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1 Introduction
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm‖ · ‖. Let D be a
nonempty closed convex subset of H . Let T : D → D be a nonlinear mapping. The fixed
point set of T is denoted by F(T), that is, F(T) = {x ∈ D : Tx = x}. A mapping T is said to
be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ D. (.)

If D is a bounded nonempty closed convex subset of H and T is a nonexpansive mapping
of D into itself, then F(T) is nonempty [].

A mapping T is said to be quasi-nonexpansive if F(T) 	= ∅, and

‖Tx – p‖ ≤ ‖x – p‖ for each x ∈ D and p ∈ F(T). (.)

For modeling inverse problems which arise from phase retrievals and in medical image
reconstruction [], in  Censor and Elfving [] firstly introduced the following split
feasibility problem (SFP) in finite-dimensional Hilbert spaces:

Let C and Q be nonempty closed convex subsets of the Hilbert spaces H and H, respec-
tively, let A : H → H be a bounded linear operator. The split feasibility problem (SFP) is
formulated as finding a point x∗ with the property

x∗ ∈ C and Ax∗ ∈ Q. (.)
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It has been found that the SFP can be used in many areas such as image restoration,
computer tomograph, and radiation therapy treatment planing [–]. Some methods have
been proposed to solve split feasibility problems; see, for instance, [, –].

Assuming that the SFP is consistent (i.e., (.) has a solution), it is not hard to see that

x∗ = PC
(
I + γ A∗(PQ – I)

)
Ax∗, ∀x ∈ C, (.)

where PC and PQ are the (orthogonal) projections onto C and Q, respectively, γ > , and
A∗ denotes the adjoint of A. That is, x∗ solves SFP (.) if and only if x∗ solves fixed point
equation (.) (see []). This implies that SFP can be solved by using fixed point algo-
rithms.

Recently, Moudafi [] introduced the following new split feasibility problem, which is
also called general split equality problem:

Let H, H, H be real Hilbert spaces, C ⊂ H, Q ⊂ H be two nonempty closed convex
sets, A : H → H, B : H → H be two bounded linear operators. The new split feasibility
problem is to

find x∗ ∈ C, y∗ ∈ Q such that Ax∗ = By∗. (.)

This allows asymmetric and partial relations between the variables x and y.
It is easy to see that problem (.) reduces to problem (.) as H = H and B = I (I stands

for the identity mapping from H to H) in (.). Therefore the new split feasibility problem
(.) proposed by Moudafi is a generalization of split feasibility problem (.). The interest
of this problem is to cover many situations, for instance, in decomposition methods for
PDE’s, applications in game theory and in intensity-modulated radiation therapy.

Many authors have proposed some useful methods to solve some kinds of general split
feasibility problems and general split equality problems in real Hilbert spaces, and un-
der suitable conditions some strong convergence theorems have been proved; see, for in-
stance, [–] and the references therein.

The equilibrium problem (for short, EP) is to find x∗ ∈ C such that

F
(
x∗, y

) ≥ , ∀y ∈ C. (.)

The set of solutions of EP is denoted by EP(F). Given a mapping T : C → C, let F(x, y) =
〈Tx, y–x〉 for all x, y ∈ C. Then x∗ ∈ EP(F) if and only if x∗ ∈ C is a solution of the variational
inequality 〈Tx, y – x〉 ≥  for all y ∈ C, i.e., x∗ is a solution of the variational inequality.

Let φ : C → R ∪ {+∞} be a function. The mixed equilibrium problem (for short, MEP)
is to find x∗ ∈ C such that

F
(
x∗, y

)
+ φ(y) – φ

(
x∗) ≥ , ∀y ∈ C. (.)

The set of solutions of MEP is denoted by MEP(F ,φ).
If φ = , then the mixed equilibrium problem (.) reduces to (.).
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If F = , then the mixed equilibrium problem (.) reduces to the following convex min-
imization problem:

find x∗ ∈ C such that φ(y) ≥ φ
(
x∗), ∀y ∈ C. (.)

The set of solutions of (.) is denoted by CMP(φ).
The mixed equilibrium problem (MEP) includes serval important problems arising

in physics, engineering, science optimization, economics, transportation, network and
structural analysis, Nash equilibrium problems in noncooperative games and others. It
has been shown that variational inequalities and mathematical programming problems
can be viewed as a special realization of the abstract equilibrium problems (e.g., [–]).

Recently, Bnouhachem [] introduced the following split equilibrium problems:
Let F : C × C → R and G : Q × Q → R be nonlinear bifunctions and A : H → H be a

bounded linear operator, then the split equilibrium problem (SEP) is to find x∗ ∈ C such
that

F
(
x∗, x

) ≥ , ∀x ∈ C, (.)

and such that

y∗ = Ax∗ ∈ Q solves G
(
y∗, y

) ≥ , ∀y ∈ Q. (.)

In this paper, we consider the following pair of equilibrium problems called split equality
equilibrium problems (SEEP).

Definition . Let F : C × C → R and G : Q × Q → R be nonlinear bifunctions, let
A : H → H and B : H → H be two bounded linear operators, then the split equality
equilibrium problem (SEEP) is to find x∗ ∈ C and y∗ ∈ Q such that

F
(
x∗, x

) ≥ , ∀x ∈ C, G
(
y∗, y

) ≥ , ∀y ∈ Q and Ax∗ = By∗. (.)

The set of solutions of (.) is denoted by SEEP(F , G).

The split equality mixed equilibrium problem (SEMEP) is defined as follows.

Definition . Let F : C×C → R and G : Q×Q → R be nonlinear bifunctions, let φ : C →
R ∪ {+∞} and ϕ : Q → R ∪ {+∞} be proper lower semi-continuous and convex functions
such that C ∩ domφ 	= ∅ and Q ∩ domϕ 	= ∅, and let A : H → H and B : H → H be two
bounded linear operators, then the split equality mixed equilibrium problem (SEMEP) is
to find x∗ ∈ C and y∗ ∈ Q such that

F
(
x∗, x

)
+ φ(x) – φ

(
x∗) ≥ , ∀x ∈ C, G

(
y∗, y

)
+ ϕ(y) – ϕ

(
y∗) ≥ , ∀y ∈ Q

and Ax∗ = By∗. (.)

The set of solutions of (.) is denoted by SEMEP(F , G,φ,ϕ).
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Remark . () In (.), if φ = , then the split equality mixed equilibrium problem (.)
reduces to (.).

() If F =  and G = , then the split equality mixed equilibrium problem (.) reduces
to the following split equality convex minimization problem: find x∗ ∈ C and y∗ ∈ Q such
that

φ(x) ≥ φ
(
x∗), ∀x ∈ C, ϕ(y) ≥ ϕ

(
y∗), ∀y ∈ Q and Ax∗ = By∗. (.)

The set of solutions of (.) is denoted by SECMP(φ,ϕ).
() If F = , G = , B = I and y∗ = Ax∗, then the split equality mixed equilibrium problem

(.) reduces to the following split convex minimization problem: find x∗ ∈ C such that

φ(x) ≥ φ
(
x∗), ∀x ∈ C, and y∗ = Ax∗ ∈ Q, ϕ(y) ≥ ϕ

(
y∗), ∀y ∈ Q. (.)

The set of solutions of (.) is denoted by SCMP(φ,ϕ).

In order to solve the split equality problem (.), Moudafi and Al-Shemas [] presented
the following simultaneous iterative method and obtained weak convergence theorem:

(SIM – FPP)

{
xk+ = U(xk – γkA∗(Axk – Byk));
yk+ = T(yk + γkB∗(Axk – Byk)),

(.)

where H, H, H are real Hilbert spaces, U : H → H, T : H → H are two firmly quasi-
nonexpansive mappings, A : H → H, B : H → H are two bounded linear operators,
A∗ and B∗ are the adjoint of A and B, respectively. Under some suitable conditions, they
obtained some weak convergence theorems.

In this paper, motivated by the above works and related literature, we introduce a new
algorithm for solving split equality mixed equilibrium problems in the framework of
infinite-dimensional real Hilbert spaces. Under suitable conditions some strong and weak
convergence theorems are obtained. As application, we shall utilize our results to study
the split equality mixed variational inequality problem and the split equality convex min-
imization problem. Our results presented in this paper improve and extend some recent
corresponding results.

2 Preliminaries
Throughout this paper, we denote the strong convergence and weak convergence of a se-
quence {xn} to a point x ∈ X by xn → x and xn ⇀ x, respectively.

Let H be a Hilbert space with the inner product 〈·, ·〉 and the norm ‖ ·‖, C be a nonempty
closed convex subset of H . For every point x ∈ H , there exists a unique nearest point of C,
denoted by PCx, such that ‖x – PCx‖ ≤ ‖x – y‖ for all y ∈ C. The mapping PC is called
the metric projection from H onto C. It is well known that PC is a firmly nonexpansive
mapping from H to C, i.e.,

‖PCx – PCy‖ ≤ 〈PCx – PCy, x – y〉, ∀x, y ∈ H .

Further, for any x ∈ H and z ∈ C, z = PCx if and only if

〈x – z, z – y〉 ≥ , ∀y ∈ C. (.)
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For solving mixed equilibrium problems, we assume that the bifunction F : C × C → R
satisfies the following conditions:

(A) F(x, x) = , ∀x ∈ C;
(A) F(x, y) + F(y, x) ≤ , ∀x, y ∈ C;
(A) For all x, y, z ∈ C, limt↓ F(tz + ( – t)x, y) ≤ F(x, y);
(A) For each x ∈ C, the function y �−→ F(x, y) is convex and lower semi-continuous;
(A) For fixed r >  and z ∈ C, there exists a bounded subset K of H and x ∈ C ∩ K

such that

F(z, x) +

r
〈y – x, x – z〉 ≥ , ∀y ∈ C\K .

Lemma . ([]) Let C be a nonempty closed convex subset of a Hilbert space H . Let F be
a bifunction from C × C to R satisfying (A)-(A), and let φ : C → R ∪ {+∞} be a proper
lower semi-continuous and convex function such that C ∩ domφ 	= ∅. For r >  and x ∈ H,
define a mapping TF

r : H → C as follows:

TF
r (x) =

{
z ∈ C : F(z, y) + φ(y) – φ(z) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
. (.)

Then
() For each x ∈ H , TF

r (x) 	= ∅;
() TF

r is single-valued;
() TF

r is firmly nonexpansive, that is, ∀x, y ∈ H,

∥
∥TF

r x – TF
r y

∥
∥ ≤ 〈

TF
r x – TF

r y, x – y
〉
;

() F(TF
r ) = MEP(F ,φ);

() MEP(F ,φ) is closed and convex.

Assume that G : Q × Q to R satisfying (A)-(A), and let ϕ : Q → R ∪ {+∞} be a proper
lower semi-continuous and convex function such that Q ∩ domϕ 	= ∅, and for s >  and
∀u ∈ H, define a mapping TG

s : H → Q as follows:

TG
s (u) =

{
ν ∈ Q : G(ν, w) + ϕ(w) – ϕ(ν) +


s
〈w – ν,ν – u〉 ≥ ,∀w ∈ Q

}
. (.)

Then it follows from Lemma . that TG
s satisfies ()-() of Lemma ., and F(TG

s ) =
MEP(G,ϕ).

Definition . Let H be a Hilbert space.
() A single-value mapping T : H → H is said to be demiclosed at origin if, for any

sequence {xn} ⊂ H with xn ⇀ x∗ and ‖xn – Txn‖ → , we have x∗ = Tx∗.
() A single-value mapping T : H → H is said to be semi-compact if, for any bounded

sequence {xn} ⊂ H with ‖xn – Txn‖ → , there exists a subsequence {xni} ⊂ {xn}
such that {xni} converges strongly to a point x∗ ∈ H .

Lemma . ([]) Let C be a nonempty closed convex subset of a Hilbert space and T be
a nonexpansive mapping from C into itself. If T has a fixed point, then I – T is demiclosed
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at origin, where I is the identity mapping of H , that is, whenever {xn} is a sequence in C
weakly converging to some x ∈ C and the sequence {(I – T)xn} converges strongly to some ,
it follows that Tx = x.

Lemma . ([]) Let H be a Hilbert space and {μn} be a sequence in H such that there
exists a nonempty set W ⊂ H satisfying:

(i) For every μ∗ ∈ W , limn→∞ ‖μn – μ∗‖ exists.
(ii) Any weak-cluster point of the sequence {μn} belongs to W .

Then there exists μ∗ ∈ W such that {μn} weakly converges to μ∗.

Lemma . ([]) Let H be a real Hilbert space, then for all x, y ∈ H , we have

‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉. (.)

3 Main results
Theorem . Let H, H, H be real Hilbert spaces, C ⊆ H and Q ⊆ H be nonempty
closed convex subsets of Hilbert spaces H and H, respectively. Assume that F : C × C → R
and G : Q × Q → R are bifunctions satisfying (A)-(A), and let φ : C → R ∪ {+∞}
and ϕ : Q → R ∪ {+∞} be proper lower semi-continuous and convex functions such that
C ∩domφ 	= ∅ and Q∩domϕ 	= ∅. Let T : H → H, S : H → H be two nonexpansive map-
pings, and A : H → H, B : H → H be two bounded linear operators. Let (x, y) ∈ C × Q
and the iteration scheme {(xn, yn)} be defined as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F(un, u) + φ(u) – φ(un) + 
rn

〈u – un, un – xn〉 ≥ , ∀u ∈ C;
G(vn, v) + ϕ(v) – ϕ(vn) + 

rn
〈v – vn, vn – yn〉 ≥ , ∀v ∈ Q;

xn+ = αnun + ( – αn)T(un – ρnA∗(Aun – Bvn));
yn+ = αnvn + ( – αn)S(vn + ρnB∗(Aun – Bvn)), ∀n ≥ ;

(.)

where λA and λB stand for the spectral radii of A∗A and B∗B respectively, {ρn} is a positive
real sequence such that ρn ∈ (ε, 

λA+λB
– ε) (for ε small enough), {αn} is a sequence in (, )

and {rn} ⊂ (,∞) satisfies the following conditions:
()  < α ≤ αn ≤ β <  (for some α,β ∈ (, ));
() lim infn→∞ rn >  and limn→∞ |rn+ – rn| = .

If � := F(T) ∩ F(S) ∩ SEMEP(F , G,φ,ϕ) 	= ∅, then
(I) The sequence {(xn, yn)} converges weakly to a solution of problem (.).

(II) In addition, if S, T are also semi-compact, then {(xn, yn)} converges strongly to a
solution of problem (.).

Proof Now we prove conclusion (I).
Taking (x, y) ∈ �, it follows from Lemma . that x = TF

rn x and y = TG
rn y, we have

‖un – x‖ =
∥∥TF

rn xn – TF
rn x

∥∥ ≤ ‖xn – x‖, (.)

‖vn – y‖ =
∥
∥TG

rn yn – TG
rn y

∥
∥ ≤ ‖yn – y‖. (.)
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Let (x, y) ∈ �. Since ‖ · ‖ is convex and S, T are nonexpansive mappings, we have

‖xn+ – x‖ =
∥∥αnun + ( – αn)T

(
un – ρnA∗(Aun – Bvn)

)
– x

∥∥

= α
n‖un – x‖ + ( – αn)∥∥T

(
un – ρnA∗(Aun – Bvn)

)
– x

∥∥

+ αn( – αn)
〈
un – x, T

(
un – ρnA∗(Aun – Bvn)

)
– x

〉

≤ α
n‖un – x‖ + ( – αn)∥∥un – ρnA∗(Aun – Bvn) – x

∥∥

+ αn( – αn)
〈
un – x, T

(
un – ρnA∗(Aun – Bvn)

)
– x

〉

≤ α
n‖un – x‖ + ( – αn)∥∥un – ρnA∗(Aun – Bvn) – x

∥∥

+ αn( – αn)
(‖un – x‖ +

∥
∥un – ρnA∗(Aun – Bvn) – x

∥
∥)

= αn‖un – x‖ + ( – αn)
∥
∥un – ρnA∗(Aun – Bvn) – x

∥
∥

≤ αn‖un – x‖ + ( – αn)
(‖un – x‖ +

∥
∥ρnA∗(Aun – Bvn)

∥
∥

– ρn〈Aun – Ax, Aun – Bvn〉
)

≤ ‖xn – x‖ + ( – αn)
∥
∥ρnA∗(Aun – Bvn)

∥
∥

– ( – αn)ρn〈Aun – Ax, Aun – Bvn〉. (.)

Since

∥∥ρnA∗(Aun – Bvn)
∥∥ = ρ

n
〈
A∗(Aun – Bvn), A∗(Aun – Bvn)

〉

= ρ
n
〈
Aun – Bvn, AA∗(Aun – Bvn)

〉

≤ λAρ
n〈Aun – Bvn, Aun – Bvn〉

= λAρ
n‖Aun – Bvn‖. (.)

Combine (.) and (.), then we have

‖xn+ – x‖ ≤ ‖xn – x‖ + ( – αn)λAρ
n‖Aun – Bvn‖

– ( – αn)ρn〈Aun – Ax, Aun – Bvn〉. (.)

Similarly, from the fourth equality in (.), we can get

‖yn+ – y‖ = ‖yn – x‖ + ( – αn)λBρ
n‖Aun – Bvn‖

+ ( – αn)ρn〈Bvn – By, Aun – Bvn〉. (.)

Since (x, y) ∈ �, so we know that Ax = By, and finally we have

‖xn+ – x‖ + ‖yn+ – y‖

≤ ‖xn – x‖ + ‖yn – y‖ – ρn( – αn)
(
 – ρn(λA + λB)

)‖Aun – Bvn‖. (.)

Let �n(x, y) := ‖xn – x‖ + ‖yn – y‖, then we have

�n+(x, y) ≤ �n(x, y) – ρn( – αn)
(
 – ρn(λA + λB)

)‖Aun – Bvn‖. (.)
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Obviously the sequence {�n(x, y)} is decreasing and is lower bounded by , so it con-
verges to some finite limit, say ω(x, y). This means that the first condition of Lemma .
(Opial’s lemma) is satisfied with μn = (xn, yn), μ∗ = (x, y) and W = �. And by passing to
limit in (.), we obtain that

lim
n→∞‖Aun – Bvn‖ = . (.)

Since ‖xn – x‖ ≤ �n(x, y), ‖yn – y‖ ≤ �n(x, y) and limn→∞ �n(x, y) exists, we know that
{xn} and {yn} are bounded, and lim supn→∞ ‖xn – x‖ and lim supn→∞ ‖yn – y‖ exist. From
(.) and (.), we have lim supn→∞ ‖un – x‖ and lim supn→∞ ‖vn – y‖ also exist. Let x∗ and
y∗ be respectively weak cluster points of the sequences {xn} and {yn}. From Lemma ., we
have

‖xn+ – xn‖ = ‖xn+ – x – xn + x‖

= ‖xn+ – x‖ – ‖xn – x‖ – 〈xn+ – xn, xn – x〉
= ‖xn+ – x‖ – ‖xn – x‖ – 

〈
xn+ – x∗, xn – x

〉
+ 

〈
xn – x∗, xn – x

〉
.

So

lim sup
n→∞

‖xn+ – xn‖ = . (.)

Similarly, we have

lim sup
n→∞

‖yn+ – yn‖ = . (.)

This implies that

lim
n→∞‖xn+ – xn‖ = , (.)

and

lim
n→∞‖yn+ – yn‖ = . (.)

It follows from Lemma . that un = TF
rn xn and un+ = TF

rn+ xn+, we have

F(un+, u) + φ(u) – φ(un+) +


rn+
〈u – un+, un+ – xn+〉 ≥ , ∀u ∈ C,

and

F(un, u) + φ(u) – φ(un) +

rn

〈u – un, un – xn〉 ≥ , ∀u ∈ C.

Particularly, we have

F(un+, un) + φ(un) – φ(un+) +


rn+
〈un – un+, un+ – xn+〉 ≥  (.)
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and

F(un, un+) + φ(un+) – φ(un) +

rn

〈un+ – un, un – xn〉 ≥ . (.)

Summing up (.) and (.) and using (A), we obtain


rn+

〈un – un+, un+ – xn+〉 +

rn

〈un+ – un, un – xn〉 ≥ ,

thus
〈
un+ – un,

un – xn

rn
–

un – xn+

rn+

〉
≥ ,

which implies that

 ≤
〈
un+ – un, un – xn –

rn

rn+
(un+ – xn+)

〉

=
〈
un+ – un, un – un+ + un+ – xn –

rn

rn+
(un+ – xn+)

〉
.

Therefore,

‖un+ – un‖ ≤
〈
un+ – un, xn+ – xn +

(
 –

rn

rn+

)
(un+ – xn+)

〉

≤ ‖un+ – un‖ ·
[
‖xn+ – xn‖ +

∣∣
∣∣ –

rn

rn+

∣∣
∣∣ · ‖un+ – xn+‖

]
.

Thus, we have

‖un+ – un‖ ≤ ‖xn+ – xn‖ +
∣
∣∣
∣ –

rn

rn+

∣
∣∣
∣ · ‖un+ – xn+‖. (.)

Since limn→∞ |rn+ – rn| = , {un} and {xn} are bounded, from (.) we have

lim
n→∞‖un+ – un‖ = . (.)

Using the same argument as the proof of the above, we have

lim
n→∞‖vn+ – vn‖ = . (.)

It follows from (.) and (.) that

‖xn+ – x‖ ≤ ‖un – x‖ + ( – αn)λAρ
n‖Aun – Bvn‖

– ( – αn)ρn〈Aun – Ax, Aun – Bvn〉 (.)

and

‖yn+ – y‖ = ‖vn – x‖ + ( – αn)λBρ
n‖Aun – Bvn‖

+ ( – αn)ρn〈Bvn – By, Aun – Bvn〉. (.)
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By adding the last two inequalities and by taking into account the fact that Ax = By, we
have

‖xn+ – x‖ + ‖yn+ – y‖

≤ ‖un – x‖ + ‖vn – y‖ – ρn( – αn)
(
 – ρn(λA + λB)

)‖Aun – Bvn‖, (.)

where

‖un – x‖ =
∥
∥TF

rn xn – TF
rn x

∥
∥

≤ 〈xn – x, un – x〉

=


(‖xn – x‖ + ‖un – x‖ – ‖xn – un‖), (.)

and

‖vn – y‖ =
∥
∥TG

rn yn – TG
rn y

∥
∥

≤ 〈yn – y, vn – y〉

=


(‖yn – y‖ + ‖vn – x‖ – ‖yn – vn‖). (.)

It follows from (.), (.) and (.) that

‖xn – un‖ + ‖yn – vn‖

≤ ‖xn – x‖ – ‖xn+ – x‖ + ‖yn – y‖ – ‖yn+ – y‖

– ρn( – αn)
(
 – ρn(λA + λB)

)‖Aun – Bvn‖. (.)

By (.) and (.), we obtain

lim
n→∞‖xn – un‖ = , (.)

lim
n→∞‖yn – vn‖ = . (.)

It follows from (.) and (.) that un ⇀ x∗ and vn ⇀ y∗, respectively.
Since T and S are nonexpansive mappings, so

‖un – Tun‖ = ‖un – xn+ + xn+ – Tun‖
≤ ‖un – xn+‖ + ‖xn+ – Tun‖
= ‖un – un+ – un+ – xn+‖

+
∥∥αnun + ( – αn)T

(
un – ρnA∗(Aun – Bvn)

)
– Tun

∥∥

≤ ‖un – un+‖ + ‖un+ – xn+‖ + αn‖un – Tun‖
+ ( – αn)

∥∥T
(
un – ρnA∗(Aun – Bvn)

)
– Tun

∥∥

≤ ‖un – un+‖ + ‖un+ – xn+‖ + αn‖un – Tun‖
+ ( – αn)

∥∥–ρnA∗(Aun – Bvn)
∥∥.
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That is,

( – αn)‖un – Tun‖ ≤ ‖un – un+‖ + ‖un+ – xn+‖ + ( – αn)
∥∥–ρnA∗(Aun – Bvn)

∥∥. (.)

By (.), (.) and (.), we get

lim
n→∞‖Tun – un‖ = . (.)

Similarly,

lim
n→∞‖Svn – vn‖ = . (.)

Since

‖xn – Txn‖ ≤ ‖xn – un + un – Tun + Tun – Txn‖
≤ ‖xn – un‖ + ‖un – Tun‖ + ‖Tun – Txn‖
≤ ‖xn – un‖ + ‖un – Tun‖. (.)

It follows from (.) and (.) that

lim
n→∞‖xn – Txn‖ = . (.)

In addition, since

‖yn – Syn‖ ≤ ‖yn – vn‖ + ‖vn – Svn‖ + ‖Svn – Syn‖ ≤ ‖yn – vn‖ + ‖vn – Svn‖, (.)

then, from (.) and (.), we have

lim
n→∞‖yn – Syn‖ = . (.)

Since {xn} and {yn} converge weakly to x∗ and y∗, respectively, then it follows from
(.), (.) and Lemma . that x∗ ∈ F(T) and y∗ ∈ F(S). Since every Hilbert space sat-
isfies Opial’s condition, Opial’s condition guarantees that the weakly subsequential limit
of {(xn, yn)} is unique.

We now prove x∗ ∈ MEP(F ,φ) and y∗ ∈ MEP(G,ϕ).
Since un = TF

rn xn, we have

F(un, u) + φ(u) – φ(un) +

rn

〈u – un, un – xn〉 ≥ , ∀u ∈ C. (.)

From (A) we obtain

φ(u) – φ(un) +

rn

〈u – un, un – xn〉 ≥ –F(un, u) ≥ F(u, un), ∀u ∈ C. (.)

And hence

φ(u) – φ(unj ) +


rnj

〈u – unj , unj – xnj〉 ≥ F(u, unj ), ∀u ∈ C. (.)
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From (.) we obtain unj ⇀ x∗. It follows from (A) that limj→∞
‖unj –xnj ‖

rnj
= , and from

the proper lower semicontinuity of φ that

F
(
u, x∗) + φ

(
x∗) – φ(u) ≤ , ∀u ∈ C. (.)

Put zt = tu + ( – t)x∗ for all t ∈ (, ] and u ∈ C. Consequently, we get zt ∈ C and hence
F(zt , x∗) + φ(x∗) – φ(zt) ≤ . So from (A) and (A) we have

 = F(zt , zt) – φ(zt) + φ(zt)

≤ tF(zt , u) + ( – t)G
(
zt , x∗) + tφ(u) + ( – t)φ

(
x∗) – φ(zt)

≤ t
[
F(zt , x) + φ(u) – φ(zt)

]
. (.)

Hence, we have

F(zt , u) + φ(u) – φ(zt) ≥ , ∀u ∈ C. (.)

Letting t → , from (A) and the proper lower semicontinuity of φ, we have

F
(
x∗, u

)
+ φ(u) – φ

(
x∗) ≥ , ∀u ∈ C. (.)

This implies that x∗ ∈ MEP(F ,φ).
Following a similar argument as the proof of the above, we have y∗ ∈ MEP(G,ϕ).
On the other hand, since the squared norm is weakly lower semicontinuous, we have

∥
∥Ax∗ – By∗∥∥ ≤ lim inf

n→∞ ‖Aun – Bvn‖ = ,

therefore Ax∗ = By∗. This implies that (x∗, y∗) ∈ SEMEP(F , G,φ,ϕ). Therefore, (x∗, y∗) ∈ �.
Thus from Lemma . we know that {(xn, yn)} converges weakly to (x∗, y∗). The proof of
conclusion (I) is completed.

Next, we prove conclusion (II).
Since T and S are semi-compact, {xn} and {yn} are bounded and limn→∞ ‖xn – Txn‖ = ,

limn→∞ ‖yn – Syn‖ = , then there exist subsequences {xnj} and {ynj} of {xn} and {yn} such
that {xnj} and {ynj} converge strongly to u∗ and v∗ (some point in H and H, respectively),
respectively. Since {xnj} and {ynj} converge weakly to x∗ and y∗, respectively, this implies
that x∗ = u∗ and y∗ = v∗. From Lemma ., we have x∗ ∈ F(T) and y∗ ∈ F(S). Using the same
argument as in the proof in conclusion (I), we have x∗ ∈ MEP(F ,φ) and y∗ ∈ MEP(G,ϕ).
Further, since the norm is weakly lower semicontinuous and Aunj – Bvnj → Ax∗ – By∗, we
have

∥∥Ax∗ – By∗∥∥ ≤ lim inf
j→∞ ‖Aunj – Bvnj‖ = ,

so Ax∗ = By∗. This implies that (x∗, y∗) ∈ �.
On the other hand, since �n(x, y) = ‖xn – x‖ + ‖yn – y‖ for any (x, y) ∈ �, we know that

limj→∞ �nj (x∗, y∗) = . From conclusion (I), we have limn→∞ �n(x∗, y∗) exists, therefore



Ma et al. Fixed Point Theory and Applications  (2015) 2015:31 Page 13 of 18

limn→∞ �n(x∗, y∗) = . Further, we can obtain that limn→∞ ‖xn – x∗‖ =  and limn→∞ ‖yn –
y∗‖ = . This completes the proof of conclusion (II). �

Taking φ =  and ϕ =  in Theorem ., we also have the following result.

Corollary . Let H, H, H be real Hilbert spaces, C ⊆ H and Q ⊆ H be nonempty
closed convex subsets of Hilbert spaces H and H, respectively. Assume that F : C × C → R
and G : Q × Q → R are bifunctions satisfying (A)-(A). Let T : H → H, S : H → H

be two nonexpansive mappings, and A : H → H, B : H → H be two bounded linear
operators. Let (x, y) ∈ C × Q and the iteration scheme {(xn, yn)} be defined as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F(un, u) + 
rn

〈u – un, un – xn〉 ≥ , ∀u ∈ C;
G(vn, v) + 

rn
〈v – vn, vn – yn〉 ≥ , ∀v ∈ Q;

xn+ = αnun + ( – αn)T(un – ρnA∗(Aun – Bvn));
yn+ = αnvn + ( – αn)S(vn + ρnB∗(Aun – Bvn)), ∀n ≥ ;

where λA and λB stand for the spectral radii of A∗A and B∗B, respectively, {ρn} is a positive
real sequence such that ρn ∈ (ε, 

λA+λB
– ε) (for ε small enough), {αn} is a sequence in (, )

and {rn} ⊂ (,∞) satisfies the following conditions:
()  < α ≤ αn ≤ β <  (for some α,β ∈ (, ));
() lim infn→∞ rn >  and limn→∞ |rn+ – rn| = .

If � := F(T) ∩ F(S) ∩ SEEP(F , G,φ,ϕ) 	= ∅, then
(I) The sequence {(xn, yn)} converges weakly to a solution of problem (.).

(II) In addition, if S, T are also semi-compact, then {(xn, yn)}converges strongly to a
solution of problem (.).

In Theorem . taking B = I and H = H, from Theorem . we can obtain the following
convergence theorem for general split equilibrium problem (.)

Corollary . Let H and H be real Hilbert spaces, C ⊆ H and Q ⊆ H be nonempty
closed convex subsets of Hilbert spaces H and H, respectively. Assume that F : C × C → R
and G : Q×Q → R are bifunctions satisfying (A)-(A), and let φ : C → R∪{+∞}, ϕ : Q →
R ∪ {+∞} be proper lower semi-continuous and convex functions such that C ∩ domφ 	= ∅
and Q ∩ domϕ 	= ∅. Let T : H → H, S : H → H be two nonexpansive mappings, and
A : H → H be a bounded linear operator. Let (x, y) ∈ C × Q and the iteration scheme
{(xn, yn)} be defined as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F(un, u) + φ(u) – φ(un) + 
rn

〈u – un, un – xn〉 ≥ , ∀u ∈ C;
G(vn, v) + ϕ(v) – ϕ(vn) + 

rn
〈v – vn, vn – yn〉 ≥ , ∀v ∈ Q;

xn+ = αnun + ( – αn)T(un – ρnA∗(Aun – vn));
yn+ = αnvn + ( – αn)S(vn + ρn(Aun – vn)), ∀n ≥ ;

where λA stands for the spectral radius of A∗A, {ρn} is a positive real sequence such that
ρn ∈ (ε, 

λA
– ε) (for ε small enough), {αn} is a sequence in (, ) and {rn} ⊂ (,∞) satisfies

the following conditions:
()  < α ≤ αn ≤ β <  (for some α,β ∈ (, ));
() lim infn→∞ rn >  and limn→∞ |rn+ – rn| = .
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If � := F(T) ∩ F(S) ∩ SMEP(F , G,φ,ϕ) 	= ∅, then
(I) The sequence {(xn, yn)} converges weakly to a solution of problem (.).

(II) In addition, if S, T are also semi-compact, then {(xn, yn)}converges strongly to a
solution of problem (.).

4 Applications
4.1 Application to the split equality mixed variational inequality problem
The variational inequality problem (VIP) is formulated as the problem of finding a point
x∗ with property x∗ ∈ C, 〈Ax∗, z – x∗〉 ≥ , ∀z ∈ C. We will denote the solution set of VIP
by VI(A, C).

In [], the mixed variational inequality of Browder type (VI) is shown to be equivalent
to finding a point u ∈ C such that

〈Au, y – u〉 + ϕ(y) – ϕ(u) ≥ , ∀y ∈ C.

We will denote the solution set of a mixed variational inequality of Browder type by
VI(A, C,ϕ).

A mapping A : C → H is said to be an α-inverse-strongly monotone mapping if there
exists a constant α >  such that 〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖ for any x, y ∈ C. Setting
F(x, y) = 〈Ax, y – x〉, it is easy to show that F satisfies conditions (A)-(A) as A is an α-
inverse-strongly monotone mapping.

In , Censor et al. [] introduced the split variational inequality problem (SVIP)
which is formulated as follows:

find a point x∗ ∈ C such that
〈
f
(
x∗), x – x∗〉 ≥  for all x ∈ C,

and such that

y∗ = Ax∗ ∈ Q solves
〈
g
(
y∗), y – y∗〉 ≥  for all y ∈ Q. (.)

The so-called split equality mixed variational inequality problem is shown to be equiv-
alent to finding x∗ ∈ C, y∗ ∈ Q such that

〈
B

(
x∗), x – x∗〉 + φ(x) – φ

(
x∗) ≥  for all x ∈ C, and

〈
B

(
y∗), y – y∗〉 + ϕ(y) – ϕ

(
y∗) ≥  for all y ∈ Q,

and such that

Ax∗ = By∗. (.)

We will denote the solution set of a split equality mixed variational inequality problem by
SEMVIP(φ,ϕ).

The so-called split mixed variational inequality problem is shown to be equivalent to

finding a point x∗ ∈ C such that
〈
B

(
x∗), x – x∗〉 + φ(x) – φ

(
x∗) ≥  for all x ∈ C,

and such that

y∗ = Ax∗ ∈ Q solves
〈
B

(
y∗), y – y∗〉 + ϕ(y) – ϕ

(
y∗) ≥  for all y ∈ Q. (.)
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The set of solutions of a split mixed variational inequality problem is denoted by
SMVIP(φ,ϕ).

Setting F(x, y) = 〈Bx, y – x〉 and G(x, y) = 〈Bx, y – x〉, it is easy to show that F and G
satisfy conditions (A)-(A) as Bi (i = , ) is an ηi-inverse-strongly monotone mapping.
Then it follows from Theorem . that the following result holds.

Theorem . Let H, H, H be real Hilbert spaces, C ⊆ H and Q ⊆ H be nonempty
closed convex subsets of Hilbert spaces H and H, respectively. Let Bi (i = , ) be ηi-inverse
strongly monotone mappings, and let φ : C → R ∪ {+∞} and ϕ : Q → R ∪ {+∞} be proper
lower semi-continuous and convex functions such that C ∩ domφ 	= ∅ and Q ∩ domϕ 	= ∅.
Let T : H → H, S : H → H be two nonexpansive mappings, and A : H → H, B : H →
H be two bounded linear operators. Assume that (x, y) ∈ C × Q and the iteration scheme
{(xn, yn)} is defined as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈Bun, u – un〉 + φ(u) – φ(un) + 
rn

〈u – un, un – xn〉 ≥ , ∀u ∈ C;
〈B(vn), v – vn〉 + ϕ(v) – ϕ(vn) + 

rn
〈v – vn, vn – yn〉 ≥ , ∀v ∈ Q;

xn+ = αnun + ( – αn)T(un – ρnA∗(Aun – Bvn));
yn+ = αnvn + ( – αn)S(vn + ρnB∗(Aun – Bvn)), ∀n ≥ ;

where λA and λB stand for the spectral radii of A∗A and B∗B, respectively, {ρn} is a positive
real sequence such that ρn ∈ (ε, 

λA+λB
– ε) (for ε small enough), ηi >  (i = , ), {αn} is a

sequence in (, ) and {rn} ⊂ (,∞) satisfies the following conditions:
()  < α ≤ αn ≤ β <  (for some α,β ∈ (, ));
() lim infn→∞ rn >  and limn→∞ |rn+ – rn| = .

If � := F(T) ∩ F(S) ∩ SEMVIP(φ,ϕ) 	= ∅, then
(I) The sequence {(xn, yn)} converges weakly to a solution of the split equality mixed

variational inequality problem (.).
(II) In addition, if S, T are also semi-compact, then {(xn, yn)}converges strongly to a

solution of the split equality mixed variational inequality problem (.).

In Theorem . taking B = I and H = H, from Theorem . we can obtain the following
convergence theorem for split mixed variational inequality problem SMVIP(φ,ϕ).

Corollary . Let H and H be real Hilbert spaces, C ⊆ H and Q ⊆ H be nonempty
closed convex subsets of Hilbert spaces H and H, respectively. Let Bi (i = , ) be ηi-inverse
strongly monotone mappings, and let φ : C → R ∪ {+∞} and ϕ : Q → R ∪ {+∞} be proper
lower semi-continuous and convex functions such that C ∩ domφ 	= ∅ and Q ∩ domϕ 	= ∅.
Let T : H → H, S : H → H be two nonexpansive mappings, and A : H → H be a
bounded linear operator. Assume that (x, y) ∈ C × Q and the iteration scheme {(xn, yn)} is
defined as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈Bun, u – un〉 + φ(u) – φ(un) + 
rn

〈u – un, un – xn〉 ≥ , ∀u ∈ C;
〈B(vn), v – vn〉 + ϕ(v) – ϕ(vn) + 

rn
〈v – vn, vn – yn〉 ≥ , ∀v ∈ Q;

xn+ = αnun + ( – αn)T(un – ρnA∗(Aun – vn));
yn+ = αnvn + ( – αn)S(vn + ρn(Aun – vn)), ∀n ≥ ;
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where λA stands for the spectral radius of A∗A, {ρn} is a positive real sequence such that
ρn ∈ (ε, 

λA
– ε) (for ε small enough), ηi >  (i = , ), {αn} is a sequence in (, ) and {rn} ⊂

(,∞) satisfies the following conditions:
()  < α ≤ αn ≤ β <  (for some α,β ∈ (, ));
() lim infn→∞ rn >  and limn→∞ |rn+ – rn| = .

If � := F(T) ∩ F(S) ∩ SMVIP(φ,ϕ) 	= ∅, then
(I) The sequence {(xn, yn)} converges weakly to a solution of the split mixed variational

inequality problem (.).
(II) In addition, if S, T are also semi-compact, then {(xn, yn)}converges strongly to a

solution of the split mixed variational inequality problem (.).

4.2 Application to the split equality convex minimization problem
It is easy to see that the split equality mixed equilibrium problem (.) reduces to the split
equality convex minimization problem (.) as F =  and G = . Therefore, Theorem .
can be used to solve split equality convex minimization problem (.), and the following
result can be directly deduced from Theorem ..

Theorem . Let H, H, H be real Hilbert spaces, C ⊆ H and Q ⊆ H be nonempty
closed convex subsets of Hilbert spaces H and H, respectively. Let φ : C → R ∪ {+∞} and
ϕ : Q → R ∪ {+∞} be proper lower semi-continuous and convex functions. Let T : H →
H, S : H → H be two nonexpansive mappings, and A : H → H, B : H → H be two
bounded linear operators. Assume that (x, y) ∈ C × Q and the iteration scheme {(xn, yn)}
is defined as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ(u) – φ(un) + 
rn

〈u – un, un – xn〉 ≥ , ∀u ∈ C;
ϕ(v) – ϕ(vn) + 

rn
〈v – vn, vn – yn〉 ≥ , ∀v ∈ Q;

xn+ = αnun + ( – αn)T(un – ρnA∗(Aun – Bvn));
yn+ = αnvn + ( – αn)S(vn + ρnB∗(Aun – Bvn)), ∀n ≥ ;

where λA and λB stand for the spectral radii of A∗A and B∗B, respectively, {ρn} is a positive
real sequence such that ρn ∈ (ε, 

λA+λB
– ε) (for ε small enough), {αn} is a sequence in (, )

and {rn} ⊂ (,∞) satisfies the following conditions:
()  < α ≤ αn ≤ β <  (for some α,β ∈ (, ));
() lim infn→∞ rn >  and limn→∞ |rn+ – rn| = .

If � := F(T) ∩ F(S) ∩ SECMP(φ,ϕ) 	= ∅, then
(I) The sequence {(xn, yn)} converges weakly to a solution of problem (.).
(II) In addition, if S, T are also semi-compact, then {(xn, yn)}converges strongly to a

solution of problem (.).

In Theorem . taking B = I and H = H, from Theorem . we can obtain the following
convergence theorem for split convex minimization problem (.) SCMP(φ,ϕ).

Corollary . Let H and H be real Hilbert spaces, C ⊆ H and Q ⊆ H be nonempty
closed convex subsets of Hilbert spaces H and H, respectively. Let φ : C → R ∪ {+∞} and
ϕ : Q → R∪{+∞} be proper lower semi-continuous and convex functions. Let T : H → H,
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S : H → H be two nonexpansive mappings, and A : H → H be a bounded linear opera-
tor. Assume that (x, y) ∈ C × Q and the iteration scheme {(xn, yn)} is defined as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ(u) – φ(un) + 
rn

〈u – un, un – xn〉 ≥ , ∀u ∈ C;
ϕ(v) – ϕ(vn) + 

rn
〈v – vn, vn – yn〉 ≥ , ∀v ∈ Q;

xn+ = αnun + ( – αn)T(un – ρnA∗(Aun – vn));
yn+ = αnvn + ( – αn)S(vn + ρn(Aun – vn)), ∀n ≥ ;

where λA stands for the spectral radius of A∗A, {ρn} is a positive real sequence such that
ρn ∈ (ε, 

λA
– ε) (for ε small enough), {αn} is a sequence in (, ) and {rn} ⊂ (,∞) satisfies

the following conditions:
()  < α ≤ αn ≤ β <  (for some α,β ∈ (, ));
() lim infn→∞ rn >  and limn→∞ |rn+ – rn| = .

If � := F(T) ∩ F(S) ∩ SCMP(φ,ϕ) 	= ∅, then
(I) The sequence {(xn, yn)} converges weakly to a solution of problem (.).

(II) In addition, if S, T are also semi-compact, then {(xn, yn)}converges strongly to a
solution of problem (.).
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