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Abstract
In this work, we establish some fixed point theorems by revisiting the notion of
ψ -contractive mapping in Menger PM-spaces. One of our results (namely,
Theorem 2.3) may be viewed as a possible answer to the problem of existence of a
fixed point for generalized type contractive mappings inM-complete Menger
PM-spaces under arbitrary t-norm. Some examples are furnished to demonstrate the
validity of the obtained results.
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1 Introduction and preliminaries
In  Menger [] initiated the study of probabilistic metric spaces; see also [–]. Suc-
cessively, Sehgal and Bharucha-Reid [, ] established fixed point theorems in probabilis-
tic metric spaces (for short, PM-spaces). Indeed, by using the notion of probabilistic q-
contraction, they proved a unique fixed point result, which is an extension of the cele-
brated Banach contraction principle []. For the interested reader, a comprehensive study
of fixed point theory in the probabilistic metric setting can be found in the book of Hadžić
and Pap [], see also [] for further discussion on generalizations of metric fixed point
theory. Recently, Choudhury and Das [] gave a generalized unique fixed point theorem
by using an altering distance function, which was originally introduced by Khan et al. [].
For other results in this direction, we refer to [–]. In particular, Dutta et al. [] de-
fined nonlinear generalized contractive type mappings involving altering distances (say,
ψ-contractive mappings) in Menger PM-spaces and proved their theorem for such kind
of mappings in the setting of G-complete Menger PM-spaces.

On contributing to this study, we weaken the notion of ψ-contractive mapping and es-
tablish some fixed point theorems in G-complete and M-complete Menger PM-spaces,
besides discussing some related results and illustrative examples. Indeed, we not only de-
rive the result of Dutta et al. [], Theorem , as a particular case of our result, but also
we notice that our Theorem . may be viewed as a possible answer to the problem of ex-
istence of a fixed point for generalized type contractive mappings in M-complete Menger
PM-spaces under arbitrary t-norm.

Here, we state some allied definitions and results which are needed for the development
of the present topic. We denote by R the set of real numbers, by R+ the set of non-negative
real numbers and by N the set of positive integers.
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Definition . ([, ]) A mapping F : R → R
+ is called a distribution function if it is

non-decreasing and left continuous with inft∈R F(t) =  and supt∈R F(t) = .

We shall denote by D+ the set of all distribution functions, while H ∈ D+ will always
denote the specific distribution function defined by

H(t) =

⎧
⎨

⎩

 if t ≤ ,

 if t > .

Definition . ([]) A binary operation T : [, ] × [, ] → [, ] is a continuous t-norm
if the following conditions hold:

(a) T is commutative and associative,
(b) T is continuous,
(c) T(a, ) = a for all a ∈ [, ],
(d) T(a, b) ≤ T(c, d), whenever a ≤ c and b ≤ d, for a, b, c, d ∈ [, ].

The following are three basic continuous t-norms from the literature:
(i) The minimum t-norm, say TM , defined by TM(a, b) = min{a, b}.

(ii) The product t-norm, say Tp, defined by Tp(a, b) = a · b.
(iii) The Lukasiewicz t-norm, say TL, defined by TL(a, b) = max{a + b – , }.

These t-norms are related in the following way: TL ≤ Tp ≤ TM .

Definition . A Menger PM-space is a triple (X, F , T) where X is a nonempty set, T is a
continuous t-norm and F is a mapping from X × X into D+ such that, if Fx,y denotes the
value of F at the pair (x, y), the following conditions hold:

(PM) Fx,y(t) = H(t) if and only if x = y for all t ∈R
+,

(PM) Fx,y(t) = Fy,x(t) for all x, y ∈ X and t ∈R
+,

(PM) Fx,y(t + s) ≥ T(Fx,z(t), Fz,y(s)) for all x, y, z ∈ X and s, t ∈R
+.

Definition . Let (X, F , T) be a Menger PM-space. Then
(i) A sequence {xn} in X is said to be convergent to x ∈ X if, for every ε >  and λ > ,

there exists a positive integer N such that Fxn ,x(ε) >  – λ whenever n ≥ N .
(ii) A sequence {xn} in X is called Cauchy sequence if, for every ε >  and λ > , there

exists a positive integer N such that Fxn ,xm (ε) >  – λ whenever n, m ≥ N .
(iii) A Menger PM-space is said to be M-complete if every Cauchy sequence in X is

convergent to a point in X .
(iv) A sequence {xn} is called G-Cauchy if limn→∞ Fxn ,xn+m (t) =  for each m ∈N and

t > .
(v) The space (X, F , T) is called G-complete if every G-Cauchy sequence in X is

convergent.

According to [], the (ε,λ)-topology in a Menger PM-space (X, F , T) is introduced by
the family of neighborhoods Nx of a point x ∈ X given by

Nx =
{

Nx(ε,λ) : ε > ,λ ∈ (, )
}

,
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where

Nx(ε,λ) =
{

y ∈ X : Fx,y(ε) >  – λ
}

.

The (ε,λ)-topology is a Hausdorff topology. In this topology a function f is continuous in
x ∈ X if and only if f (xn) → f (x), for every sequence xn → x, as n → ∞.

The following class of functions was introduced in [] and will be used in proving our
results in the next section.

Definition . ([]) A function φ : R+ → R
+ is said to be a φ-function if it satisfies the

following conditions:
(i) φ(t) =  if and only if t = ,

(ii) φ(t) is strictly increasing and φ(t) → ∞ as t → ∞,
(iii) φ is left continuous in (,∞),
(iv) φ is continuous at .

Definition . ([]) Let (X, F , T) be a Menger PM-space. The probabilistic metric F is
triangular if it satisfies the condition


Fx,y(t)

–  ≤
(


Fx,z(t)

– 
)

+
(


Fz,y(t)

– 
)

for every x, y, z ∈ X and each t > .

In the sequel, the class of all φ-functions will be denoted by �. Also we denote by �

the class of all continuous non-decreasing functions ψ : R+ → R
+ such that ψ() =  and

ψn(an) → , whenever an → , as n → ∞.
We conclude this section recalling the following fixed point theorem of Dutta et al., see

[], which is the main inspiration of our paper.

Theorem . Let (X, F , T) be a G-complete Menger space and f : X → X be a mapping
satisfying the following inequality:


Ffx,fy(φ(ct))

–  ≤ ψ

(


Fx,y(φ(t))
– 

)

, (.)

where x, y ∈ X, c ∈ (, ), φ ∈ �, ψ ∈ � and t >  such that Fx,y(φ(t)) > . Then f has a
unique fixed point.

A mapping f : X → X satisfying condition (.) is usually called ψ-contractive mapping.
However, for some discussion on this notion and Theorem ., the reader can refer to the
recent paper of Gopal et al. [], where analogous results are proved by using some control
functions.

2 Main results
In this section, firstly we weaken the class of functions � by assuming the continuity only
at point t = . Precisely, we denote by � the class of all non-decreasing functions ψ :
R

+ → R
+ such that ψ is continuous at , ψ() =  and ψn(an) →  whenever an →  as
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n → ∞; then we utilize this class to prove some fixed point theorems. We start with a
revised version of Theorem . useful to obtaining an affirmative answer to an existence
problem of a fixed point in a G-complete Menger space.

Theorem . Let (X, F , T) be a G-complete Menger space and f : X → X be a mapping
satisfying the following inequality:


Ffx,fy(φ(ct))

–  ≤ ψ

(


Fx,y(φ(t))
– 

)

, (.)

where x, y ∈ X, c ∈ (, ), φ ∈ �, ψ ∈ � and t >  such that Fx,y(φ(t)) > . Then f has a
unique fixed point.

Proof Let x ∈ X. Define a sequence {xn} in X so that xn+ = fxn for all n ∈ N ∪ {}. We
suppose xn+ �= xn for all n ∈N, otherwise f has trivially a fixed point.

Notice that in view of the fact that supt∈R Fx,x (t) =  and by (ii) of Definition ., one
can find t >  such that Fx,x (φ(t)) > . Since Fx,x (φ(t)) >  implies that Fx,x (φ( t

c )) > ,
therefore (.) gives that


Fx,x (φ(t))

–  =


Ffx,fx (φ( ct
c ))

– 

≤ ψ

(


Fx,x (φ( t
c ))

– 
)

. (.)

From (.) we deduce that Fx,x (φ(t)) >  and so Fx,x (φ( t
c )) > . Again, by applying (.),

we get


Fx,x (φ(t))

–  =


Ffx,fx (φ(t))
– 

≤ ψ

(


Fx,x (φ( t
c ))

– 
)

,

that is,


Fx,x (φ(t))

–  ≤ ψ

(


Fx,x (φ( t
c ))

– 
)

.

On using (.) and the hypothesis that ψ is non-decreasing, the above expression becomes


Fx,x (φ(t))

–  ≤ ψ
(


Fx,x (φ( t

c ))
– 

)

. (.)

Repeating the above procedure successively n times, we obtain


Fxn ,xn+ (φ(t))

–  ≤ ψn
(


Fx,x (φ( t

cn ))
– 

)

.

If we change x with xr in the previous inequalities, then for all n > r we get


Fxn ,xn+ (φ(crt))

–  ≤ ψn–r
(


Fxr ,xr+ (φ( crt

cn–r ))
– 

)

.
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Since ψn(an) →  whenever an →  as n → ∞, therefore the above inequality implies that

lim
n→∞ Fxn ,xn+

(
φ
(
crt

))
= . (.)

Now, let ε >  be given, then by using the properties (i) and (iv) of a function φ we can find
r ∈N such that φ(crt) < ε. It follows from (.) that

lim
n→∞ Fxn ,xn+ (ε) ≥ lim

n→∞ Fxn ,xn+

(
φ
(
crt

))
= . (.)

By using a triangle inequality, we obtain

Fxn ,xn+p (ε) ≥ T
(
Fxn ,xn+ (ε/p), T

(
Fxn+,xn+ (ε/p), . . . ,

(
Fxn+p–,xn+p (ε/p)

) · · · ))
︸ ︷︷ ︸

p-times

.

Thus, letting n → ∞ and making use of (.), for any integer p, we get

lim
n→∞ Fxn ,xn+p (ε) =  for every ε > . (.)

Hence {xn} is a G-Cauchy sequence. Since (X, F , T) is G-complete, therefore xn → u, as
n → ∞, for some u ∈ X.

Now we show that u is a fixed point of f .
Since

Ffu,u(ε) ≥ T
(
Ffu,xn+ (ε/), Fxn+,u(ε/)

)
, (.)

by using the properties (i) and (iv) of a function φ, we can find s >  such that φ(s) < ε
 .

Again, since xn → u as n → ∞, then there exists n ∈ N such that, for all n > n, we have
Fxn ,u(φ(s)) > .

Therefore, for n > n, we obtain


Fxn+,fu( ε

 )
–  ≤ 

Ffxn ,fu(φ(s))
– 

≤ ψ

(


Fxn ,u(φ( s
c ))

– 
)

.

Since ψ is continuous at  and ψ() = , we obtain

lim
n→∞ Fxn+,fu(ε/) = . (.)

From (.) and (.), we get Ffu,u(ε) =  for every ε > , which in turn yields that fu = u.
�

The following example illustrates our Theorem ..

Example . Let X = [, ] and d be the usual metric on X. Define f : X → X as fx = 
 sin x

and

Fx,y(t) =

⎧
⎨

⎩

t
t+d(x,y) if t > ,

 if t = 
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for all x, y ∈ X. Then (X, F , T) is a complete Menger PM-space with Tp(a, b) = a · b. Define
φ ∈ � by φ(s) = s

c for all s ∈R
+, with c = 

 , and ψ ∈ � by

ψ(s) =

⎧
⎨

⎩

s if s ∈ Q∩R
+,

s
 otherwise.

By the mean valued theorem with function sin, we obtain that


Ffx,fy(φ(ct))

–  =
d(fx, fy)

t

=


t
| sin x – sin y|

≤ |x – y|
t

=
d(x, y)

t
≤ ψ

(


Fx,y(φ(t))
– 

)

.

Thus, f satisfies all the hypotheses of Theorem .; here u =  is a fixed point of f .

Next we consider the uniqueness problem of a fixed point in a G-complete Menger
space; to this aim we give the following condition:

(∗) Fu,v() =  if u, v ∈ Fix(f ), where Fix(f ) denotes the set of all fixed points of a mapping f ,
that is, Fix(f ) := {x ∈ X : x = fx}.

Theorem . Adding condition (∗) to the hypotheses of Theorem ., we obtain uniqueness
of the fixed point.

Proof We prove uniqueness of the fixed point. Let u and v be two fixed points of f , that
is, u = fu and v = fv. First, we prove that Fu,v(φ(s)) >  for all s > . By condition (ii) of
Definition ., we have φ(s/cn) → ∞ as n → ∞. Since supn∈N Fu,v(φ(s/cn)) = , we deduce
that there exists n ∈N such that Fu,v(φ(s/cn)) > . Now, by using (.), we obtain


Fu,v(φ( s

cn– ))
–  =


Ffu,fv(φ( cs

cn ))
– 

≤ ψ

(


Fu,v(φ( s
cn ))

– 
)

,

that implies Fu,v(φ( s
cn– )) > . By repeating a similar reasoning n times, we deduce that

Fu,v(φ(s)) >  for all s > .
Next, we show that Fu,v(φ(s)) = . In fact, for every s > , we have that Fu,v(φ( s

ci )) >  for
all  ≤ i ≤ n and for all n ∈N. Therefore, by using (.), we get


Fu,v(φ(s))

–  ≤ ψ

(


Fu,v(φ( s
c ))

– 
)

≤ · · · ≤ ψn
(


Fu,v(φ( s

cn ))
– 

)

.

Thus, since ψn(an) →  whenever an →  as n → ∞, we get Fu,v(φ(s)) = .
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It follows that Fu,v(t) = H(t) for all t > . In fact, if t is not in range of φ, since φ is con-
tinuous at , then there exists s >  such that φ(s) < t. This implies Fu,v(t) ≥ Fu,v(φ(s)) = ,
yielding thereby u = v. �

Our next step is to furnish a fixed point theorem in an M-complete Menger PM-space.

Theorem . Let (X, F , T) be an M-complete Menger PM-space and f : X → X be a ψ-
contractive mapping, where the function ψ : R+ → R

+ is non-decreasing, continuous at ,
ψ() =  and

∑∞
n= ψn(an) < ∞, whenever an →  as n → ∞. Then f has a fixed point

provided that F is triangular.

Proof In view of the assumptions on the function ψ , it is clear that ψ ∈ �. Then, following
similar arguments to those given in Theorem ., one obtains Fxn ,xn+ (ε) →  as n → ∞.
Now, we shall show that {xn} is an M-Cauchy sequence. By the properties of φ, given ε > ,
we can find s >  such that ε > φ(s) > . Therefore,


Fxn ,xn+p (ε)

–  ≤ 
Fxn ,xn+p (φ(s))

– .

Now, since F is triangular, we get


Fxn ,xn+p (ε)

–  ≤ 
Fxn ,xn+ (ε)

–  +


Fxn+,xn+ (ε)
–  + · · · +


Fxn+p–,xn+p (ε)

– 

≤ 
Fxn ,xn+ (φ(s))

–  +


Fxn+,xn+ (φ(s))
– 

+ · · · +


Fxn+p–,xn+p (φ(s))
– 

≤ ψn
(


Fxn ,xn+ (φ( s

cn ))
– 

)

+ ψn+
(


Fxn+,xn+ (φ( s

cn+ ))
– 

)

+ · · · + ψn+p
(


Fxn+p–,xn+p (φ( s

cn+p ))
– 

)

≤
∞∑

k=n

ψk
(


Fxk ,xk+ (φ( s

ck ))
– 

)

.

Since
∑∞

n= ψn(an) < ∞, where an = ( 
Fxn ,xn+ (φ( s

cn )) – ) →  as n → ∞, we obtain
Fxn ,xn+p (ε) →  as n → ∞. Thus {xn} is an M-Cauchy sequence in X. The rest of the proof
of this theorem can be completed on the lines of Theorem .. This concludes the proof.

�

Clearly, on the same lines of Theorem . one can solve the uniqueness problem of a
fixed point in an M-complete Menger space. To avoid repetition, we give the statement of
this theorem without the proof.

Theorem . Adding condition (∗) to the hypotheses of Theorem ., we obtain uniqueness
of the fixed point.
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Remark . Our Theorem . is proved in an M-complete Menger PM-space under arbi-
trary t-norm, therefore Theorem . can be realized as a possible answer to the problem of
existence of a fixed point for generalized type contractive mappings in Menger PM-spaces.

As an application of Theorems . and ., we prove the following common fixed point
theorem for a finite family of mappings which runs as follows.

Theorem . Let (X, F , T) be a G-complete Menger PM-space, {fi}m
 be a finite family of

self-mappings defined on X and denote f = fff · · · fm. If f : X → X satisfies all the hypothe-
ses of Theorem ., then the family {fi}m

 has a unique common fixed point provided that
fifj = fjfi whenever i �= j, with i, j ∈ {, , . . . , m}.

Proof Notice that all the hypotheses of Theorems . and . are satisfied in respect of the
mapping f , therefore there exists a unique x ∈ X such that fx = x. Now

f (fix) =
(
(ff · · · fm)fi

)
x

= (ff · · · fm–)
(
(fmfi)x

)
= (ff · · · fm–)(fifmx)

= · · ·
= ffi(ff · · · fmx)

= fif(ff · · · fmx) = fi(fx) = fix,

which shows that fix is also a fixed point of f . Since x is the unique fixed point of f , therefore
fix = x and hence x is also a fixed point of all mappings fi for i ∈ {, , . . . , m}. �

By setting f = f = · · · = fm = g in Theorem ., we deduce the following fixed point
theorem for mth iterates of a mapping g .

Corollary . Let (X, F , T) be a G-complete Menger PM-space and g : X → X be a map-
ping such that gm satisfies all the hypotheses of Theorem .. Then g has a unique fixed
point.

Remark . Results similar to Theorem . and Corollary . can be outlined in respect
of Theorems . and ..

Finally, by using the following example, we show that Corollary . can be situationally
more useful than Theorems . and ..

Example . Let X = [, ] be equipped with the usual metric d on X. Define f : X → X
as follows:

fx =

⎧
⎨

⎩

 if x ∈ {, 
 , },

 if x ∈ (, 
 ) ∪ ( 

 , ).

Also define

Fx,y(t) =

⎧
⎨

⎩

t
t+d(x,y) if t > ,

 if t = 
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for all x, y ∈ X. Then (X, F , T) is a complete Menger PM-space with Tp(a, b) = a · b. Notice
that f x =  for every x ∈ X and hence the condition


Ff x,f y(φ(ct))

–  ≤ ψ

(


Fx,y(φ(t))
– 

)

is always satisfied for every choice of functions φ ∈ � and ψ as in Theorem ., with
any constant c ∈ (, ). On the other hand, f does not satisfy condition (.). In fact, for
instance, putting x =  and y ∈ ( 

 , ) the inequality

Ffx,fy(ct) ≥ Fx,y(t)

does not hold true and consequently condition (.) is not satisfied for φ(s) = ψ(s) = s for
all s ∈R

+. Moreover, if we choose again x =  and make y → , then f does not satisfy the
condition


Ffx,fy(φ(ct))

–  ≤ ψ

(


Fx,y(φ(t))
– 

)

for any choice of φ ∈ �, ψ ∈ � and c ∈ (, ).
Thus we conclude that f does not meet the requirements of Theorem ., whereas the

power mapping f  satisfies all the conditions of Corollary . substantiating the utility of
Corollary . (and hence Theorem .) over Theorem ..
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