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Abstract
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1 Introduction and preliminaries
The Banach contraction principle is one of the most well-known and useful tools in anal-
ysis. This principle has been generalized by many authors in many different ways (see
[–]). Recently, Samet et al. [] introduced the notion of α-ψ-contractive type mappings
and proved some fixed point theorems for such mappings within the framework of com-
plete metric spaces. Karapınar and Samet [] generalized α-ψ-contractive type mappings
and obtained some fixed point theorems for generalized α-ψ-contractive type mappings.
Some interesting multivalued generalizations of α-ψ-contractive type mappings are avail-
able in [–]. More recently, Jleli and Samet [] introduced the notion of α-ψ-proximal
contractive type mappings and proved certain best proximity point theorems. Many au-
thors have obtained best proximity point theorems and have done so in a variety of set-
tings; see, for example, [–]. Abkar and Gbeleh [] and Al-Thagafi and Shahzad [,
] investigated best proximity points for multivalued mappings. Recently Ali et al. ex-
tended the results of Jleli and Samet [] for nonself multivalued mappings. The concept
of coupled best proximity point theorem was introduced by Sintunavarat and Kumam
[], and they proved the coupled best proximity theorem for cyclic contractions.

Inspired and motivated by the recent results of Ali et al. in [] and by those of Sin-
tunavarat and Kumam in [], we establish the coupled best proximity points for α-ψ-
proximal contractive multimaps. We also give examples to support our main results.

Let (X, d) be a metric space. For A, B ⊂ X, we use the following notations subsequently:
dist(A, B) = inf{d(a, b) : a ∈ A, b ∈ B}, D(x, B) = inf{d(x, b) : b ∈ B}, A = {a ∈ A : d(a, b) =
dist(A, B) for some b ∈ B}, B = {b ∈ B : d(a, b) = dist(A, B) for some a ∈ A}, X\∅ is the set
of all nonempty subsets of X, CL(X) is the set of all nonempty closed subsets of X, and
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K(X) is the set of all nonempty compact subsets of X. For every A, B ∈ CL(X), let

H(A, B) =

⎧
⎨

⎩

max{supx∈A d(x, B), supy∈B d(y, A)} if the maximum exists;

∞ otherwise.
()

Such a map H is called the generalized Hausdorff metric induced by d. A point x∗ ∈ X is
said to be the best proximity point of a mapping T : A → B if d(x∗, Tx∗) = dist(A, B). When
A = B, the best proximity point is essentially the fixed point of the mapping T .

Definition . (see []) Let (A, B) be a pair of nonempty subsets of a metric space (X, d)
with A �= ∅. Then the pair (A, B) is said to have the weak P-property if and only if, for any
x, x ∈ A and y, y ∈ B,

d(x, y) = dist(A, B),
d(x, y) = dist(A, B)

}

⇒ d(x, x) ≤ d(y, y). ()

Let � denote the set of all functions ψ : [,∞) → [,∞) satisfying the following prop-
erties:

(a) ψ is monotone nondecreasing;
(b)

∑∞
n= ψn(t) < ∞ for each t > .

Definition . (see []) An element x∗ ∈ A is said to be the best proximity point of a
multivalued nonself mapping T if D(x∗, Tx∗) = dist(A, B).

Definition . (see []) Let A and B be two nonempty subsets of a metric space (X, d).
A mapping T : A → B\∅ is called α-proximal admissible if there exists a mapping α :
A × A → [,∞) such that

α(x, x) ≥ ,
d(u, y) = dist(A, B),
d(u, y) = dist(A, B)

⎫
⎪⎬

⎪⎭
⇒ α(u, u) ≥ , ()

where x, x, u, u ∈ A, y ∈ Tx and y ∈ Tx.

Definition . (see []) Let A and B be two nonempty subsets of a metric space (X, d).
A mapping T : A → CL(B) is said to be an α-ψ-proximal contraction if there exist two
functions ψ ∈ � and α : A × A → [,∞) such that

α(x, y)H(Tx, Ty) ≤ ψ
(
d(x, y)

)
, ∀x, y ∈ A. ()

Lemma . (see []) Let (X, d) be a metric space and B ∈ CL(X). Then, for each x ∈ X
with d(x, B) >  and q > , there exists an element b ∈ B such that

d(x, b) < qd(x, B). ()

(C) If {xn} is a sequence in A such that α(xn, xn+) ≥  for all n and xn → x ∈ A as
n → ∞, then there exists a subsequence {xnk } of {xn} such that α(xnk , x) ≥  for all k.
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The main results of Ali et al. in [] are the following.

Theorem . (see []) Let A and B be two nonempty closed subsets of a complete met-
ric space (X, d) such that A is nonempty. Let α : A × A → [,∞) and ψ ∈ � be a strictly
increasing map. Suppose that T : A → CL(B) is a mapping satisfying the following condi-
tions:

(i) Tx ⊆ B for each x ∈ A and (A, B) satisfies the weak P-property;
(ii) T is an α-proximal admissible map;

(iii) there exist elements x, x in A and y ∈ Tx such that

d(x, y) = d(A, B), α(x, x) ≥ ; ()

(iv) T is a continuous α-ψ-proximal contraction.
Then there exists an element x∗ ∈ A such that

D
(
x∗, Tx∗) = dist(A, B).

Theorem . (see []) Let A and B be two nonempty closed subsets of a complete metric
space (X, d) such that A is nonempty. Let α : A × A → [,∞) and let ψ ∈ � be a strictly
increasing map. Suppose that T : A → CL(B) is a mapping satisfying the following condi-
tions:

(i) Tx ⊆ B for each x ∈ A and (A, B) satisfies the weak P-property;
(ii) T is an α-proximal admissible map;

(iii) there exist elements x, x in A and y ∈ Tx such that

d(x, y) = d(A, B), α(x, x) ≥ ; ()

(iv) property (C) holds and T is an α-ψ-proximal contraction.
Then there exists an element x∗ ∈ A such that

D
(
x∗, Tx∗) = dist(A, B).

The purpose of this paper is to extend the recent results of Ali et al. [] to a coupled
best proximity point of nonself multivalued mappings.

2 Main results
We begin this section by introducing the following definitions.

Definition . Let A and B be two nonempty subsets of a metric space (X, d). A mapping
T : A × A → B\∅ is called α-proximal admissible if there exists a mapping α : A × A →
[,∞) such that

α(x, x) ≥ ,
d(w, u) = dist(A, B),
d(w, u) = dist(A, B)

⎫
⎪⎬

⎪⎭
⇒ α(w, w) ≥ , ()
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where x, x, w, w, y, y ∈ A, u ∈ T(x, y) and u ∈ T(x, y), and

α(y, y) ≥ ,
d(w′

, v) = dist(A, B),
d(w′

, v) = dist(A, B)

⎫
⎪⎬

⎪⎭
⇒ α

(
w′

, w′

) ≥ , ()

where y, y, w′
, w′

, x, x ∈ A, v ∈ T(y, x) and v ∈ T(y, x).

Definition . Let A and B be two nonempty subsets of a metric space (X, d). A mapping
T : A × A → CL(B) is said to be an α-ψ-proximal contraction if there exist two functions
ψ ∈ � and α : A × A → [,∞) such that

α(x, y)H
(
T

(
x, x′), T

(
y, y′)) ≤ ψ

(
d(x, y)

)
, ∀x, x′, y, y′ ∈ A. ()

Definition . An element (x∗, y∗) ∈ A × A is said to be the coupled best proximity point
of a multivalued nonself mapping T if D(x∗, T(x∗, y∗)) = dist(A, B) and D(y∗, T(y∗, x∗)) =
dist(A, B).

The following are our main results.

Theorem . Let A and B be two nonempty closed subsets of a complete metric space (X, d)
such that A is nonempty. Let α : A × A → [,∞) and let ψ ∈ � be a strictly increasing
map. Suppose that T : A × A → CL(B) is a mapping satisfying the following conditions:

(i) T(x, y) ⊆ B for each x, y ∈ A and (A, B) satisfies the weak P-property;
(ii) T is an α-proximal admissible map;

(iii) there exist elements (x, y), (x, y) in A × A and u ∈ T(x, y), v ∈ T(y, x)
such that

d(x, u) = d(A, B), α(x, x) ≥  and

d(y, v) = d(A, B), α(y, y) ≥ ;
()

(iv) T is a continuous α-ψ-proximal contraction.
Then there exists an element (x∗, y∗) ∈ A × A such that

D
(
x∗, T

(
x∗, y∗)) = dist(A, B) and

D
(
y∗, T

(
y∗, x∗)) = dist(A, B).

Proof From condition (iii), there exist elements (x, y), (x, y) in A × A and u ∈
T(x, y), v ∈ T(y, x) such that

d(x, u) = dist(A, B), α(x, x) ≥  and

d(y, v) = dist(A, B), α(y, y) ≥ .
()
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Assume that u /∈ T(x, y), v /∈ T(y, x); for otherwise (x, y) is the coupled best proxim-
ity point. From condition (iv), we have

 < d
(
u, T(x, y)

) ≤ H
(
T(x, y), T(x, y)

)

≤ α(x, x)H
(
T(x, y), T(x, y)

)

≤ ψ
(
d(x, x)

)
()

and

 < d
(
v, T(y, x)

) ≤ H
(
T(y, x), T(y, x)

)

≤ α(y, y)H
(
T(y, x), T(y, x)

)

≤ ψ
(
d(y, y)

)
. ()

For q, q′ > , it follows from Lemma . that there exist u ∈ T(x, y) and v ∈ T(y, x) such
that

 < d(u, u) < qd
(
u, T(x, y)

)
and

 < d(v, v) < q′d
(
v, T(y, x)

)
.

()

From (), () and (), we have

 < d(u, u) < qd
(
u, T(x, y)

) ≤ qψ
(
d(x, x)

)
()

and

 < d(v, v) < q′d
(
v, T(y, x)

) ≤ q′ψ
(
d(y, y)

)
. ()

As u ∈ T(x, y) ⊆ B, there exists x �= x ∈ A such that

d(x, u) = dist(A, B), ()

and as v ∈ T(y, x) ⊆ B, there exists y �= y ∈ A such that

d(y, v) = dist(A, B); ()

for otherwise (x, y) is the coupled best proximity point. As (A, B) satisfies the weak P-
property, from (), () and () we have

 < d(x, x) ≤ d(u, u) and

 < d(y, y) ≤ d(v, v).
()

From (), () and () we have

 < d(x, x) ≤ d(u, u) < qd
(
u, T(x, y)

) ≤ qψ
(
d(x, x)

)
and

 < d(y, y) ≤ d(v, v) < q′d
(
v, T(y, x)

) ≤ q′ψ
(
d(y, y)

)
.

()
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Since ψ is strictly increasing, we have

ψ
(
d(x, x)

)
< ψ

(
qψ

(
d(x, x)

))
and

ψ
(
d(y, y)

)
< ψ

(
q′ψ

(
d(y, y)

))
.

Put

q = ψ
(
qψ

(
d(x, x)

))
/ψ

(
d(x, x)

)
,

q′
 = ψ

(
q′ψ

(
d(y, y)

))
/ψ

(
d(y, y)

)
.

We also have

α(x, x) ≥ , d(x, u) = dist(A, B) and d(x, u) = dist(A, B)

and

α(y, y) ≥ , d(y, v) = dist(A, B) and d(y, v) = dist(A, B).

Since T is an α-proximal admissible, then α(x, x) ≥  and α(y, y) ≥ . Thus we have

d(x, u) = dist(A, B), α(x, x) ≥  and

d(y, v) = dist(A, B), α(y, y) ≥ .
()

Assume that u /∈ T(x, y) and v /∈ T(y, x); for otherwise (x, y) is the coupled best
proximity point. From condition (iv) we have

 < d
(
u, T(x, y)

) ≤ H
(
T(x, y), T(x, y)

)

≤ α(x, x)H
(
T(x, y), T(x, y)

)

≤ ψ
(
d(x, x)

)
()

and

 < d
(
v, T(y, x)

) ≤ H
(
T(y, x), T(y, x)

)

≤ α(y, y)H
(
T(y, x), T(y, x)

)

≤ ψ
(
d(y, y)

)
. ()

For q, q′
 > , it follows from Lemma . that there exist u ∈ T(x, y) and v ∈ T(y, x)

such that

 < d(u, u) < qd
(
u, T(x, y)

)
,

 < d(v, v) < q′
d

(
v, T(y, x)

)
.

()
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From (), () and () we have

 < d(u, u) < qd
(
u, T(x, y)

)

≤ qψ
(
d(x, x)

)

= ψ
(
qψ

(
d(x, x)

))
()

and

 < d(v, v) < q′
d

(
v, T(y, x)

)

≤ q′
ψ

(
d(y, y)

)

= ψ
(
q′ψ

(
d(y, y)

))
.

()

As u ∈ T(x, y) ∈ B, there exists x �= x ∈ A such that

d(x, u) = dist(A, B); ()

and as v ∈ T(y, x) ∈ B, there exists y �= y ∈ A such that

d(y, v) = dist(A, B); ()

for otherwise (x, y) is the coupled best proximity point. As (A, B) satisfies the weak P-
property, from (), () and () we have

 < d(x, x) ≤ d(u, u),

 < d(y, y) ≤ d(v, v).
()

From (), () and () we have

 < d(x, x) < qd
(
u, T(x, y)

)

≤ qψ
(
d(x, x)

)

= ψ
(
qψ

(
d(x, x)

))
()

and

 < d(y, y) < q′
d

(
v, T(y, x)

)

≤ q′
ψ

(
d(y, y)

)

= ψ
(
q′ψ

(
d(y, y)

))
.

()

Since ψ is strictly increasing, we have

ψ
(
d(x, x)

)
< ψ(qψ

(
d(x, x)

))
and ψ

(
d(y, y)

)
< ψ(q′ψ

(
d(y, y)

))
. ()
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Put

q = ψ(qψ
(
d(x, x)

))
/ψ

(
d(x, x)

)
,

q′
 = ψ(q′ψ

(
d(y, y)

))
/ψ

(
d(y, y)

)
.

We also have

α(x, x) ≥ , d(x, u) = dist(A, B) and d(x, u) = dist(A, B)

and

α(y, y) ≥ , d(y, v) = dist(A, B) and d(y, v) = dist(A, B).

Since T is an α-proximal admissible, then α(x, x) ≥  and α(y, y) ≥ , respectively. Thus
we have

d(x, u) = dist(A, B), α(x, x) ≥  and

d(y, v) = dist(A, B), α(y, y) ≥ .
()

Continuing in the same process, we get sequences {xn}, {yn} in A and {un}, {vn} in B,
where un ∈ T(xn–, yn–) and vn ∈ T(yn–, xn–) for each n ∈N, such that

d(xn+, un+) = dist(A, B), α(xn, xn+) ≥  and

d(yn+, vn+) = dist(A, B), α(yn, yn+) ≥ ,
()

and

d(un+, un+) < ψn(qψ
(
d(x, x)

))
and

d(vn+, vn+) < ψn(q′ψ
(
d(y, y)

))
.

()

As un+ ∈ T(xn+, yn+) ∈ B, there exists xn+ �= xn+ ∈ A such that

d(xn+, un+) = dist(A, B) ()

and as vn+ ∈ T(yn+, xn+) ∈ B, there exists yn+ �= yn+ ∈ A such that

d(yn+, vn+) = dist(A, B). ()

Since (A, B) satisfies the weak P-property, from (), () and () we have

d(xn+, xn+) ≤ d(un+, un+) and d(yn+, yn+) ≤ d(vn+, vn+).

Thus, from () we have

d(xn+, xn+) < ψn(qψ
(
d(x, x)

))
and

d(yn+, yn+) < ψn(q′ψ
(
d(y, y)

))
.

()
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Now, we shall prove that {xn} and {yn} are Cauchy sequences in A. Let ε >  be fixed.
Since

∑∞
n= ψn(qψ(d(x, x))) < ∞ and

∑∞
n= ψn(q′ψ(d(y, y))) < ∞, there exist some pos-

itive integers h = h(ε) and h′ = h′(ε) such that

∞∑

k≥h

ψk(qψ
(
d(x, x)

))
< ε

and

∞∑

k≥h′
ψk(q′ψ

(
d(y, y)

))
< ε,

respectively. For m > n > h, using the triangular inequality, we obtain

d(xn, xm) ≤
m–∑

k=n

d(xk , xk+) ≤
m–∑

k=n

ψk(qψ
(
d(x, x)

))

≤
∞∑

k≥h

ψk(qψ
(
d(x, x)

))
< ε ()

and

d(yn, ym) ≤
m–∑

k=n

d(yk , yk+) ≤
m–∑

k=n

ψk(q′ψ
(
d(y, y)

))

≤
∞∑

k≥h′
ψk(q′ψ

(
d(y, y)

))
< ε, ()

respectively. Hence {xn} and {yn} are Cauchy sequences in A. Similarly, one can show that
{un} and {vn} are Cauchy sequences in B. Since A and B are closed subsets of a complete
metric space, there exists (x∗, y∗) in A × A such that xn → x∗, yn → y∗ as n → ∞ and there
exist u∗, v∗ in B such that un → u∗, vn → v∗ as n → ∞. By () and () we conclude that

d
(
x∗, u∗) = dist(A, B) as n → ∞ and

d
(
y∗, v∗) = dist(A, B) as n → ∞.

Since T is continuous and un ∈ T(xn–, yn–), we have u∗ ∈ T(x∗, y∗) and vn ∈ T(yn–, xn–),
we have v∗ ∈ T(y∗, x∗). Hence,

dist(A, B) ≤ D
(
x∗, T

(
x∗, y∗)) ≤ d

(
x∗, u∗) = dist(A, B)

and

dist(A, B) ≤ D
(
y∗, T

(
y∗, x∗)) ≤ d

(
y∗, v∗) = dist(A, B).

Therefore, (x∗, y∗) is the coupled best proximity point of the mapping T . �
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Theorem . Let A and B be two nonempty closed subsets of a complete metric space (X, d)
such that A is nonempty. Let α : A × A → [,∞) and let T : A × A → K(B) be a mapping
satisfying the following conditions:

(i) T(x, y) ⊆ B for each (x, y) ∈ A × A and (A, B) satisfies the weak P-property;
(ii) T is an α-proximal admissible map;

(iii) there exist elements (x, y), (x, y) in A × A and u ∈ T(x, y), v ∈ T(y, x)
such that

d(x, u) = dist(A, B), α(x, x) ≥  and

d(y, v) = dist(A, B), α(y, y) ≥ ;
()

(iv) T is a continuous α-ψ-proximal contraction.
Then there exists an element (x∗, y∗) ∈ A × A such that

D
(
x∗, T

(
x∗, y∗)) = dist(A, B) and

D
(
y∗, T

(
y∗, x∗)) = dist(A, B).

Theorem . Let A and B be two nonempty closed subsets of a complete metric space (X, d)
such that A is nonempty. Let α : A × A → [,∞) and let ψ ∈ � be a strictly increasing
map. Suppose that T : A × A → CL(B) is a mapping satisfying the following conditions:

(i) T(x, y) ⊆ B for each (x, y) ∈ A × A and (A, B) satisfies the weak P-property;
(ii) T is an α-proximal admissible map;

(iii) there exist elements (x, y), (x, y) in A × A and u ∈ T(x, y), v ∈ T(y, x)
such that

d(x, u) = d(A, B), α(x, x) ≥  and

d(y, v) = d(A, B), α(y, y) ≥ ;
()

(iv) property (C) holds and T is an α-ψ-proximal contraction.
Then there exists an element (x∗, y∗) ∈ A × A such that

D
(
x∗, T

(
x∗, y∗)) = dist(A, B) and

D
(
y∗, T

(
y∗, x∗)) = dist(A, B).

Proof Similar to the proof of Theorem ., there exist Cauchy sequences {xn} and {yn} in
A and Cauchy sequences {un} and {vn} in B such that

d(xn+, un+) = dist(A, B), α(xn, xn+) ≥  and

d(yn+, vn+) = dist(A, B), α(yn, yn+) ≥ ;
()

and xn → x∗ ∈ A, yn → y∗ ∈ A as n → ∞ and un → u∗ ∈ B, vn → v∗ ∈ B as n → ∞.
From condition (C), there exist subsequences {xnk } of {xn}, {ynk } of {yn} such that

α(xnk , x∗) ≥ , α(ynk , y∗) ≥  for all k. Since T is an α-ψ-proximal contraction, we have

H
(
T(xnk , ynk ), T

(
x∗, y∗)) ≤ α

(
xnk , x∗)H

(
T(xnk , ynk ), T

(
x∗, y∗))

≤ ψ
(
d
(
xnk , x∗)), ∀k,
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and

H
(
T(ynk , xnk ), T

(
y∗, x∗)) ≤ α

(
ynk , y∗)H

(
T(ynk , xnk ), T

(
y∗, x∗))

≤ ψ
(
d
(
ynk , y∗)), ∀k.

Letting k → ∞ in the above inequality, we get T(xnk , ynk ) → T(x∗, y∗) and T(ynk , xnk ) →
T(y∗, x∗), respectively. By the continuity of the metric d, we have

d
(
x∗, u∗) = lim

k→∞
d(xnk +, unk +) = dist(A, B),

d
(
y∗, v∗) = lim

k→∞
d(ynk +, vnk +) = dist(A, B).

()

Since unk + ∈ T(xnk , ynk ), unk → u∗ and T(xnk , ynk ) → T(x∗, y∗), then u∗ ∈ T(x∗, y∗) and
since vnk + ∈ T(ynk , xnk ), vnk → v∗ and T(ynk , xnk ) → T(y∗, x∗), then v∗ ∈ T(y∗, x∗). Hence,

dist(A, B) ≤ D
(
x∗, T

(
x∗, y∗)) ≤ d

(
x∗, u∗) = dist(A, B)

and

dist(A, B) ≤ D
(
y∗, T

(
y∗, x∗)) ≤ d

(
y∗, v∗) = dist(A, B).

Therefore, (x∗, y∗) is the coupled best proximity point of the mapping T . �

Theorem . Let A and B be two nonempty closed subsets of a complete metric space (X, d)
such that A is nonempty. Let α : A × A → [,∞) and let T : A × A → K(B) be a mapping
satisfying the following conditions:

(i) T(x, y) ⊆ B for each (x, y) ∈ A × A and (A, B) satisfies the weak P-property;
(ii) T is an α-proximal admissible map;

(iii) there exist elements (x, y), (x, y) in A × A and u ∈ T(x, y), v ∈ T(y, x)
such that

d(x, u) = dist(A, B), α(x, x) ≥  and

d(y, v) = dist(A, B), α(y, y) ≥ ;
()

(iv) property (C) holds and T is an α-ψ-proximal contraction.
Then there exists an element (x∗, y∗) ∈ A × A such that

D
(
x∗, T

(
x∗, y∗)) = dist(A, B) and

D
(
y∗, T

(
y∗, x∗)) = dist(A, B).

With a similar idea to the examples in [], we give the following examples to support
our main results.

Example . Let X = [,∞)× [,∞) be a product space endowed with the usual metric d.
Suppose that A = {( 

 , x) :  ≤ x < ∞} and B = {(, x) :  ≤ x < ∞}.
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Define T : A × A → CL(B) by

T
((




, a
)

,
(




, b
))

=

⎧
⎨

⎩

{(, x
 ) :  ≤ x ≤ max{a, b}} if a, b ≤ ,

{(, x) :  ≤ x ≤ max{a, b}} if a, b > ,
()

and define α : A × A → [,∞) by

α(x, y) =

⎧
⎨

⎩

 if x, y ∈ {( 
 , a) :  ≤ a ≤ },

 otherwise.

Let �(t) = t
 for all t ≥ . Note that A = A, B = B, and T(x, y) ⊆ B for each (x, y) ∈

A × A. Also, the pair (A, B) satisfies the weak P-property.
Let (x, y), (x, y) ∈ {( 

 , x) :  ≤ x ≤ }; then T(x, y), T(x, y) ⊆ {(, x
 ) :  ≤ x ≤ }.

Consider u ∈ T(x, y), u ∈ T(x, y) and w, w ∈ A such that d(w, u) = dist(A, B) and
d(w, u) = dist(A, B). Then we have w, w ∈ {( 

 , x) :  ≤ x ≤ 
 }, so α(w, w) = . And, for

v ∈ T(y, x), v ∈ T(y, x) and w′
, w′

 ∈ A such that d(w′
, v) = dist(A, B) and d(w′

, v) =
dist(A, B). Then we have w′

, w′
 ∈ {( 

 , x) :  ≤ x ≤ 
 }, so α(w′

, w′
) = . Therefore, T is an α-

proximal admissible map. For (x, y) = (( 
 , ), ( 

 , )) ∈ A × A and u = (, 
 ) ∈ T(x, y),

v = (, 
 ) ∈ T(y, x) in B, we have (x, y) = (( 

 , 
 ), ( 

 , 
 )) ∈ A × A such that

d(x, u) = dist(A, B), α(x, x) = α

((



, 
)

,
(




,



))

= 

and

d(y, v) = dist(A, B), α(y, y) = α

((



, 
)

,
(




,



))

= .

If x, x′, y, y′ ∈ {( 
 , a) :  ≤ a ≤ }, then we have

α(x, y)H
(
T

(
x, x′), T

(
y, y′)) =

|x – y|


=



d(x, y) = ψ
(
d(x, y)

)
,

for otherwise

α(x, y)H
(
T

(
x, x′), T

(
y, y′)) ≤ ψ

(
d(x, y)

)
.

Hence, T is an α-ψ-proximal contraction. Moreover, if {xn} is a sequence in A such that
α(xn, xn+) =  for all n and xn → x ∈ A as n → ∞, then there exists a subsequence {xnk } of
{xn} such that α(xnk , x) =  for all k. Therefore, all the conditions of Theorem . hold and
T has the coupled best proximity point.

Example . Let X = [,∞)× [,∞) be endowed with the usual metric d. Let a >  be any
fixed real number, A = {(a, x) :  ≤ x < ∞} and B = {(, x) :  ≤ x < ∞}. Define T : A × A →
CL(B) by

T
(
(a, x), (a, y)

)
=

{(
, b) :  ≤ b ≤ max{x, y}}, ()
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and α : A × A → [,∞) by

α
(
(a, x), (a, y)

)
=

⎧
⎨

⎩

 if x = y = ,


a(x+y) otherwise.
()

Let ψ(t) = t
a for all t ≥ . Note that A = A, B = B and T(x, y) ∈ B for each x, y ∈ A. If

w = (a, y), w′
 = (a, y′

), w = (a, y), w′
 = (a, y′

) ∈ A with either y �=  or y �=  or both are
nonzero, we have

α(w, w)H
(
T

(
w, w′


)
, T

(
w, w′


))

=


a(y + y)
∣
∣y

 – y

∣
∣

=

a
|y – y|

= ψ
(
d(w, w)

)

for otherwise

α(w, w)H
(
T

(
w, w′


)
, T

(
w, w′


))

=  = ψ
(
d(w, w)

)
.

For x = (a, 
a ), y = (a, 

a ) ∈ A and u = (, 
a ) ∈ T(x, y) such that d(x, u) = a =

dist(A, B) and α(x, x) = a
+a > . And for x = (a, 

a ), y = (a, 
a ) ∈ A and v = (, 

a ) ∈
T(x, y) such that d(y, v) = a = dist(A, B) and α(y, y) = a

+a > . Furthermore, one can
see that the remaining conditions of Theorem . also hold. Therefore, T has the coupled
best proximity point.
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