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Abstract
The main aim of this paper is to study and establish some new coincidence point and
common fixed point theorems for solutions of the stationary Schrödinger equation
on cones. An interesting application is to investigate the existence and uniqueness for
solutions of the Dirichlet problem with respect to the Schrödinger operator on cones
and the growth property of them.
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1 Introduction and main results
Let R and R+ be the set of all real numbers and the set of all positive real numbers, re-
spectively. We denote by Rn (n ≥ ) the n-dimensional Euclidean space. A point in Rn is
denoted by P = (X, xn), X = (x, x, . . . , xn–). The Euclidean distance of two points P and Q
in Rn is denoted by |P – Q|. Also |P – O| with the origin O of Rn is simply denoted by |P|.
The boundary, the closure, and the complement of a set S in Rn are denoted by ∂S, S, and
Sc, respectively.

For P ∈ Rn and r > , let B(P, r) denote the open ball with center at P and radius r in Rn.
We introduce a system of spherical coordinates (r,�), � = (θ, θ, . . . , θn–), in Rn which

are related to cartesian coordinates (x, x, . . . , xn–, xn) by xn = r cos θ.
The unit sphere and the upper half unit sphere in Rn are denoted by Sn– and Sn–

+ , re-
spectively. For simplicity, a point (,�) on Sn– and the set {�; (,�) ∈ �} for a set �,
� ⊂ Sn–, are often identified with � and �, respectively. By Cn(�), we denote the set
R+ × � in Rn with the domain � on Sn– (n ≥ ). We call it a cone. Then Tn is a special
cone obtained by putting � = Sn–

+ . We denote the sets I × � and I × ∂� with an inter-
val on R by Cn(�; I) and Sn(�; I). By Sn(�; r) we denote Cn(�) ∩ Sr . By Sn(�) we denote
Sn(�; (, +∞)), which is ∂Cn(�) – {O}.

We shall say that a set E ⊂ Cn(�) has a covering {rj, Rj} if there exists a sequence of balls
{Bj} with centers in Cn(�) such that E ⊂ ⋃∞

j= Bj, where rj is the radius of Bj and Rj is the
distance from the origin to the center of Bj.

Let Cn(�) be an arbitrary domain in Rn and Aa denote the class of nonnegative radial
potentials a(P), i.e.  ≤ a(P) = a(r), P = (r,�) ∈ Cn(�), such that a ∈ Lb

loc(Cn(�)) with some
b > n/ if n ≥  and with b =  if n =  or n = .

This article is devoted to the stationary Schrödinger equation

Scha u(P) = –�u(P) + a(P)u(P) =  for P ∈ Cn(�),
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where � is the Laplace operator and a ∈ Aa. The class of these solution is denoted by
H(a,�). Note that they are the (classical) harmonic functions on cones in the case a = .
Under these assumptions the operator Scha can be extended in the usual way from the
space C∞

 (Cn(�)) to an essentially self-adjoint operator on L(Cn(�)) (see [], Chapter ).
We will denote it Scha as well. The latter has a Green-Sch function Ga

�(P, Q). Here Ga
�(P, Q)

is positive on Cn(�) and its inner normal derivative ∂Ga
�(P, Q)/∂nQ ≥ , where ∂/∂nQ de-

notes the differentiation at Q along the inward normal into Cn(�). We denote this deriva-
tive by PIa

�(P, Q), which is called the Poisson-Sch kernel with respect to Cn(�).
For positive functions h and h, we say that h � h if h ≤ Mh for some constant

M > . If h � h and h � h, we say that h ≈ h.
Let � be a domain on Sn– with smooth boundary. Consider the Dirichlet problem

(�n + λ)ϕ =  on �,

ϕ =  on ∂�,

where �n is the spherical part of the Laplace opera �n

�n =
n – 

r
∂

∂r
+

∂

∂r +
�n

r .

We denote the least positive eigenvalue of this boundary value problem by λ and the nor-
malized positive eigenfunction corresponding to λ by ϕ(�),

∫
�

ϕ(�) dS = . In order to
ensure the existence of λ and a smooth ϕ(�). We put a rather strong assumption on �:
if n ≥ , then � is a C,α-domain ( < α < ) on Sn– surrounded by a finite number of
mutually disjoint closed hypersurfaces (e.g. see [], pp.-, for the definition of a C,α-
domain).

For any (,�) ∈ �, we have (see [], pp.-)

ϕ(�) ≈ dist
(
(,�), ∂Cn(�)

)
,

which yields

δ(P) ≈ rϕ(�), (.)

where P = (r,�) ∈ Cn(�) and δ(P) = dist(P, ∂Cn(�)).
We consider solutions of an ordinary differential equation

–Q′′(r) –
n – 

r
Q′(r) +

(
λ

r + a(r)
)

Q(r) = ,  < r < ∞. (.)

It is well known (see, for example, []) that if the potential a ∈ Aa, then (.) has a funda-
mental system of positive solutions {V , W } such that V is nondecreasing with (see [–])

 ≤ V (+) ≤ V (r) as r → +∞,

and W is monotonically decreasing with

+∞ = W (+) > W (r) ↘  as r → +∞.
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We will also consider the class Ba, consisting of the potentials a ∈ Aa such that there
the finite limit limr→∞ ra(r) = k ∈ [,∞) exists, and moreover, r–|ra(r) – k| ∈ L(,∞).
If a ∈ Ba, then the (sub-) superfunctions are continuous (see []).

In the rest of paper, we assume that a ∈ Ba and we shall suppress denotation of this
assumption for simplicity.

Denote

ι±k =
 – n ± √

(n – ) + (k + λ)


,

then the solutions to (.) have the asymptotic (see [])

V (r) ≈ rι+k , W (r) ≈ rι–k , as r → ∞. (.)

We denote the Green-Sch potential with a positive measure v on Cn(�) by

Ga
�ν(P) =

∫

Cn(�)
Ga

�(P, Q) dν(Q).

The Poisson-Sch integral PIa
�μ(P) (resp. PIa

�[g](P)) �≡ +∞ (P ∈ Cn(�)) of μ (resp. g) on
Cn(�) is defined as follows:

PIa
�μ(P) =


cn

∫

Sn(�)
PIa

�(P, Q) dμ(Q)

(

resp. PIa
�[g](P) =


cn

∫

Sn(�)
PIa

�(P, Q)g(Q) dσQ

)

,

where

PIa
�(P, Q) =

∂Ga
�(P, Q)
∂nQ

, cn =

{
π , n = ,
(n – )sn, n ≥ ,

μ is a positive measure on ∂Cn(�) (resp. g is a continuous function on ∂Cn(�) and dσQ is
the surface area element on Sn(�)) and ∂/∂nQ denotes the differentiation at Q along the
inward normal into Cn(�).

We define the positive measure μ′ on Rn by

dμ′(Q) =

{
t–W (t) ∂ϕ(�)

∂n�
dμ(Q), Q = (t,�) ∈ Sn(�; (, +∞)),

, Q ∈ Rn – Sn(�; (, +∞)).

Remark  If dμ(Q) = |g(Q)|dσQ (Q = (t,�) ∈ Sn(�)), where g(Q) is a continuous function
on ∂Cn(�), then we have (see [, ])

dμ′′(Q) =

{
|g(Q)|t–W (t) ∂ϕ(�)

∂n�
dσQ, Q = (t,�) ∈ Sn(�; (, +∞)),

, Q ∈ Rn – Sn(�; (, +∞)).

Let ε > ,  ≤ α ≤ n, and λ be any positive measure on Rn having finite total mass. For
each P = (r,�) ∈ Rn – {O}, the maximal function M(P;λ,α) is defined by (see [–])

M(P;λ,α) = sup
<ρ< r



λ
(
B(P,ρ)

)
V (ρ)W (ρ)ρα–.
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The set

{
P = (r,�) ∈ Rn – {O}; M(P;λ,α)V –(r)W –(r)r–α > ε

}

is denoted by E(ε;λ,α).

As on cones, Qiao [], Corollaries . and ., have proved the following result. For
similar results, we refer the reader to papers by Qiao and Deng (see [, ]).

Theorem A Let g be a continuous function on ∂Cn(�) satisfying

∫

Sn(�)

|g(t,�)|
 + r–ι– + dσQ < ∞. (.)

Then PI
�[g](P) ∈ H(,�) and

lim
r→∞,P∈Cn(�)

r–ι+ ϕn–(�)PI
�[g](P) = 

(
P = (r,�) ∈ Cn(�)

)
. (.)

Theorem B Let g be a continuous function on ∂Cn(�) satisfying (.). Then the function
PI

�[g](P) (P = (r,�)) satisfies

PI
�[g] ∈ C(Cn(�)

) ∩ C(Cn(�)
)
,

PI
�[g](P) ∈ H(,�),

PI
�[g] = g on ∂Cn(�),

and (.) holds.

Now we state our first result.

Theorem  Let ε be a sufficiently small positive number and μ be a positive measure on
∂Cn(�) such that

PIa
�μ(P) �≡ +∞ (

P = (r,�) ∈ Cn(�)
)
.

Then there exists a covering {rj, Rj} of E(ε;μ′, n – α) (⊂ Cn(�)) satisfying

∞∑

j=

(
rj

Rj

)–α V (Rj)W (Rj)
V (rj)W (rj)

< ∞, (.)

such that

lim
r→∞,P∈Cn(�)–E(ε;μ′ ,n–α)

V –(r)ϕα–(�)PIa
�μ(P) = 

(
P = (r,�) ∈ Cn(�)

)
.

Corollary  Let μ be a positive measure on Sn(�) such that PIa
�μ(P) �≡ +∞ (P ∈ Cn(�)).

Then for a sufficiently large L and a sufficiently small ε we have

{
P ∈ Cn

(
�; (L, +∞)

)
; PIa

�μ(P) ≥ V (r)ϕ–α(�)
} ⊂ E

(
ε;μ′, n – α

)
.
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From (.) and Remark  we know that the following result generalizes Theorem A in
the case dμ(Q) = |g(Q)|dσQ.

Corollary  Let g be a continuous function on ∂Cn(�) satisfying
∫

Sn(�)


 + tW –(t)

dμ(Q) < ∞. (.)

Then PIa
�μ(P) ∈ H(a,�) and

lim
r→∞,P∈Cn(�)

V –(r)ϕn–(�)PIa
�μ(P) = 

(
P = (r,�) ∈ Cn(�)

)
.

Our next aim is concerned with the solutions of the Dirichlet problem for the Schrö-
dinger operator Scha on Cn(�) and the growth property of them.

Theorem  Let α, ε be defined as in Theorem  and g be a continuous function on ∂Cn(�)
satisfying

∫ ∞


t–V –(t)

(∫

∂�

∣
∣g(t,�)

∣
∣dσ�

)

dt < +∞, (.)

where dσ�
is the surface area element of ∂� at � ∈ ∂�. Then the function PIa

�[g](P) (P =
(r,�)) satisfies

PIa
�[g] ∈ C(Cn(�)

) ∩ C(Cn(�)
)
,

PIa
�[g] ∈ H(a,�),

PIa
�[g] = g on ∂Cn(�),

and there exists a covering {rj, Rj} of E(ε;μ′′,α) satisfying (.) such that

lim
r→∞,P∈Cn(�)–E(ε;μ′′ ,α)

V –(r)ϕα–(�)PIa
�[g](P) = . (.)

Remark  In the case a = , (.) is equivalent to (.) from (.). In the case α = n, (.)
is a finite sum, then the set E(ε;μ′′, ) is a bounded set and (.) holds in Cn(�), which
generalizes Theorem B.

2 Some lemmas
Lemma  (see [], p.)

PIa
�(P, Q) ≈ t–V (t)W (r)ϕ(�)

∂ϕ(�)
∂n�

(.)
(

resp. PIa
�(P, Q) ≈ V (r)t–W (t)ϕ(�)

∂ϕ(�)
∂n�

)

, (.)

for any P = (r,�) ∈ Cn(�) and any Q = (t,�) ∈ Sn(�) satisfying  < t
r ≤ 

 (resp.  < r
t ≤ 

 );

PI
�(P, Q) � ϕ(�)

tn–
∂ϕ(�)
∂n�

+
rϕ(�)

|P – Q|n
∂ϕ(�)
∂n�

, (.)

for any P = (r,�) ∈ Cn(�) and any Q = (t,�) ∈ Sn(�; ( 
 r, 

 r)).
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Lemma  Let μ be a positive measure on Sn(�) such that there is a sequence of points
Pi = (ri,�i) ∈ Cn(�), ri → +∞ (i → +∞) satisfying PIa

�μ(Pi) < +∞ (i = , , . . .). Then for a
positive number l,

∫

Sn(�;(l,+∞))

W (t)
t

∂ϕ(�)
∂n�

dμ(Q) < +∞ (.)

and

lim
R→+∞

W (R)
V (R)

∫

Sn(�;(,R))

V (t)
t

∂ϕ(�)
∂n�

dμ(Q) = . (.)

Proof Take a positive number l satisfying P = (r,�) ∈ Cn(�), r ≤ 
 l. Then from (.),

we have

V (r)ϕ(�)
∫

Sn(�;(l,+∞))

W (t)
t

∂ϕ(�)
∂n�

dμ(Q) �
∫

Sn(�)
PIa

�(P, Q) dμ(Q) < +∞,

which gives (.). For any positive number ε, from (.), we can take a number Rε such
that

∫

Sn(�;(Rε ,+∞))

W (t)
t

∂ϕ(�)
∂n�

dμ(Q) <
ε


.

If we take a point Pi = (ri,�i) ∈ Cn(�), ri ≥ 
 Rε , then we have from (.)

W (ri)ϕ(�i)
∫

Sn(�;(,Rε ])

V (t)
t

∂ϕ(�)
∂n�

dμ(Q) �
∫

Sn(�)
PIa

�(P, Q) dμ(Q) < +∞.

If R (R > Rε ) is sufficiently large, then

W (R)
V (R)

∫

Sn(�;(,R))

V (t)
t

∂ϕ(�)
∂n�

dμ(Q)

� W (R)
V (R)

∫

Sn(�;(,Rε ])

V (t)
t

∂ϕ(�)
∂n�

dμ(Q) +
∫

Sn(�;(Rε ,R))

W (t)
t

∂ϕ(�)
∂n�

dμ(Q)

� W (R)
V (R)

∫

Sn(�;(,Rε ])

V (t)
t

∂ϕ(�)
∂n�

dμ(Q) +
∫

Sn(�;(Rε ,+∞))

W (t)
t

∂ϕ(�)
∂n�

dμ(Q)

� ε,

which gives (.). �

Lemma  Let ε > ,  ≤ α ≤ n and λ be any positive measure on Rn having a finite total
mass. Then E(ε;λ,α) has a covering {rj, Rj} (j = , , . . .) satisfying

∞∑

j=

(
rj

Rj

)–α V (Rj)W (Rj)
V (rj)W (rj)

< ∞.

Proof Set

Ej(ε;λ,β) =
{

P = (r,�) ∈ E(ε;λ,β) : j ≤ r < j+} (j = , , , . . .).
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If P = (r,�) ∈ Ej(ε;λ,β), then there exists a positive number ρ(P) such that

(
ρ(P)

r

)–α V (r)W (R)
V (ρ(P))W (ρ(P))

≈
(

ρ(P)
r

)n–α

≤ λ(B(P,ρ(P)))
ε

.

Since Ej(ε;λ,β) can be covered by the union of a family of balls {B(Pj,i,ρj,i) : Pj,i ∈
Ek(ε;λ,β)} (ρj,i = ρ(Pj,i)). By the Vitali lemma (see []), there exists �j ⊂ Ej(ε;λ,β),
which is at most countable, such that {B(Pj,i,ρj,i) : Pj,i ∈ �j} are disjoint and Ej(ε;λ,β) ⊂
⋃

Pj,i∈�j
B(Pj,i, ρj,i).

Therefore

∞⋃

j=

Ej(ε;λ,β) ⊂
∞⋃

j=

⋃

Pj,i∈�j

B(Pj,i, ρj,i).

On the other hand, note that
⋃

Pj,i∈�j
B(Pj,i,ρj,i) ⊂ {P = (r,�) : j– ≤ r < j+}, so that

∑

Pj,i∈�j

(
ρj,i

|Pj,i|
)–α V (|Pj,i|)W (|Pj,i|)

V (ρj,i)W (ρj,i)
≤ n–α

ε
λ
(
Cn

(
�;

[
j–, j+))).

Hence we obtain

∞∑

j=

∑

Pj,i∈�j

(
ρj,i

|Pj,i|
)–α V (|Pj,i|)W (|Pj,i|)

V (ρj,i)W (ρj,i)
≈

∞∑

j=

∑

Pj,i∈�j

(
ρj,i

|Pj,i|
)n–α

≤
∞∑

j=

λ(Cn(�; [j–, j+)))
ε

≤ λ(Rn)
ε

.

Since E(ε;λ,β) ∩ {P = (r,�) ∈ Rn; r ≥ } =
⋃∞

j= Ej(ε;λ,β). Then E(ε;λ,β) is finally cov-
ered by a sequence of balls {B(Pj,i,ρj,i), B(P, )} (j = , , . . . ; i = , , . . .) satisfying

∑

j,i

(
ρj,i

|Pj,i|
)–α V (|Pj,i|)W (|Pj,i|)

V (ρj,i)W (ρj,i)
≈

∑

j,i

(
ρj,i

|Pj,i|
)n–α

≤ λ(Rn)
ε

+ n–α < +∞,

where B(P, ) (P = (, , . . . , ) ∈ Rn) is the ball which covers {P = (r,�) ∈ Rn; r < }. �

3 Proof of Theorem 1
Take any point P = (r,�) ∈ Cn(�; (R, +∞)) – E(ε;μ′,α), where R (≤ 

 r) is a sufficiently
large number and ε is a sufficiently small positive number.

Write

PIa
�μ(P) = PIa

�()(P) + PIa
�()(P) + PIa

�()(P),

where

PIa
�()(P) =


cn

∫

Sn(�;(, 
 r])

PIa
�(P, Q) dμ(Q),
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PIa
�()(P) =


cn

∫

Sn(�;( 
 r, 

 r))
PIa

�(P, Q) dμ(Q),

and

PIa
�()(P) =


cn

∫

Sn(�;[ 
 r,∞))

PIa
�(P, Q) dμ(Q).

The relation Ga
�(P, Q) ≤ G

�(P, Q) implies this inequality (see [])

PIa
�(P, Q) ≤ PI

�(P, Q). (.)

By (.), (.), and Lemma , we have the following growth estimates:

PIa
�()(P) � V (r)ϕ(�)

W ( 
 r)

V ( 
 r)

∫

Sn(�;(, 
 r])

V (t)
t

∂ϕ(�)
∂n�

dμ(Q) � εV (r)ϕ(�), (.)

PIa
�()(P) � V (r)ϕ(�)

∫

Sn(�;[ 
 r,∞))

W (t)
t

∂ϕ(�)
∂n�

dμ(Q) � εV (r)ϕ(�). (.)

By (.) and (.), we write

PIa
�()(P) � PIa

�()(P) + PIa
�()(P),

where

PIa
�()(P) =

∫

Sn(�;( 
 r, 

 r))
V (t)ϕ(�) dμ′(Q)

and

PIa
�()(P) =

∫

Sn(�;( 
 r, 

 r))

trϕ(�)
|P – Q|nW (t)

dμ′(Q).

We first have

PIa
�()(P) � εV (r)ϕ(�) (.)

from Lemma .
Next, we shall estimate PIa

�()(P). Take a sufficiently small positive number c such that
Sn(�; ( 

 r, 
 r)) ⊂ B(P, 

 r) for any P = (r,�) ∈ �(c), where

�(c) =
{

P = (r,�) ∈ Cn(�); inf
z∈∂�

∣
∣(,�) – (, z)

∣
∣ < c,  < r < ∞

}
,

and divide Cn(�) into two sets �(c) and Cn(�) – �(c).
If P = (r,�) ∈ Cn(�) – �(c), then there exists a positive c′ such that |P – Q| ≥ c′r for any

Q ∈ Sn(�), and hence

PIa
�()(P) � εV (r)ϕ(�) (.)

from Lemma .
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We shall consider the case P ∈ �(c). Now put

Hi(P) =
{

Q ∈ Sn

(

�;
(




r,



r
))

; i–δ(P) ≤ |P – Q| < iδ(P)
}

.

Since Sn(�) ∩ {Q ∈ Rn : |P – Q| < δ(P)} = ∅, we have

PIa
�()(P) =

i(P)∑

i=

∫

Hi(P)

trϕ(�)
|P – Q|nW (t)

dμ′(Q),

where i(P) is a positive integer satisfying i(P)–δ(P) ≤ r
 < i(P)δ(P).

By (.) we have rϕ(�) � δ(P) (P = (r,�) ∈ Cn(�)), and hence

∫

Hi(P)

trϕ(�)
|P – Q|nW (t)

dμ′(Q) � r–α

W (r)
ϕ–α(�)

μ′(Hi(P))
{iδ(P)}n–α

for i = , , , . . . , i(P).
Since P = (r,�) /∈ E(ε;μ′,α), we have from (.)

μ′(Hi(P))
{iδ(P)}n–α

� μ′(B
(
P, iδ(P)

))
V

(
iδ(P)

)
W

(
iδ(P)

){
iδ(P)

}α–

� M
(
P;μ′,α

)

≤ εεV (r)W (r)rα– (
i = , , , . . . , i(P) – 

)

and

μ′(Hi(P)(P))
{iδ(P)}α � μ′

(

B
(

P,
r


))

V
(

r


)

W
(

r


)(
r


)α–

≤ εV (r)W (r)rα–.

So

PIa
�()(P) � εV (r)ϕ–α(�). (.)

Combining (.)-(.), we finally find that if L is sufficiently large and ε is sufficiently
small, then PIa

�μ(P) = o(V (r)ϕ–α(�)) as r → ∞, where P = (r,�) ∈ Cn(�; (R, +∞)) –
E(ε;μ′,α). Finally, there exists an additional finite ball B covering Cn(�; (, R]), which,
together with Lemma , gives the conclusion of Theorem .

4 Proof of Theorem 2
For any fixed P = (r,�) ∈ Cn(�), take a number R satisfying R > max(, 

 r). By (.) and
(.), we have


cn

∫

Sn(�;(R,+∞))
PIa

�(P, Q)
∣
∣g(Q)

∣
∣dσQ

� V (r)ϕ(�)
∫ ∞

R
t–V –(t)

(∫

∂�

∣
∣g(t,�)

∣
∣dσ�

)

dt < ∞.

Thus PIa
�[g](P) is finite for any P ∈ Cn(�). Since PIa

�(P, Q) ∈ H(a,�) ∈ H(a,�) for any
Q ∈ Sn(�), PIa

�[g](P) ∈ H(a,�).
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Now we study the boundary behavior of PIa
�[g](P). Let Q′ = (t′,�′) ∈ ∂Cn(�) be any fixed

point and L be any positive number such that L > max{t′ + , 
 R}.

Set χS(L) is the characteristic function of S(L) = {Q = (t,�) ∈ ∂Cn(�), t ≤ L} and write

PIa
�[g](P) = PIa

�()[g](P) + PIa
�()[g](P),

where

PIa
�()[g](P) =


cn

∫

Sn(�;(, 
 L])

PIa
�(P, Q)g(Q) dσQ

and

PIa
�()[g](P) =


cn

∫

Sn(�;( 
 L,∞))

Pa
�(P, Q)g(Q) dσQ.

Notice that PIa
�()[g](P) is the Poisson-Sch integral of g(Q)χS( 

 L), we have

lim
P→Q′ ,P∈Cn(�)

PIa
�()[g](P) = g

(
Q′).

Since lim�→�′ ϕ(�) = , PIa
�()[g](P) = O(V (r)ϕ(�)), and therefore tends to zero. So the

function PIa
�[g](P) can be continuously extended to Cn(�) such that

lim
P→Q′ ,P∈Cn(�)

PIa
�[g](P) = g

(
Q′)

for any Q′ = (t′,�′) ∈ ∂Cn(�) from the arbitrariness of L. Further, (.) is the conclusion of
Theorem . Thus we complete the proof of Theorem .

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the manuscript and read and approved the final manuscript.

Author details
1School of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou, 450046,
P.R. China. 2Department of Mathematics, Istanbul University, Istanbul, 34470, Turkey.

Acknowledgements
The last half of this work was done while the second author stayed at Istanbul University during the program ‘Nonlinear
Partial Differential Equations’. We are grateful to Istanbul University and the steering committee of the program. The
authors are very thankful to the anonymous referees for their valuable comments and constructive suggestions, which
helped to improve the quality of the paper.

Received: 29 November 2014 Accepted: 29 January 2015

References
1. Levin, B, Kheyfits, A: Asymptotic behavior of subfunctions of time-independent Schrödinger operator. In: Some

Topics on Value Distribution and Differentiability in Complex and P-adic Analysis, Chapter 11, pp. 323-397. Science
Press, Beijing (2008)

2. Gilbarg, D, Trudinger, NS: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1977)
3. Miranda, C: Partial Differential Equations of Elliptic Type. Springer, Berlin (1970)
4. Verzhbinskii, GM, Maz’ya, VG: Asymptotic behavior of solutions of elliptic equations of the second order close to a

boundary. I. Sib. Mat. Zh. 12(2), 874-899 (1971)
5. Xue, GX: A remark on the a-minimally thin sets associated with the Schrödinger operator. Bound. Value Probl. 2014,

133 (2014)
6. Xue, GX: Rarefied sets at infinity associated with the Schrödinger operator. J. Inequal. Appl. 2014, 247 (2014)

RETRACTED A
RTIC

LE



Xue and Yuzbasi Fixed Point Theory and Applications  (2015) 2015:34 Page 11 of 11

7. Yoshida, H: Nevanlinna norm of a subharmonic function on a cone or on a cylinder. Proc. Lond. Math. Soc. (3) 54(2),
267-299 (1987)

8. Simon, B: Schrödinger semigroups. Bull. Am. Math. Soc. 7(2), 447-526 (1982)
9. Hartman, P: Ordinary Differential Equations. Wiley, New York (1964)
10. Miyamoto, I, Yoshida, H: On a-minimally thin sets at infinity in a cone. Hiroshima Math. J. 37(1), 61-80 (2007)
11. Miyamoto, I, Yoshida, H: On harmonic majorization of the Martin function at infinity in a cone. Czechoslov. Math. J.

55(4), 1041-1054 (2005)
12. Qiao, L, Deng, GT: Integral representations of harmonic functions in a cone. Sci. Sin., Math. 41(6), 535-546 (2011)

(in Chinese)
13. Qiao, L, Pan, GS: Generalization of the Phragmén-Lindelöf theorems for subfunctions. Int. J. Math. 24(8), 1350062

(2013)
14. Qiao, L, Ren, YD: Integral representations for the solutions of infinite order of the stationary Schrödinger equation in a

cone. Monatshefte Math. 173(4), 593-603 (2014)
15. Qiao, L, Zhao, T: Boundary limits for fractional Poisson a-extensions of Lp boundary function in a cone. Pac. J. Math.

272(1), 227-236 (2014)
16. Qiao, L: Integral representations for harmonic functions of infinite order in a cone. Results Math. 61(4), 63-74 (2012)
17. Qiao, L, Deng, GT: A lower bound of harmonic functions in a cone and its application. Sci. Sin., Math. 44(6), 671-684

(2014) (in Chinese)
18. Qiao, L, Deng, GT: The Riesz decomposition theorem for superharmonic functions in a cone and its application. Sci.

Sin., Math. 44(12), 1247-1256 (2014) (in Chinese)
19. Stein, EM: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)
20. Ancona, A: First eigenvalues and comparison of Green’s functions for elliptic operators on manifolds or domains.

J. Anal. Math. 72(3), 45-92 (1997)

RETRACTED A
RTIC

LE


	Fixed point theorems for solutions of the stationary Schrödinger equation on cones
	Abstract
	Keywords

	Introduction and main results
	Some lemmas
	Proof of Theorem 1
	Proof of Theorem 2
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References




