

––→
ynj x̃

〉 ≤ . ()

It follows from () that {ynj} converges strongly to x̃. Next, we show that x̃ solves the
variational inequality (). Applying Lemma ., for any q ∈ F(T),

d(ynj , q) = d(αnj f (ynj ) ⊕ ( – αnj )T
nj ynj , q

)

≤ αnj d
(f (ynj ), q

)
+ ( – αnj )d

(Tnj ynj , q
)

– αnj ( – αnj )d
(f (ynj ), Tnj ynj

)

≤ αnj d
(f (ynj ), q

)
+ ( – αnj )k


nj

d(ynj , q) – αnj ( – αnj )d
(f (ynj ), Tnj ynj

)
,

and hence

( – αnj )d
(f (ynj ), Tnj ynj

)
+ k

nj
d(ynj , q) ≤ d(f (ynj ), q

)
+

k
nj

– 

αnj

d(ynj , q).

We then have

( – αnj )d
(f (ynj ), Tnj ynj

)
+ k

nj
d(ynj , q) ≤ d(f (ynj ), q

)
+

knj – 
αnj

M,

where M = (knj + )d(ynj , q). Since ynj → x̃ and by (), we have Tnj ynj → x̃. It follows from

αnj → , knj → ,
knj –
αnj

→ , and continuity of the metric distance d that

d(f (x̃), x̃
)

+ d(x̃, q) ≤ d(f (x̃), q
)
.

Hence

 ≤ 

[
d(x̃, x̃) + d(f (x̃), q

)
– d(x̃, q) – d(f (x̃), x̃

)]
=

〈––––→
x̃f (x̃),

–→
qx̃

〉
, ∀q ∈ F(T).

That is, x̃ solves the inequality (). Assume there exists a subsequence {ynk } of {yn} which
�-converges to x̂ by the same argument; we see that x̂ ∈ F(T) and solves the variational
inequality (), i.e.,

〈––––→
x̃f (x̃),

–→̃
xx̂

〉 ≤  ()



Wangkeeree et al. Fixed Point Theory and Applications  (2015) 2015:23 Page 11 of 15

and

〈––––→
x̂f (x̂),

–→̂
xx̃

〉 ≤ . ()

Adding up () and (), we obtain

 ≥ 〈––––→
x̃f (x̃),

–→̃
xx̂

〉
–

〈––––→
x̂f (x̂),

–→̃
xx̂

〉

=
〈––––→
x̃f (x̂),

–→̃
xx̂

〉
+

〈––––––→
f (x̂)f (x̃),

–→̃
xx̂

〉
– 〈–→̂xx̃,

–→̃
xx̂〉 –

〈––––→
x̃f (x̂),

–→̃
xx̂

〉

= 〈–→̃xx̂,
–→̃
xx̂〉 –

〈––––––→
f (x̂)f (x̃),

–→̂
xx̃

〉

≥ 〈–→̃xx̂,
–→̃
xx̂〉 – d

(
f (x̂), f (x̃)

)
d(x̂, x̃)

≥ d(x̃, x̂) – αd(x̂, x̃)d(x̂, x̃)

= d(x̃, x̂) – αd(x̂, x̃)

= ( – α)d(x̃, x̂).

Since  < α < , we have d(x̃, x̂) = , and so x̃ = x̂. Hence yn converges strongly as n → ∞
to x̃, which solves the variational inequality (). �

Now, we present a strong convergence theorem for an asymptotically nonexpansive
mapping.

Theorem . Let C be a closed convex subset of a complete CAT() space X, and let T :
C → C be an asymptotically nonexpansive mapping with a sequence {kn} ⊂ [, +∞) and
limn→∞ kn =  such that F(T) �= ∅. Let f be a contraction on C with coefficient  < α < . For
the arbitrary initial point x ∈ C, let {xn} be generated by

xn+ = αnf (xn) ⊕ ( – αn)Tnxn, ∀n ≥ , ()

where {αn} ⊂ (, ) satisfies the following conditions:
(i) limn→∞ αn = ;

(ii)
∑∞

n= αn = ∞;
(iii) limn→∞ kn–

αn
= ;

(iv) T satisfies the asymptotically regularity limn→∞ d(xn, Tnxn) = .
Then {xn} converges strongly as n → ∞ to x̃ such that x̃ = PF(T)f (x̃), which is equivalent to
the variational inequality ().

Proof We first show that the sequence {xn} is bounded. By condition (iv), for any  < ε <
 – α and sufficient large n ≥ , we have kn –  ≤ εαn. For any p ∈ F(T), we have

d(xn+, p) = d
(
αnf (xn) ⊕ ( – αn)Tnxn, p

)

≤ αnd
(
f (xn), p

)
+ ( – αn)d

(
Tnxn, p

)

≤ αn
(
d
(
f (xn), f (p)

)
+ d

(
f (p), p

))
+ ( – αn)d

(
Tnxn, p

)

≤ αnαd(xn, p) + αnd
(
f (p), p

)
+ ( – αn)knd(xn, p)
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=
(
kn( – αn) + ααn

)
d(xn, p) + αnd

(
f (p), p

)

=
(
 + (kn – ) – (kn – α)αn

)
d(xn, p) + αnd

(
f (p), p

)

≤ (
 + εαn – (kn – α)αn

)
d(xn, p) + αnd

(
f (p), p

)

=
(
 – (kn – α – ε)αn

)
d(xn, p) + αnd

(
f (p), p

)

≤ (
 – ( – α – ε)αn

)
d(xn, p) + αnd

(
f (p), p

)

≤ max

{
d(xn, p),


( – α – ε)

d
(
f (p), p

)
}

,

for all n ∈ N. This implies that {xn} is bounded, and so are {Tnxn} and {f (xn)}. Next, we
claim that limn→∞ d(xn, Txn) = . Indeed we have

d(xn+, xn) ≤ d
(
xn+, Tnxn

)
+ d

(
Tnxn, xn

)

= d
(
αnf (xn) ⊕ ( – αn)Tnxn, Tnxn

)
+ d

(
Tnxn, xn

)

≤ αnd
(
f (xn), Tnxn

)
+ d

(
Tnxn, xn

) → ,

d
(
xn, Tn–xn

)
= d

(
αn–f (xn–) ⊕ ( – αn–)Tn–xn–, Tn–xn

)

≤ αn–d
(
f (xn–), Tn–xn

)
+ ( – αn–)d

(
Tn–xn–, Tn–xn

)

≤ αn–d
(
f (xn–), Tn–xn

)
+ ( – αn–)kn–d(xn–, xn) → .

Therefore

d(xn, Txn) ≤ d
(
xn, Tnxn

)
+ d

(
Tnxn, Txn

)

= d
(
xn, Tnxn

)
+ knd

(
Tn–xn, xn

) → .

By Theorem ., we have

lim sup
n→∞

〈––––→
f (x̃)x̃,

––→
xnx̃

〉 ≤ . ()

Finally, we prove that xn → x̃ as n → ∞. For any n ∈ N, we set yn = αnx̃ ⊕ ( – αn)Tnxn. It
follows from Lemmas . and .(i), (ii) that

d(xn+, x̃) = d(αnf (xn) ⊕ ( – αn)Tnxn, x̃
)

≤ d(yn, x̃) + 〈–––––→xn+yn,
––––→
xn+x̃〉

≤ (
αnd(x̃, x̃) + ( – αn)d

(
Tnxn, x̃

))

+ 
[
αn

〈––––––→
f (xn)yn,

––––→
xn+x̃

〉
+ ( – αn)

〈––––––→
Tnxnyn,

––––→
xn+x̃

〉]

≤ ( – αn)k
nd(xn, x̃) + 

[
αnαn

〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉

+ αn( – αn)
〈–––––––––→
f (xn)Tnxn,

––––→
xn+x̃

〉

+ αn( – αn)
〈–––––→
Tnxnx̃,

––––→
xn+x̃

〉

+ ( – αn)〈–––––––––→
TnxnTnxn,

––––→
xn+x̃

]
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≤ ( – αn)k
nd(xn, x̃) + 

[
αnαn

〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉

+ αn( – αn)
〈–––––––––→
f (xn)Tnxn,

––––→
xn+x̃

〉

+ αn( – αn)
〈–––––→
Tnxnx̃,

––––→
xn+x̃

〉

+ ( – αn)d
(
Tnxn, Tnxn

)
d(xn+, x̃)

]

= ( – αn)k
nd(xn, x̃) + 

[
αnαn

〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉

+ αn( – αn)
〈–––––––––→
f (xn)Tnxn,

––––→
xn+x̃

〉

+ αn( – αn)
〈–––––→
Tnxnx̃,

––––→
xn+x̃

〉]

= ( – αn)k
nd(xn, x̃) + αn

〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉

= ( – αn)k
nd(xn, x̃) + αn

〈––––––––→
f (xn)f (x̃),

––––→
xn+x̃

〉

+ αn
〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉

≤ ( – αn)k
nd(xn, x̃) + αnαd(xn, x̃)d(xn+, x̃)

+ αn
〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉

≤ ( – αn)k
nd(xn, x̃) + αnα

(
d(xn, x̃) + d(xn+, x̃)

)

+ αn
〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
.

Since {αn} and {xn} are bounded, there is M >  such that


 – ααn

k
nd(xn, x̃) ≤ M.

It follows that

d(xn+, x̃) ≤ ( – αn)k
n + ααn

 – ααn
d(xn, x̃) +

αn

 – ααn

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉

≤ ( – αn)k
n + ααn

 – ααn
d(xn, x̃) +

αn

 – ααn

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
+ α

nM

≤
(

 –
 – ααn – ( – αn)k

n
 – ααn

)
d(xn, x̃) +

αn

 – ααn

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
+ α

nM

≤
(

 –
 – ααn – ( – αn)k

n
 – ααn

)
d(xn, x̃)

+ αn

(


 – ααn

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
+ α

nM
)

.

Now, taking γn = –ααn–(–αn)k
n

–ααn
, δn = αn( 

–ααn
〈––––→
f (x̃)x̃,

––––→
xn+x̃〉+α

nM); applying Lemma .
and (), we can conclude that xn → x̃. �

If T : C → C in Theorem . is a nonexpansive mapping, we can obtain the following
result immediately.

Corollary . [, Theorem .] Let C be a closed convex subset of a complete CAT()
space X, and let T : C → C be a nonexpansive mapping with F(T) �= ∅. Let f be a con-
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traction on C with coefficient  < α < . For the arbitrary initial point x ∈ C, let {xn} be
generated by

xn+ = αnf (xn) ⊕ ( – αn)Txn, ∀n ≥ , ()

where {αn} ⊂ (, ) satisfies the following conditions:
(i) limn→∞ αn = ;

(ii)
∑∞

n= αn = ∞;
(iii) either

∑∞
n= |αn+ – αn| < ∞ or limn→∞(αn+/αn) = .

Then {xn} converges strongly as n → ∞ to x̃ such that x̃ = PF(T)f (x̃) which is equivalent to
the variational inequality ().
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