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Abstract
In this paper, several kinds of generalized vector quasi-equilibrium problems are
introduced and studied in abstract convex spaces. Using the properties of �-convex
and KC-maps, some sufficient conditions are given to guarantee the existence of
solutions in connection with these generalized vector quasi-equilibrium problems. As
applications, some existence theorems of solutions for the generalized semi-infinite
programs with vector quasi-equilibrium constraints are also given.
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1 Introduction
It is well known that the vector quasi-equilibrium problem is an important general-
ization of the vector equilibrium problem which provides a unified model for vector
quasi-variational inequalities, vector quasi-complementarity problems, vector optimiza-
tion problems and vector saddle point problems. In , Fu [] established the existence
theorems for the generalized vector quasi-equilibrium problems and the set-valued vec-
tor equilibrium problems. In , Ansari and Fabián [] considered a generalized vector
quasi-equilibrium problem with or without involving �-condensing mappings and proved
the existence of its solution in real topological vector spaces. In , Li et al. [] studied
the existence of solutions for two classes of generalized vector quasi-equilibrium prob-
lems. Recently, Lin et al. [] introduced and studied a class of generalized vector quasi-
equilibrium problems involving pseudomonotonicity hemicontinuity mappings under dif-
ferent conditions in topological vector spaces. Lin et al. [] proved the existence of equilib-
ria for generalized abstract economy with a lower semicontinuous constraint correspon-
dence and a fuzzy constraint correspondence defined on a noncompact/nonparacompact
strategy set. They also considered a systems of generalized vector quasi-equilibrium prob-
lems in topological vector spaces. Very recently, Yang and Pu [] studied the existence and
essential components in connection with the set of solutions for the system of strong vec-
tor quasi-equilibrium problems. Fu and Wang [] considered the generalized strong vector
quasi-equilibrium problems with domination structure. On the other hand, Ding [] stud-
ied the existence of solutions for generalized vector quasi-equilibrium problems in locally
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G-convex spaces. Balaj and Lin [] investigated existence of solutions for the generalized
equilibrium problems in G-convex spaces.

The abstract convex space, introduced by Park [] in , includes the convex subset
of a topological vector space, the convex space, the H-space, and the G-convex space as
special cases. Moreover, Park [] investigated the property of the abstract convex spaces
and showed some applications. Recently, several authors have focused on the studies con-
cerned with the set-valued maps and optimization problems in abstract convex spaces
with applications. For instance, Cho et al. [] studied some coincidence theorems and
minimax inequalities in abstract convex spaces. Yang et al. [] proved some maximal ele-
ment theorems for set-valued maps in abstract convex spaces with applications. Yang and
Huang [] gave some coincidence theorems for compact and noncompact KC-maps in
abstract convex spaces with applications. Lu and Hu [] established a new collectively
fixed point theorem in noncompact abstract convex spaces with applications to equilibria
for generalized abstract economies. Park [] gave some comments on fixed points, max-
imal elements, and equilibria of economies in abstract convex spaces. Yang and Huang
[] studied the existence of solutions for the generalized vector equilibrium problems in
abstract convex spaces. At the end of the paper [], Yang and Huang pointed out that
it is an interesting and important work to study some types of generalized vector quasi-
equilibrium problems with moving cones in topological spaces. To the best of our knowl-
edge, it seems that there is no work concerned with the study of the generalized vector
quasi-equilibrium problems in abstract convex spaces. Therefore, it is natural and inter-
esting to study some generalized vector quasi-equilibrium problems in abstract convex
spaces under some suitable conditions.

On the other hand, we know that semi-infinite programs are constrained optimization
problems in which the number of decision variables is finite, but the number of constraints
is infinite. Since John [] initiated semi-infinite programming precisely to deduce impor-
tant results about two such geometric problems: the problems of covering a compact body
in finite dimensional spaces by the minimum-volume disk and the minimum-volume ellip-
soid, many researchers have been investigated the theory, applications and methods for the
semi-infinite programming (see, for example, [–]). As a generalization of semi-infinite
programming, the generalized semi-infinite programming has been become a vivid field
of active research in mathematical programming in recent years due to its important ap-
plications to numerous real-life problems such as Chebyshev approximation, design cen-
tering, robust optimization, optimal layout of an assembly line, time minimal control, and
disjunctive optimization (see [] and the references therein). Therefore, it is important
and interesting to study the existence of solutions concerned with some generalized semi-
infinite programs with vector quasi-equilibrium constraints in abstract convex spaces.

The main purpose of this paper is to study several classes of generalized vector quasi-
equilibrium problems in abstract convex spaces with applications to generalized semi-
infinite programs. We give some sufficient conditions to guarantee the existence of solu-
tions for these generalized vector quasi-equilibrium problems in abstract convex spaces.
As applications, we give some existence theorems of solutions for the generalized semi-
infinite programs under suitable conditions.

2 Preliminaries
Let X, Y be two nonempty sets. A set-valued mapping T : X ⇒ Y is a mapping from X
into the power set Y . The inverse T– of T is the set-valued mapping from Y to X defined
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by

T–(y) =
{

x ∈ X : y ∈ T(x)
}

.

An abstract convex space (X, D,�) consists of a nonempty set X, a nonempty set D, and
a set-valued mapping � : 〈D〉 ⇒ X with nonempty values, where 〈D〉 denotes the set of
all nonempty finite subset of a set D. If for each A ∈ 〈D〉 with the cardinality |A| = n + ,
there exists a continuous function φA : �n → �(A) such that J ∈ 〈A〉 implies φA(�J ) ⊆
�(J), where �n is the standard n-simplex and �J the face of �n corresponding to J ∈ 〈A〉,
then the abstract convex space reduces to the G-convex space. Let �A := �(A) for A ∈ 〈D〉.
When D ⊂ X, the space is defined by (X ⊇ D,�). In this case, a subset M of X is said to be
�-convex if, for any A ∈ 〈M∩D〉, we have �A ⊆ M. In the case X = D, let (X,�) := (X, X,�).

It is easy to see that any vector space Y is an abstract convex space with � := co, where
co denotes the convex hull in the vector space Y . Next we give more examples as follows.

Example . ([]) Let E be a topological vector space with a neighborhood system V
of its origin. A subset X of E is said to be almost convex (see [] for more details) if
for any V ∈ V and for any finite subset A = {x, x, . . . , xn} of X, there exists a subset B =
{y, y, . . . , yn} of X such that yi – xi ∈ V for all i = , , . . . , n and co B ⊂ X. Let �A = co B for
any A ∈ 〈X〉. Then (X,�) is a G-convex space and hence an abstract convex space.

Example . ([]) Usually, a convex space (E,C) in the classical sense consists of a
nonempty set E and a family C of subsets of E such that E itself is an element of C and
C is closed under arbitrary intersection. For any given subset X ⊂ E, the C-convex hull of
X is defined as by

CoC X =
⋂

{Y ∈ C : X ⊂ Y }.

We say that X is C-convex if X = CoC X. Consider the mapping � : 〈E〉 ⇒ E defined by
�A = CoC A. Then (E,�) is an abstract convex space.

Example . Let (M, d) be a pseudo-metric space, that is, d : M×M → [, +∞) such that,
for every x, y, z ∈ M,

(i) d(x, x) = ;
(ii) d(x, y) = d(y, x);

(iii) d(x, z) ≤ d(x, y) + d(y, z).
For any A ∈ 〈M〉, define a set-valued mapping � : 〈M〉 ⇒ M by

�A = �(A) =
⋂

{B : B is a closed ball containing A}.

Then it is easy to see that (M,�) is an abstract convex space.

As pointed out by Park [], the abstract convex space includes many generalized convex
spaces as special cases such as L-spaces, spaces having property (H), pseudo H-spaces, M-
spaces, G-H-spaces, another L-spaces, FC-spaces and others. Some more examples of the
abstract convex space and comments on it can be found in the literature [, , ] and
the references therein.
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Let (X,�) be an abstract convex space and V be a real topological vector space. Let E be a
nonempty subset of X. Assume that S : E ⇒ E and B : E ⇒ E are two set-valued mappings.
Suppose that F : X ×X ×X ⇒ V and C : X ⇒ V are two set-valued mappings such that for
each x ∈ X, C(x) is a closed convex cone with int C(x) = ∅, here int C(x) denotes the interior
of C(x). In this paper, we will consider the following generalized vector quasi-equilibrium
problems in abstract convex spaces.

• (GVQEP) Find x̃ ∈ E such that

x̃ ∈ S(x̃) and F(x̃, y, z) ⊆ C(x̃), ∀y ∈ S(x̃),∀z ∈ B(x̃).

We would like to mention that (GVQEP) was considered by Lin et al. [] in topologi-
cal vector spaces. When S(x) = B(x) = E for all x ∈ E, (GVQEP) was considered by Yang
and Huang [] in abstract convex spaces and by Balaj and Lin [] in G-convex spaces,
respectively.

• (GVQEP) Find x̃ ∈ E and z̃ ∈ B(x̃) such that

x̃ ∈ S(x̃) and F(x̃, y, z̃) ⊆ C(x̃), ∀y ∈ S(x̃).

When C(x) was replaced by –C(x), (GVQEP) was considered by Li and Li [] in topo-
logical vector spaces. If S(x) = E for all x ∈ E, then (GVQEP) was investigated by Fu and
Wang [] in topological vector spaces.

• (GVQEP) Find x̃ ∈ E such that

x̃ ∈ S(x̃) and F(x̃, y, z) ∩ – int C(x̃) = ∅, ∀y ∈ S(x̃),∀z ∈ B(x̃).

We note that (GVQEP) was considered by Lin et al. [] in topological vector spaces.
When S(x) = B(x) = E for all x ∈ E, (GVQEP) was studied by Yang and Huang [] in
abstract convex spaces and by Balaj and Lin [] in G-convex spaces, respectively.

• (GVQEP) Find x̃ ∈ E and z̃ ∈ B(x̃) such that

x̃ ∈ S(x̃) and F(x̃, y, z̃) ∩ – int C(x̃) = ∅, ∀y ∈ S(x̃).

We note that (GVQEP) was considered by Li and Li [] in topological vector spaces.
• (GVQEP) Find x̃ ∈ E such that

x̃ ∈ S(x̃) and F(x̃, y, z) � – int C(x̃), ∀y ∈ S(x̃),∀z ∈ B(x̃).

When S(x) = B(x) = E for all x ∈ E, (GVQEP) was investigated by Yang and Huang [] in
abstract convex spaces and by Balaj and Lin [] in G-convex spaces, respectively.

• (GVQEP) Find x̃ ∈ E and z̃ ∈ B(x̃) such that

x̃ ∈ S(x̃) and F(x̃, y, z̃) � – int C(x̃), ∀y ∈ S(x̃).

It is worth mentioning that (GVQEP) was considered by Lin et al. [], and Li and Li [] in
topological vector spaces, respectively. Moreover, some special cases of (GVQEP) were
considered by Ansari and Fabián [] in topological vector spaces.
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• (GVQEP) Find x̃ ∈ E such that

x̃ ∈ S(x̃) and F(x̃, y, z) ∩ C(x̃) = ∅, ∀y ∈ S(x̃),∀z ∈ B(x̃).

When S(x) = B(x) = E for all x ∈ E, (GVQEP) was studied by Yang and Huang [] in
abstract convex spaces and by Balaj and Lin [] in G-convex spaces, respectively.

• (GVQEP) Find x̃ ∈ E and z̃ ∈ B(x̃) such that

x̃ ∈ S(x̃) and F(x̃, y, z̃) ∩ C(x̃) = ∅, ∀y ∈ S(x̃).

When S(x) = B(x) = E for all x ∈ E, (GVQEP) was considered by Lin [] in topological
vector spaces.

We would like to point out that, for a suitable choice of the spaces E, X, V and the
mappings S, B, F , C, one can obtain a number of well-known insights into the generalized
vector quasi-equilibrium problem [, , , , , ], the generalized vector equilibrium
problem [, , ], the vector equilibrium problem, and the vector variational inequality
problem [, ] as special cases of the problems (GVQEP)-(GVQEP).

Furthermore, assume that h : X ⇒ L is a set-valued mapping, where L is a real topological
vector space ordered by a closed convex pointed cone H ⊆ L with int H = ∅. It is clear that
the existence of solutions for problems (GVQEP)-(GVQEP) is closely analogous to the
existence of solutions in connection with the following generalized semi-infinite programs
with generalized vector quasi-equilibrium constraints:

• (GSIP) Generalized semi-infinite program with constraint (GVQEP):

wMinH h(K),

where

K =
{

x ∈ E : x ∈ S(x), F(x, y, z) ∩ – int C(x) = ∅,∀y ∈ S(x),∀z ∈ B(x)
}

.

When S(x) = B(x) = E for all x ∈ E, (GSIP) was considered by Yang and Huang [] in
abstract convex spaces.

• (GSIP) Generalized semi-infinite program with constraint (GVQEP):

wMinH h(K),

where

K =
{

x ∈ E : x ∈ S(x),∃z ∈ B(x), F(x, y, z) ⊆ C(x),∀y ∈ S(x)
}

.

Some special cases of (GSIP) were considered by Lin [] in topological vector spaces.
• (GSIP) Generalized semi-infinite program with constraint (GVQEP):

wMinH h(K),

where

K =
{

x ∈ E : x ∈ S(x), F(x, y, z) ∩ – int C(x) = ∅,∀y ∈ S(x),∀z ∈ B(x)
}

.
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When S(x) = B(x) = E for all x ∈ E, (GSIP) was studied by Yang and Huang [] in abstract
convex spaces.

• (GSIP) Generalized semi-infinite program with constraint (GVQEP):

wMinH h(K),

where

K =
{

x ∈ E : x ∈ S(x),∃z ∈ B(x), F(x, y, z) ∩ – int C(x) = ∅,∀y ∈ S(x)
}

.

We would like to mention that some special cases of (GSIP) were studied by Lin [] in
topological vector spaces.

• (GSIP) Generalized semi-infinite program with constraint (GVQEP):

wMinH h(K),

where

K =
{

x ∈ E : x ∈ S(x), F(x, y, z) � – int C(x),∀y ∈ S(x),∀z ∈ B(x)
}

.

When S(x) = B(x) = E for all x ∈ E, (GSIP) was investigated by Yang and Huang [] in
abstract convex spaces.

• (GSIP) Generalized semi-infinite program with constraint (GVQEP):

wMinH h(K),

where

K =
{

x ∈ E : x ∈ S(x),∃z ∈ B(x), F(x, y, z) � – int C(x),∀y ∈ S(x)
}

.

We note that some special cases of (GSIP) were considered by Lin [] in topological
vector spaces.

• (GSIP) Generalized semi-infinite program with constraint (GVQEP):

wMinH h(K),

where

K =
{

x ∈ E : x ∈ S(x), F(x, y, z) ∩ C(x) = ∅,∀y ∈ S(x),∀z ∈ B(x)
}

.

When S(x) = B(x) = E for all x ∈ E, (GSIP) was studied by Yang and Huang [] in abstract
convex spaces.

• (GSIP) Generalized semi-infinite program with constraint (GVQEP):

wMinH h(K),
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where

K =
{

x ∈ E : x ∈ S(x),∃z ∈ B(x), F(x, y, z) ∩ C(x) = ∅,∀y ∈ S(x)
}

.

It is worth mentioning that (GSIP) can be considered as a generalization of the general-
ized vector semi-infinite programming introduced and studied by Lin [] in topological
vector spaces.

In brief, for suitable choice of the spaces L, V , X, E and the mappings S, B, F , C, h, one can
obtain a number of known the generalized semi-infinite program [], the mathematical
program with equilibrium constraint [], the generalized semi-infinite program [], the
generalized vector semi-infinite programming [], and the vector optimization problem
[–] as special cases from the problems (GSIP)-(GSIP).

Now, we recall some useful definitions and lemmas as follows.

Definition . Let K ⊆ V be a nonempty set and C ⊆ V be the closed convex pointed
cone with int C = ∅. The set of all weak minimal points of K with respect to the ordering
cone C is defined as

wMinC(K) =
{

x ∈ K : (x – K) ∩ int C = ∅}
.

Definition . Let (X, D,�) be an abstract convex space and Z be a set. For a set-valued
mapping T : X ⇒ Z with nonempty values, if a set-valued mapping G : D ⇒ Z satisfies

T(�N ) ⊆ G(N) :=
⋃

y∈N

G(y) for all N ∈ 〈D〉,

then G is called a KKM mapping with respect to T . A KKM mapping G : D ⇒ X is a KKM
mapping with respect to the identity mapping IX .

A set-valued mapping F : X ⇒ Z is called to be a KC-map if, for any closed-valued KKM
mapping G : D ⇒ Z with respect to F , the family {G(y)}y∈D has the finite intersection prop-
erty. We denote

KC(X, Z) := {F : F is KC-map}.

Definition . ([]) Let X and Y be two topological spaces. A set-valued mapping F :
X ⇒ Y is said to be

(i) upper semicontinuous (u.s.c.) at x if for any open set V ⊇ F(x), there is an open
neighborhood Ox of x such that F(x′) ⊆ V for each x′ ∈ Ox ,

(ii) lower semicontinuous (l.s.c.) at x if for any open set V ∩ F(x) = ∅, there is an open
neighborhood Ox of x such that F(x′) ∩ V = ∅ for each x′ ∈ Ox ,

(iii) continuous at x if it is both upper and lower semicontinuous at x,
(iv) upper semicontinuous (lower semicontinuous or continuous) on X if it is upper

semicontinuous (lower semicontinuous or continuous) at every x ∈ X ,
(v) closed if and only if its graph Graph(F) := {(x, y) ∈ X × Y : y ∈ F(x)} is closed.

Lemma . ([]) Let X and Y be two topological spaces and F : X ⇒ Y a set-valued
mapping.
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(i) If Y is compact, then F is closed if and only if it is upper semicontinuous,
(ii) if X is a compact space and F is a u.s.c. mapping with compact values, then F(X) is a

compact subset of Y .

Lemma . ([]) Let X and Y be two topological spaces and F : X ⇒ Y be upper semi-
continuous and F(x) is compact. Then for any net {xα} ⊂ X with xα → x and yα ∈ F(xα),
there exists a subnet {yβ} ⊂ yα such that yβ → y ∈ F(x).

Lemma . ([]) Let X and Y be two topological spaces and F : X ⇒ Y be lower semi-
continuous at x ∈ X if and only if for any y ∈ F(x) and any net {xα} with xα → x, there is a
net {yα} such that yα ∈ F(xα) and yα → y.

Lemma . ([]) Let (X, D,�) be an abstract convex space, Z a set, and T : X ⇒ Z a
set-valued mapping. Then F ∈ KC(X, Z) if and only for any G : D ⇒ Z satisfying

(i) G is closed-values;
(ii) F(�N ) ⊆ G(N) for any N ∈ 〈D〉,

we have

F(E)
⋂{

G(y) : y ∈ N
} = ∅

for each N ∈ 〈D〉.

Lemma . ([]) Assume that A is a nonempty compact subset of a real topological vector
space V and D is a closed convex cone in V with D = V . Then one has wMinD A = ∅.

An abstract convex space with any topology is called an abstract convex topological
space. In the rest of this paper, let (X,�) be an abstract convex Hausdorff topological space
and E be a nonempty compact subset of X. Let V be a topological vector spaces. Assume
that T : X ⇒ X, B : E ⇒ E, S : E ⇒ E, F : E × E × E ⇒ V and Q : E ⇒ V are five set-valued
mappings. Let ρ be a binary relation on V and ρc be the complementary relation of ρ .
Let α be any of the quantifiers ∀, ∃, and ᾱ be the other of the quantifiers ∀, ∃.

3 Main results
In order to show the existence of solutions for the vector quasi-equilibrium problems
(GVQEP)-(GVQEP), we first give the following general result.

Theorem . Suppose that the following conditions are satisfied:
(i) T ∈ KC(X, X);

(ii) for each y ∈ E, the set {x ∈ E : (ᾱ)z ∈ B(x),ρc(F(x, y, z), Q(x))} is open in E;
(iii) G = {x ∈ E : x /∈ S(x)} is open in E;
(iv) for each x ∈ E, S(x) is nonempty �-convex, S–(y) is open for all y ∈ E;
(v) for each (x, y) ∈ E × E with x ∈ T(y) such that y /∈ S(x).

Then there exists x̃ ∈ S(x̃) such that (α)z ∈ B(x̃), ρ(F(x̃, y, z), Q(x̃)) for any y ∈ S(x̃).

Proof For any x ∈ E, define A : E ⇒ E by

A(x) =
{

y ∈ E : (ᾱ)z ∈ B(x),ρc(F(x, y, z), Q(x)
)}

.
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From the definition of A(x), one has

A–(y) =
{

x ∈ E : (ᾱ)z ∈ B(x),ρc(F(x, y, z), Q(x)
)}

.

Define P : E ⇒ E by

P(x) =

{
S(x) ∩ A(x), x ∈ E \ G;
S(x), x ∈ G.

()

Let M(y) = E \ P–(y). We show that M(y) is closed for all y ∈ E. In fact, it follows from ()
that

P–(y) =
{

x ∈ E \ G : y ∈ S(x) ∩ A(x)
} ∪ {

x ∈ G : y ∈ S(x)
}

=
{

x ∈ E \ G : x ∈ S–(y) ∩ A–(y)
} ∪ {

x ∈ G : x ∈ S–(y)
}

=
{

(E \ G) ∩ S–(y) ∩ A–(y)
} ∪ {

G ∩ S–(y)
}

= S–(y) ∩ (
G ∪ A–(y)

)
.

Since S–(y), A–(y), and G are open, we know that P–(y) is open and so M(y) is closed.
We show that M is a KKM mapping with respect to T . Suppose that M is not a KKM

mapping with respect to T . Then there exist a finite subset N and a point x ∈ E such that
x ∈ T(�N ) \ M(N). This shows that there exists a point y ∈ �N such that x ∈ T(y), x ∈
P–(y) for any y ∈ N , and so N ⊂ P(x) ⊂ S(x). Since S(x) is �-convex and N ∈ 〈S(x)〉, we
know that y ∈ �N ⊂ S(x), which is a contradiction. It follows that M is a KKM mapping
with respect to T .

It follows from Lemma . that M has finite intersection property. From the facts that
M(y) ⊂ E is closed and E is compact, we know that M(y) is compact for any y ∈ E and so

⋂

y∈E

M(y) = ∅.

Thus, there exists a point x̃ ∈ E such that

x̃ ∈
⋂

y∈E

M(y) = E \
⋃

y∈E

P–(y).

This implies that x̃ /∈ P–(y) for all y ∈ E and so P(x̃) = ∅.
If x̃ ∈ G, then it is easy to see that S(x̃) = P(x̃) = ∅, which is a contradiction. Therefore,

we have

x̃ ∈ E \ G with S(x̃) ∩ A(x̃) = P(x̃) = ∅

and so

x̃ ∈ S(x̃) and y /∈ A(x̃),∀y ∈ S(x̃),

that is, x̃ ∈ S(x̃), (α)z ∈ B(x̃), ρ(F(x̃, y, z), C(x̃)) for all y ∈ S(x̃). This completes the proof.
�
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Remark . By Lemma ., it is easy to see that the condition (iii) can be replaced by the
following condition:

(iii)′ S : E ⇒ E is a u.s.c. set-valued mapping.

Next we give some existence theorems in connection with the solution of the vector
quasi-equilibrium problems (GVQEP)-(GVQEP).

Theorem . Assume that the conditions (i), (iii), (iv), and (v) in Theorem . are satisfied.
Moreover, suppose that

(a) for each y ∈ E, F(·, y, ·) is l.s.c. and C is closed;
(b) B is l.s.c.

Then there exists x̃ ∈ E such that x̃ ∈ S(x̃) and F(x̃, y, z) ⊂ C(x̃) for all y ∈ S(x̃) and z ∈ B(x̃).

Proof Let

A(x) =
{

y ∈ E : ∃z ∈ B(x), F(x, y, z) � C(x)
}

.

We show that

A–(y) =
{

x ∈ E : ∃z ∈ B(x), F(x, y, z) � C(x)
}

is open. Let {xα} ⊆ E \ A–(y) be a net with xα → x. Then

F
(
xα , y, z′) ⊆ C(xα), ∀z′ ∈ B(xα).

Since B and F(·, y, ·) are l.s.c., by Lemma ., for any z ∈ B(x) and v ∈ F(x, y, z), there exist
zα ∈ B(xα) and vα ∈ F(xα , y, zα) such that zα → z and vα → v. Now the closedness of C with
vα ∈ C(xα) shows that v ∈ C(x) and so F(x, y, z) ⊆ C(x) for any z ∈ B(x). This shows that
x ∈ E\A–(y) and so E\A–(y) is closed. Thus, A–(y) is open. It follows from Theorem .
that there exists x̃ ∈ E such that x̃ ∈ S(x̃) and F(x̃, y, z) ⊆ C(x̃) for all y ∈ S(x̃) and z ∈ B(x̃).
This completes the proof. �

Remark . Theorem . can be considered as a generalization of Theorem . in []
under different conditions from the topological vector space to the abstract convex space.

Corollary . Assume that the conditions (i), (iii), (iv), and (v) in Theorem . are satisfied
with B = S. Suppose that, for each y ∈ E, F(·, y) is l.s.c. and C is closed. Then there exists
x̃ ∈ E such that x̃ ∈ S(x̃) and F(x̃, y) ⊆ C(x̃) for all y ∈ S(x̃).

Proof The proof is similar to that of Theorem . and so we omit it here. �

Remark . When S(x) = E for all x ∈ E, Corollary . was given by Theorem  of Yang
and Huang [] under quite different conditions.

Theorem . Assume that the conditions (i), (iii), (iv), and (v) in Theorem . are satisfied.
Moreover, suppose that

(a) for each y ∈ E, F(·, y, ·) is l.s.c. and C is closed;
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(b) B is u.s.c. and B(x) is compact for each x ∈ E.
Then there exist x̃ ∈ E and z̃ ∈ B(x̃) such that x̃ ∈ S(x̃) and F(x̃, y, z̃) ⊆ C(x̃) for all y ∈ S(x̃).

Proof Let

A(x) =
{

y ∈ E : ∀z ∈ B(x), F(x, y, z) � C(x)
}

.

We first show that

A–(y) =
{

x ∈ E : ∀z ∈ B(x), F(x, y, z) � C(x)
}

is open. Let {xα} ⊆ E \ A–(y) be a net with xα → x. Then there exists zα ∈ B(xα) such
that F(xα , y, zα) ⊆ C(xα). Since B is u.s.c. with compact values, by Lemma ., there ex-
ists a subset net of {zα}, denoted again by {zα}, such that zα → z ∈ B(x). The fact that
F(·, y, ·) is l.s.c. together with Lemma . shows that, for any v ∈ F(x, y, z), there exists
vα ∈ F(xα , y, zα) such that vα → v. Since vα ∈ C(xα) and C is closed, we know that v ∈ C(x)
and so F(x, y, z) ⊆ C(x) for some z ∈ B(x). This implies that x ∈ E \ A–(y) and so
E \ A–(y) is closed. Thus, A–(y) is open. It follows from Theorem . that there exist
x̃ ∈ E and z̃ ∈ B(x̃) such that x̃ ∈ S(x̃) and F(x̃, y, z̃) ⊆ C(x̃) for any y ∈ S(x̃). This completes
the proof. �

Remark . When S(x) = E for all x ∈ E, the existence of the solutions for generalized
vector quasi-equilibrium was studied in Theorem . of [] in real Hausdorff topological
vector spaces.

Theorem . Assume that the conditions (i), (iii), (iv), and (v) in Theorem . are satisfied.
Moreover, suppose that

(a) for each y ∈ E, F(·, y, ·) is l.s.c., C(x) is a set-valued mapping with a nonempty interior
for each x ∈ E, the mapping W : E ⇒ V , defined by W (x) = V \ (– int C(x)), is closed;

(b) B is l.s.c.
Then there exists x̃ ∈ E such that x̃ ∈ S(x̃) and F(x̃, y, z) ∩ (– int C(x̃)) = ∅ for all y ∈ S(x̃) and
z ∈ B(x̃).

Proof Let

A(x) =
{

y ∈ E : ∃z ∈ B(x), F(x, y, z) ∩ (
– int C(x)

) = ∅}
.

We prove that

A–(y) =
{

x ∈ E : ∃z ∈ B(x), F(x, y, z) ∩ (
– int C(x)

) = ∅}

is open. Let {xα} ⊆ E \ A–(y) be a net with xα → x. Then

F
(
xα , y, z′) ∩ (

– int C(xα)
)

= ∅, ∀z′ ∈ B(xα)

and so

F
(
xα , y, z′) ⊆ W (xα) = V \ (

– int C(xα)
)
.
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Similar to the proof of Theorem ., we get

F(x, y, z) ⊆ W (x) = V \ (
– int C(x)

)
.

This shows that x ∈ E \ A–(y) and so E \ A–(y) is closed. Thus, A–(y) is open. It follows
from Theorem . that there exists x̃ ∈ E such that x̃ ∈ S(x̃) and

F(x̃, y, z) ∩ (
– int C(x̃)

)
= ∅, ∀y ∈ S(x̃),∀z ∈ B(x̃).

This completes the proof. �

Remark . Theorem . can be considered as a generalization of Theorem . in []
under different conditions from the topological vector space to the abstract convex space.

Corollary . Assume that the conditions (i), (iii), (iv), and (v) in Theorem . are satisfied
with S = B. Moreover, suppose that

(a) for each y ∈ E, F(·, y) is l.s.c., C(x) has a nonempty interior for each x ∈ E, the map
W : E ⇒ V , defined by W (x) = V \ (– int C(x)), is closed.

Then there exists x̃ ∈ E such that x̃ ∈ S(x̃) and F(x̃, y) ∩ (– int C(x̃)) = ∅ for all y ∈ S(x̃).

Proof The proof is similar to that of Theorem . and so we omit it here. �

Remark . When S(x) = E for all x ∈ E, Corollary . was given by Theorem  of Yang
and Huang [] under quite different conditions.

Theorem . Suppose the conditions (i), (iii), (iv), and (v) in Theorem . are satisfied.
Moreover, suppose that

(a) for each y ∈ E, F(·, y, ·) is l.s.c., C(x) has a nonempty interior for each x ∈ E, and the
mapping W : E ⇒ V , defined by W (x) = V \ (– int C(x)), is closed;

(b) B is u.s.c. and B(x) is compact for each x ∈ E.
Then there exist x̃ ∈ E and z̃ ∈ B(x̃) such that x̃ ∈ S(x̃) and F(x̃, y, z̃) ∩ (– int C(x̃)) = ∅ for all
y ∈ S(x̃).

Proof Let

A(x) =
{

y ∈ E : ∀z ∈ B(x), F(x, y, z) ∩ (
– int C(x)

) = ∅}
.

We show that

A–(y) =
{

x ∈ E : ∀z ∈ B(x), F(x, y, z) ∩ (
– int C(x)

) = ∅}

is open. Let {xα} ⊆ E \ A–(y) be a net with xα → x. Then

F(xα , y, zα) ∩ (
– int C(xα)

)
= ∅

for some zα ∈ B(xα), that is,

F(xα , y, zα) ⊆ V \ (
– int C(xα)

)
.
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Using similar arguments to the proof of Theorem ., we have

F(x, y, z) ⊆ W (x) = V \ (
– int C(x)

)

for some z ∈ B(x). This shows that x ∈ E\A–(y) and so E\A–(y) is closed. Thus, A–(y)
is open. It follows from Theorem . that there exist x̃ ∈ E and z̃ ∈ B(x̃) such that x̃ ∈ S(x̃)
and

F(x̃, y, z̃) ∩ (
– int C(x̃)

)
= ∅, ∀y ∈ S(x̃).

This completes the proof. �

Remark . When E is a nonempty convex compact of a topological vector space, Li and
Li [] studied the existence of solutions for (GVQEP).

Theorem . Assume that the conditions (i), (iii), (iv), and (v) are satisfied in Theorem ..
Moreover, suppose that

(a) for each y ∈ E, F(·, y, ·) is u.s.c. with compact valued on E × E × E and C(x) has a
nonempty interior for each x ∈ E, the mapping W : E ⇒ V , defined by
W (x) = V \ (– int C(x)), is closed;

(b) B is l.s.c.
Then there exists x̃ ∈ E such that x̃ ∈ S(x̃) and F(x̃, y, z) � – int C(x̃) for all y ∈ S(x̃) and
z ∈ B(x̃).

Proof Let

A(x) =
{

y ∈ E : ∃z ∈ B(x), F(x, y, z) ⊆ – int C(x)
}

.

We prove that

A–(y) =
{

x ∈ E : ∃z ∈ B(x), F(x, y, z) ⊆ – int C(x)
}

is open. Let xα ∈ E \ A–(y) be a net with xα → x. Then

F
(
xα , y, z′)� – int C(xα)

for any z′ ∈ B(xα) and so there exists vα ∈ V such that

vα ∈ F
(
xα , y, z′) \ (

– int C(xα)
)
.

Since B is l.s.c., by Lemma ., for any z ∈ B(x), there exists zα ∈ B(xα) such that zα → z.
Since F(·, y, ·) is u.s.c. with compact valued, by Lemma ., there exists a subset net of {vα},
denoted again by {vα}, such that vα → v ∈ F(x, y, z). On the other hand, the fact that
vα /∈ – int C(xα) shows that vα ∈ W (xα). Now the closedness of W shows that v ∈ W (x)
and so v /∈ – int C(x). Thus F(x, y, z) � – int C(x) for any z ∈ B(x). This implies that
x ∈ E\A–(y) and so E\A–(y) is closed. Thus, A–(y) is open. It follows from Theorem .
that there exists x̃ ∈ E such that x̃ ∈ S(x̃) and F(x̃, y, z) � – int C(x̃) for all y ∈ S(x̃) and z ∈
B(x̃). This completes the proof. �
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Corollary . Assume that the conditions (i), (iii), (iv), and (v) in Theorem . are satisfied
with S = B. Moreover, suppose that

(a) for each y ∈ E, F(·, y) is u.s.c. with compact valued on E × E and C(x) has a
nonempty interior for each x ∈ E, the mapping W : E ⇒ V , defined by
W (x) = V \ (– int C(x)), is closed.

Then there exists x̃ ∈ E such that x̃ ∈ S(x̃) and F(x̃, y) � – int C(x̃) for all y ∈ S(x̃).

Proof The proof is similar to that of Theorem . and so we omit it here. �

Remark . When S(x) = E for all x ∈ E, Corollary . was given by Theorem  of Yang
and Huang [] under quite different conditions.

Theorem . Assume that the conditions (i), (iii), (iv), and (v) are satisfied in Theorem ..
Moreover, suppose that

(a) for each y ∈ E, F(·, y, ·) is u.s.c. with compact valued on E × E × E and C(x) has a
nonempty interior for each x ∈ E, the mapping W : E ⇒ V , defined by
W (x) = V \ (– int C(x)), is closed.

(b) B is u.s.c. and B(x) is compact for each x ∈ E.
Then there exist x̃ ∈ E and z̃ ∈ B(x̃) such that x̃ ∈ S(x̃) and F(x̃, y, z̃) � – int C(x̃) for all
y ∈ S(x̃).

Proof Let

A(x) =
{

y ∈ E : ∀z ∈ B(x), F(x, y, z) ⊆ – int C(x)
}

.

We prove that

A–(y) =
{

x ∈ E : ∀z ∈ B(x), F(x, y, z) ⊆ – int C(x)
}

is open. Let xα ∈ E \ A–(y) be a net with xα → x. Then F(xα , y, zα) � – int C(xα) for some
zα ∈ B(xα) and so there exists vα ∈ V such that

vα ∈ F(xα , y, zα) \ (
– int C(xα)

)
.

Since B is u.s.c. with compact valued, by Lemma ., there exists a subnet of {zα}, denoted
again by {zα}, such that zα → z ∈ B(x). The fact that F(·, y, ·) is u.s.c. with compact valued
together with Lemma . shows that there exists a subset net of {vα}, denoted again by {vα},
such that vα → v ∈ F(x, y, z). On the other hand, it is easy to see that vα ∈ W (xα). Since
W is closed, we know that v ∈ W (x) and so v /∈ – int C(x). Thus F(x, y, z) � – int C(x)
for some z ∈ B(x) and so x ∈ E \ A–(y). This implies that E \ A–(y) is closed and so
A–(y) is open. It follows from Theorem . that there exist x̃ ∈ E and z̃ ∈ B(x̃) such that
x̃ ∈ S(x̃) and F(x̃, y, z̃) � – int C(x̃) for all y ∈ S(x̃). This completes the proof. �

Remark . Theorem . can be considered as a generalization of Theorem . in [, ]
under different conditions from the topological vector space to the abstract convex space.

Remark . When E is a nonempty convex compact of topological vector space, Li and
Li [] studied the existence of solutions for (GVQEP).
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Theorem . Suppose the conditions (i), (iii), (iv), and (v) in Theorem . are satisfied.
Moreover, assume that

(a) for each y ∈ E, F(·, y, ·) is u.s.c. with compact valued on E × E × E and C is closed;
(b) B is l.s.c.

There exists x̃ ∈ E such that x̃ ∈ S(x̃) and F(x̃, y, z) ∩ C(x̃) = ∅ for all y ∈ S(x̃) and z ∈ B(x).

Proof Let

A(x) =
{

y ∈ E : ∃z ∈ B(x), F(x, y, z) ∩ C(x) = ∅}
.

We show that

A–(y) =
{

x ∈ E : ∃z ∈ B(x), F(x, y, z) ∩ C(x) = ∅}

is open. Let {xα} ⊆ E \ A–(y) be a net with xα → x. Then

F
(
xα , y, z′) ∩ C(xα) = ∅, ∀z′ ∈ B(xα).

It follows that there exists vα ∈ F(xα , y, z′) ∩ C(xα). Since B is l.s.c., by Lemma ., there
exists zα ∈ B(xα) such that zα → z for any z ∈ B(x). By the fact that F(·, y, ·) is u.s.c. with
compact valued, there exists a subset of {vα}, denoted again by {vα}, such that vα → v ∈
F(x, y, z). Since vα ∈ C(xα) and C is closed, we know that v ∈ C(x) and so v ∈ F(x, y, z)∩
C(x). Thus,

F(x, y, z) ∩ C(x) = ∅, ∀z ∈ B(x).

This shows that x ∈ E \ A–(y) and so E \ A–(y) is closed. Thus, A–(y) is open. By Theo-
rem ., there exists x̃ ∈ E such that x̃ ∈ S(x̃) and

F(x̃, y, z) ∩ C(x) = ∅, ∀y ∈ S(x̃),∀z ∈ B(x̃).

This completes the proof. �

Corollary . Assume that the conditions (i), (iii), (iv), and (v) in Theorem . are satisfied
with S = B. Moreover, suppose that, for each y ∈ E, F(·, y) is u.s.c. with compact valued on
E × E and C is closed. Then there exists x̃ ∈ E such that x̃ ∈ S(x̃) and F(x̃, y) ∩ C(x̃) = ∅ for
all y ∈ S(x̃).

Proof The proof is similar to that of Theorem . and so we omit it here. �

Remark . When S(x) = E for all x ∈ E, Corollary . was given by Theorem  of Yang
and Huang [] under some different conditions.

Theorem . Suppose the conditions (i), (iii), (iv), and (v) are satisfied in Theorem ..
Moreover, assume that

(a) for each y ∈ E, F(·, y, ·) is u.s.c. with compact valued on E × E × E and C is closed;
(b) B is u.s.c. and B(x) is compact for each x ∈ E.

There exist x̃ ∈ E and z̃ ∈ B(x̃) such that x̃ ∈ S(x̃) and F(x̃, y, z̃) ∩ C(x̃) = ∅ for all y ∈ S(x̃).
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Proof Let

A(x) =
{

y ∈ E : ∀z ∈ B(x), F(x, y, z) ∩ C(x) = ∅}
.

We prove that

A–(y) =
{

x ∈ E : ∀z ∈ B(x), F(x, y, z) ∩ C(x) = ∅}

is open. Let {xα} ⊆ E \ A–(y) be a net with xα → x. Then

F(xα , y, zα) ∩ C(xα) = ∅

for some zα ∈ B(xα), that is, there exists vα ∈ F(xα , y, zα) ∩ C(xα). Since B is u.s.c. and B(x)
is compact, it follows from Lemma . that there exists a subset of {zα}, denoted again
by {zα}, such that zα → z ∈ B(x). Similar to the proof of Theorem ., we can prove
that F(x, y, z) ∩ C(x) = ∅ for some z ∈ B(x). This shows that x ∈ E \ A–(y) and so
E \ A–(y) is closed. Thus, A–(y) is open. It follows from Theorem . that there exist
x̃ ∈ E and z̃ ∈ B(x̃) such that x̃ ∈ S(x̃) and

F(x̃, y, z̃) ∩ C(x̃) = ∅, ∀y ∈ S(x̃).

This completes the proof. �

4 Applications to the generalized semi-infinite programs
In this section, by the results presented in Section , we give some existence theorems
of solutions to the generalized semi-infinite programs. Let L be a real topological vector
space ordered by a closed convex pointed cone H ⊆ L with int H = ∅ and h : X ⇒ L be a
u.s.c. mapping with compact values.

Theorem . Suppose that all the conditions of Theorem . are satisfied. Moreover, as-
sume that F(·, ·, ·) and S are l.s.c. Then there is a solution to the problem

wMinH h(K),

where

K =
{

x ∈ E : x ∈ S(x), F(x, y, z) ⊆ C(x),∀y ∈ S(x),∀z ∈ B(x)
}

.

Proof Theorem . shows that K = ∅. From Lemma ., it is sufficient to show that h(K)
is compact. Since h is u.s.c. and K ⊆ E, by Lemma ., we only need to prove that K is
closed. Let {xα} ⊆ K be a net with xα → x. Then xα ∈ S(xα) and

F
(
xα , y′, z′) ⊆ C(xα), ∀y′ ∈ S(xα),∀z′ ∈ B(xα).

Since S and B are l.s.c., for any y ∈ S(x) and z ∈ B(x), it follows from Lemma . that there
exist yα ∈ S(xα) and zα ∈ B(xα) such that yα → y and zα → z. By the lower semi-continuity
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of F and Lemma ., for any v ∈ F(x, y, z), there exists vα ∈ F(xα , yα , zα) such that vα → v.
Now the closedness of C with vα ∈ C(xα) shows that v ∈ C(x) and so F(x, y, z) ⊆ C(x)
for all y ∈ S(x) and z ∈ B(x). Moreover, the closedness of E \ G shows that x ∈ S(x).
Thus, K is closed. This completes the proof. �

Corollary . Suppose that all the conditions of Corollary . are satisfied. Moreover, as-
sume that F(·, ·) and S are l.s.c. Then there is a solution to the problem

wMinH h(K),

where

K =
{

x ∈ E : x ∈ S(x), F(x, y) ⊆ C(x),∀y ∈ S(x)
}

.

Remark . When S(x) = E for all x ∈ E, Corollary . was given by Theorem  of Yang
and Huang [] under some different conditions.

Theorem . Suppose that all the conditions of Theorem . are satisfied. Moreover, as-
sume that F(·, ·, ·) and S are l.s.c. Then there is a solution to the problem

wMinH h(K),

where

K =
{

x ∈ E : x ∈ S(x),∃z ∈ B(x), F(x, y, z) ⊆ C(x),∀y ∈ S(x)
}

.

Proof Obviously, Theorem . shows that K = ∅. By Lemma ., it is sufficient to prove
that h(K) is compact. Since h is u.s.c. and K ⊆ E, from Lemma ., we only need to show
that K is closed. Let {xα} ⊆ K be a net with xα → x. Then xα ∈ S(xα) and there exists
zα ∈ B(xα) such that

F
(
xα , y′, zα

) ⊆ C(xα), ∀y′ ∈ S(xα).

Since B is a u.s.c. mapping with compact values, it follows from Lemma . that there exists
a subnet of {zα}, denoted again by {zα}, such that zα → z ∈ B(x). For any y ∈ S(x), the
lower semi-continuity of S together with Lemma . implies that there exists yα ∈ S(xα)
such that yα → y. For v ∈ F(x, y, z), by the fact that F is l.s.c., it follows from Lemma .
that there exists vα ∈ F(xα , yα , zα) such that vα → v. Now the closedness of C with vα ∈
C(xα) shows that v ∈ C(x) and so there exists z ∈ B(x) such that F(x, y, z) ⊆ C(x) for
all y ∈ S(x). Moreover, the closedness of E \ G shows that x ∈ S(x). Thus, K is closed.
This completes the proof. �

Theorem . Suppose that all the conditions of Theorem . are satisfied. Moreover, as-
sume that F(·, ·, ·) and S are l.s.c. Then there is a solution to the problem

wMinH h(K),
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where

K =
{

x ∈ E : x ∈ S(x), F(x, y, z) ∩ – int C(x) = ∅,∀y ∈ S(x),∀z ∈ B(x)
}

.

Proof Theorem . shows that K = ∅. From Lemma ., it is sufficient to show that h(K) is
compact. Since h is u.s.c. and K ⊆ E, by Lemma ., we only need to show that K is closed.
Let {xα} ⊆ K be a net with xα → x. Then xα ∈ S(xα),

F
(
xα , y′, z′) ∩ – int C(x) = ∅, ∀y′ ∈ S(xα),∀z′ ∈ B(xα)

and so

F
(
xα , y′, z′) ⊆ W (xα), ∀y′ ∈ S(xα),∀z′ ∈ B(xα).

Similar to the proof of Theorem ., we have x ∈ S(x),

F(x, y, z) ⊆ W (x), ∀y ∈ S(x),∀z ∈ B(x)

and so

F(x, y, z) ∩ – int C(x) = ∅, ∀y ∈ S(x),∀z ∈ B(x).

Thus, K is closed. This completes the proof. �

Corollary . Suppose that all the conditions of Corollary . are satisfied. Moreover, as-
sume that F(·, ·) and S are l.s.c. Then there is a solution to the problem

wMinH h(K),

where

K =
{

x ∈ E : x ∈ S(x), F(x, y) ∩ C(x) = ∅,∀y ∈ S(x)
}

.

Remark . When S(x) = E for all x ∈ E, Corollary . was given by Theorem  of Yang
and Huang [] under some different conditions.

Theorem . Suppose that all the conditions of Theorem . are satisfied. Moreover, as-
sume that F(·, ·, ·) and S are l.s.c. Then there is a solution to the problem

wMinH h(K),

where

K =
{

x ∈ E : x ∈ S(x),∃z ∈ B(x), F(x, y, z) ∩ – int C(x) = ∅,∀y ∈ S(x)
}

.
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Proof It follows from Theorem . that K = ∅. From Lemma ., it is sufficient to show
that h(K) is compact. Since h is u.s.c. and K ⊆ E, by Lemma ., we only need to show K
is closed. Let {xα} ⊆ K be a net with xα → x. Then xα ∈ S(xα) and there exists zα ∈ B(xα)
such that

F
(
xα , y′, zα

) ∩ – int C(xα) = ∅, ∀y′ ∈ S(xα).

Thus, there exists zα ∈ B(xα) such that

F
(
xα , y′, zα

) ⊆ C(xα), ∀y′ ∈ S(xα).

Similar to the proof of Theorem ., we know that x ∈ S(x) and there exists z ∈ B(x)
such that

F(x, y, z) ⊆ W (x), ∀y ∈ S(x).

Thus, x ∈ S(x) and there exists z ∈ B(x) such that

F(x, y, z) ∩ – int C(x) = ∅, ∀y ∈ S(x).

It follows that K is closed. This completes the proof. �

Theorem . Suppose that all the conditions of Theorem . are satisfied. Moreover, as-
sume that F(·, ·, ·) is a u.s.c. mapping with compact values and S is l.s.c. Then there is a
solution to the problem

wMinH h(K),

where

K =
{

x ∈ E : x ∈ S(x), F(x, y, z) � – int C(x),∀y ∈ S(x),∀z ∈ B(x)
}

.

Proof Theorem . shows that K = ∅. From Lemma ., it is sufficient to show that h(K)
is compact. Since h is u.s.c. and K ⊆ E, by Lemma ., we only need to prove that K is
closed. Let {xα} ⊆ K be a net with xα → x. Then xα ∈ S(xα),

F
(
xα , y′, z′)� – int C(xα), ∀y′ ∈ S(xα),∀z′ ∈ B(xα)

and so there exists vα ∈ V such that

vα ∈ F
(
xα , y′, z′) \ (

– int C(xα)
)
.

By the lower semi-continuity of S and B, for any y ∈ S(x) and z ∈ B(x), it follows from
Lemma . that there exist yα ∈ S(xα) and zα ∈ B(xα) such that yα → y and zα → z. Since
F(·, ·, ·) is a u.s.c. mapping with compact values, Lemma . shows that there exists a subnet
of {vα}, denoted again by {vα}, such that vα → v ∈ F(x, y, z). On the other hand, the fact
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that vα /∈ – int C(xα) shows that vα ∈ W (xα). Now the closedness of W shows that v ∈
W (x) and so v /∈ – int C(x). Moreover, the closedness of E \ G shows that x ∈ S(x).
Thus,

F(x, y, z) � – int C(x)

for all y ∈ S(x) and z ∈ B(x) and so K is closed. This completes the proof. �

Corollary . Suppose that all the conditions of Corollary . are satisfied. Moreover, as-
sume that F(·, ·) is u.s.c. and S is l.s.c. Then there is a solution to the problem

wMinH h(K),

where

K =
{

x ∈ E : x ∈ S(x), F(x, y) � C(x),∀y ∈ S(x)
}

.

Remark . When S(x) = E for all x ∈ E, Corollary . was given by Theorem  of Yang
and Huang [] under some different conditions.

Theorem . Suppose that all the conditions of Theorem . are satisfied. Moreover, as-
sume that F(·, ·, ·) is a u.s.c. mapping with compact values and S is l.s.c. Then there is a
solution to the problem

wMinH h(K),

where

K =
{

x ∈ E : x ∈ S(x),∃z ∈ B(x), F(x, y, z) � – int C(x),∀y ∈ S(x)
}

.

Proof Theorem . shows that K = ∅. By Lemma ., it is sufficient to prove that h(K) is
compact. Since h is u.s.c. and K ⊆ E, from Lemma ., we only need to show that K is
closed. Let {xα} ⊆ K be a net with xα → x. Then xα ∈ S(xα) and there exists zα ∈ B(xα)
such that

F
(
xα , y′, zα

)
� – int C(xα), ∀y′ ∈ S(xα).

Thus, there exists vα ∈ V such that

vα ∈ F
(
xα , y′, zα

) \ (
– int C(xα)

)
.

Since B is a u.s.c. mapping with compact values, it follows from Lemma . that there
exists a subnet of {zα}, denoted again by {zα}, such that zα → z ∈ B(x). By the lower
semi-continuity of S, for any y ∈ S(x), Lemma . shows that there exists yα ∈ S(xα) such
that yα → y. Since F(·, ·, ·) is a u.s.c. mapping with compact values, Lemma . implies that
there exists a subnet of {vα}, denoted again by {vα}, such that vα → v ∈ F(x, y, z). Similar
to the proof of Theorem ., we can prove that K is closed. This completes the proof.

�
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Theorem . Suppose that all the conditions of Theorem . are satisfied. Moreover, as-
sume that F(·, ·, ·) is a u.s.c. mapping with compact values and S is l.s.c. Then there is a
solution to the problem

wMinH h(K),

where

K =
{

x ∈ E : x ∈ S(x), F(x, y, z) ∩ C(x) = ∅,∀y ∈ S(x),∀z ∈ B(x)
}

.

Proof Theorem . shows that K = ∅. From Lemma ., it is sufficient to show that h(K)
is compact. Since h is u.s.c. and K ⊆ E, by Lemma ., we only need to show K is closed.
Let {xα} ⊆ K be a net with xα → x. Then xα ∈ S(xα),

F
(
xα , y′, z′) ∩ C(xα) = ∅, ∀y′ ∈ S(xα), z ∈ B(xα)

and so there exists vα ∈ V such that

vα ∈ F
(
xα , y′, z′) ∩ C(xα).

By the lower semi-continuity of S and B, for any y ∈ S(x) and z ∈ B(x), Lemma . shows
that there exist yα ∈ S(xα) and zα ∈ B(xα) such that yα → y and zα → z. Since F(·, ·, ·) is
u.s.c. with compact values, by Lemma ., there exists a subnet of {vα}, denoted again by
{vα}, such that vα → v ∈ F(x, y, z). Now the closedness of C with vα ∈ C(xα) shows that
v ∈ C(x) and so

F(x, y, z) ∩ C(x) = ∅, ∀y ∈ S(x),∀z ∈ B(x).

Moreover, the closedness of E\G shows that x ∈ S(x). Thus, K is closed. This completes
the proof. �

Corollary . Suppose that all the conditions of Corollary . are satisfied. Moreover, as-
sume that F(·, ·) and S are l.s.c. Then there is a solution to the problem

wMinH h(K),

where

K =
{

x ∈ E : x ∈ S(x), F(x, y) ∩ C(x) = ∅,∀y ∈ S(x)
}

.

Remark . When S(x) = E for all x ∈ E, Corollary . was given by Theorem  of Yang
and Huang [] under some different conditions.

Theorem . Suppose that all the conditions of Theorem . are satisfied. Moreover, as-
sume that F(·, ·, ·) is a u.s.c. mapping with compact values and S is l.s.c. Then there is a
solution to the problem

wMinH h(K),



Zhang et al. Fixed Point Theory and Applications  (2015) 2015:29 Page 22 of 23

where

K =
{

x ∈ E : x ∈ S(x),∃z ∈ B(x), F(x, y, z) ∩ C(x) = ∅,∀y ∈ S(x)
}

.

Proof Theorem . shows that K = ∅. From Lemma ., it is sufficient to prove that h(K)
is compact. Since h is u.s.c. and K ⊆ E, by Lemma ., we only need to show K is closed.
Let {xα} ⊆ K be a net with xα → x. Then xα ∈ S(xα) and there exists zα ∈ B(xα) such that

F
(
xα , y′, zα

) ∩ C(xα) = ∅, ∀y′ ∈ S(xα).

Thus, there exists vα ∈ V such that

vα ∈ F
(
xα , y′, zα

) ∩ C(xα).

Since B is a u.s.c. mapping with compact values, it follows from Lemma . that there
exists a subnet of {zα}, denoted again by {zα}, such that zα → z ∈ B(x). By the lower
semi-continuity of S, for any y ∈ S(x), Lemma . implies that there exists yα ∈ S(xα) such
that yα → y. Since F(·, ·, ·) is a u.s.c. mapping with compact values, by Lemma ., there
exists a subnet of {vα}, denoted again by {vα}, such that vα → v ∈ F(x, y, z). Now the
closedness of C with vα ∈ C(xα) shows that v ∈ C(x) and so there exists z ∈ B(x) such
that

F(x, y, z) ∩ C(x) = ∅, ∀y ∈ S(x).

Moreover, the closedness of E \ G shows that x ∈ S(x). Therefore, K is closed. This
completes the proof. �
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