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Abstract
The viscosity technique for the implicit midpoint rule of nonexpansive mappings in
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1 Introduction
The viscosity technique for nonexpansive mappings in Hilbert spaces was introduced by
Moudafi [], following the ideas of Attouch []. Refinements in Hilbert spaces and exten-
sions to Banach spaces were obtained by Xu []. This technique uses (strict) contractions
to regularize a nonexpansive mapping for the purpose of selecting a particular fixed point
of the nonexpansive mapping, for instance, the fixed point of minimal norm or of a solu-
tion to another variational inequality.

Let H be a Hilbert space, let T : H → H be a nonexpansive mapping (i.e., ‖Tx – Ty‖ ≤
‖x – y‖ for all x, y ∈ H), and let f : H → H be a contraction (i.e., ‖f (x) – f (y)‖ ≤ α‖x – y‖ for
all x, y ∈ H and some α ∈ [, )). The explicit viscosity method for nonexpansive mappings
generates a sequence {xn} through the iteration process:

xn+ = αnf (xn) + ( – αn)Txn, n ≥ , (.)

where I is the identity of H and {αn} is a sequence in (, ). It is well known [, ] that
under certain conditions, the sequence {xn} converges in norm to a fixed point q of T
which solves the variational inequality (VI)

〈
(I – f )q, x – q

〉 ≥ , x ∈ S, (.)

where S is the set of fixed points of T , namely, S = {x ∈ H : Tx = x}.
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The implicit midpoint rule (IMR) is one of the powerful methods for solving ordinary
differential equations; see [–] and the references therein. For instance, consider the
initial value problem for the differential equation y′(t) = f (y(t)) with the initial condition
y() = y, where f is a continuous function from R

d to R
d . The IMR is an implicit method

that generates a sequence {yn} via the relation


h

(yn+ – yn) = f
(

yn+ + yn



)
.

In the case of nonlinear dissipative evolution equations in a Hilbert space H , the function
f is of the form f = I – T with I the identity and T a nonexpansive mapping of H . The
equilibrium problem is reduced to the fixed point problem x = Tx. The IMR has therefore
been extended [] to nonexpansive mappings, which generates a sequence {xn} by the
implicit procedure:

xn+ = ( – tn)xn + tnT
(

xn + xn+



)
, n ≥ , (.)

where the initial guess x ∈ H is arbitrarily chosen, tn ∈ (, ) for all n.
In the present paper we will apply the viscosity technique to the implicit midpoint rule

for nonexpansive mappings. More precisely, we consider the following semi-implicit al-
gorithm which we call viscosity implicit midpoint rule (VIMR, for short):

xn+ = αnf (xn) + ( – αn)T
(

xn + xn+



)
, n ≥ . (.)

The idea is to use contractions to regularize the implicit midpoint rule for nonexpansive
mappings. We will prove that the VIMR converges in norm to a fixed point of T which, in
addition, also solves the VI (.).

The structure of the paper is set as follows. In Section , we introduce the notion of
nearest point projections, the demiclosedness principle of nonexpansive mappings, and
a convergence lemma. The viscosity implicit midpoint rule for nonexpansive mappings is
introduced in Section . The main result, that is, the strong convergence of this method,
is proved also in this section. Applications to variational inequalities, hierarchical mini-
mization problems and nonlinear evolution equations are presented in the final section,
Section .

2 Preliminaries
Assume that H is a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively,
and let C be a nonempty, closed, and convex subset of H . We then have the nearest point
projection from H onto C, PC , defined by

PCx := arg min
z∈C

‖x – z‖, x ∈ H . (.)

Namely, PCx is the only point in C that minimizes the objective ‖x – z‖ over z ∈ C.
Note that PCx is characterized as follows:

PCx ∈ C and 〈x – PCx, z – PCx〉 ≤  for all z ∈ C. (.)
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Recall that a mapping T : C → C is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, x, y ∈ C.

The set of fixed points of T is written Fix(T), that is, Fix(T) = {x ∈ C : Tx = x}. Note that
Fix(T) is always closed and convex; further note that if, in addition, C is bounded, then
Fix(T) is nonempty (cf. []).

The demiclosedness principle of nonexpansive mappings is quite helpful in verifying the
weak convergence of an algorithm to a fixed point of a nonexpansive mapping.

Lemma . [] (The demiclosedness principle) Let H be a Hilbert space, C a closed con-
vex subset of H , and T : C → C a nonexpansive mapping with Fix(T) 
= ∅. If {xn} is a se-
quence in C such that (i) {xn} weakly converges to x and (ii) {(I – T)xn} converges strongly
to , then x = Tx.

In proving the strong convergence of a sequence {xn} to a point x̄, we always consider
the real sequence {‖xn – x̄‖} and then apply the following convergence lemma.

Lemma . [] Assume {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δn, n ≥ ,

where {γn} is a sequence in (, ) and {δn} is a sequence in R such that
(i)

∑∞
n= γn = ∞, and

(ii) either lim supn→∞ δn/γn ≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

3 The viscosity technique for implicit midpoint rule
Let H be a Hilbert space, C a nonempty, closed, and convex subset of H , and T : C → C
a nonexpansive mapping such that Fix(T) 
= ∅. Moreover, let f : C → C be a contraction
with coefficient α ∈ [, ). The viscosity method for nonexpansive mappings is essentially
a regularization method of nonexpansive mappings by contractions. In this section we
consider the viscosity technique for the implicit midpoint rule of nonexpansive mappings
which generates a sequence {xn} in the semi-implicit manner:

xn+ = αnf (xn) + ( – αn)T
(

xn + xn+



)
, n ≥ , (.)

where αn ∈ (, ) for all n. Note that the scheme (.) is well defined for all n.
We will employ the following conditions on {αn}:
(C) limn→∞ αn = ,
(C)

∑∞
n= αn = ∞,

(C) either
∑∞

n= |αn+ – αn| < ∞ or limn→∞ αn+
αn

= .
The main result of this paper is the following result, the proof of which seems nontrivial.

Theorem . Let H be a Hilbert space, C a closed convex subset of H , T : C → C a non-
expansive mapping with S := Fix(T) 
= ∅, and f : C → C a contraction with coefficient
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α ∈ [, ). Let {xn} be generated by the viscosity implicit midpoint rule (.). Assume the
conditions (C)-(C). Then {xn} converges in norm to a fixed point q of T , which is also the
unique solution of the variational inequality

〈
(I – f )q, x – q

〉 ≥ , x ∈ S. (.)

In other words, q is the unique fixed point of the contraction PSf , that is, PSf (q) = q.

Proof We divide the proof into several steps.
Step . We prove that {xn} is bounded. To see this we take p ∈ S to deduce that

‖xn+ – p‖ ≤ ( – αn)
∥∥∥∥T

(
xn + xn+



)
– p

∥∥∥∥ + αn
∥∥f (xn) – p

∥∥

≤ ( – αn)
∥∥∥∥

xn + xn+


– p

∥∥∥∥ + αn
(∥∥f (xn) – f (p)

∥∥ +
∥∥f (p) – p

∥∥)

≤  – αn


(‖xn – p‖ + ‖xn+ – p‖) + αn

(
α‖xn – p‖ +

∥∥f (p) – p
∥∥)

.

It then follows that

 + αn


‖xn+ – p‖ ≤  + (α – )αn


‖xn – p‖ + αn

∥∥f (p) – p
∥∥

and, moreover,

‖xn+ – p‖ ≤  + (α – )αn

 + αn
‖xn – p‖ +

αn

 + αn

∥∥f (p) – p
∥∥

=
(

 –
( – α)αn

 + αn

)
‖xn – p‖ +

( – α)αn

 + αn

(


 – α

∥∥f (p) – p
∥∥
)

.

Consequently, we get

‖xn+ – p‖ ≤ max

{
‖xn – p‖,


 – α

∥∥f (p) – p
∥∥
}

.

By induction we readily obtain

‖xn – p‖ ≤ max

{
‖x – p‖,


 – α

∥∥f (p) – p
∥∥
}

for all n. It turns out that {xn} is bounded.
Step . limn→∞ ‖xn+ – xn‖ = . To see this we apply (.) to get

‖xn+ – xn‖ =
∥∥∥∥αnf (xn) + ( – αn)T

(
xn + xn+



)

–
(

αn–f (xn–) + ( – αn–)T
(

xn– + xn



))∥∥∥∥

=
∥∥∥∥( – αn)

(
T

(
xn + xn+



)
– T

(
xn– + xn



))
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+ (αn– – αn)
(

T
(

xn– + xn



)
– f (xn–)

)
+ αn

(
f (xn) – f (xn–)

)
∥∥∥∥

≤ ( – αn)
∥∥∥∥




(xn+ – xn–)
∥∥∥∥ + M|αn– – αn| + ααn‖xn – xn–‖

≤ 


( – αn)
(‖xn+ – xn‖ + ‖xn – xn–‖

)
+ M|αn– – αn| + ααn‖xn – xn–‖.

Here M >  is a constant such that

M ≥ sup
n≥

∥∥∥∥T
(

xn + xn+



)
– f (xn)

∥∥∥∥.

It turns out that

 + αn


‖xn+ – xn‖ ≤

(



( – αn) + ααn

)
‖xn – xn–‖ + M|αn– – αn|.

Consequently, we arrive at

‖xn+ – xn‖ ≤  + (α – )αn

 + αn
‖xn – xn–‖ +

M
 + αn

|αn– – αn|

=
(

 –
( – α)αn

 + αn

)
‖xn – xn–‖ +

M
 + αn

|αn– – αn|. (.)

By virtue of the conditions (C) and (C), we can apply Lemma . to (.) to obtain ‖xn+ –
xn‖ →  as n → ∞, as required.

Step . limn→∞ ‖xn – Txn‖ = . This follows from the argument below:

‖xn – Txn‖ ≤ ‖xn – xn+‖ +
∥∥∥∥xn+ – T

(
xn + xn+



)∥∥∥∥ +
∥∥∥∥T

(
xn + xn+



)
– Txn

∥∥∥∥

≤ ‖xn – xn+‖ + αn

∥∥∥∥f (xn) – T
(

xn + xn+



)∥∥∥∥ +


‖xn – xn+‖

≤ 

‖xn – xn+‖ + Mαn →  (as n → ∞).

Step . We prove that ωw(xn) ⊂ Fix(T). Here

ωw(xn) =
{

x ∈ H : there exists a subsequence of {xn} weakly converging to x
}

is the weak ω-limit set of {xn}. This is now a straightforward consequence of Step  and
Lemma ..

Step . We claim that

lim sup
n→∞

〈
q – f (q), q – xn

〉 ≤ , (.)

where q ∈ S is the unique fixed point of the contraction PSf , that is, q = PS(f (q)).
As a matter of fact, we can find a subsequence {xnj} of {xn} such that {xnj} converges

weakly to a point p and moreover,

lim sup
n→∞

〈
q – f (q), q – xn

〉
= lim

j→∞
〈
q – f (q), q – xnj

〉
. (.)
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Since p ∈ Fix(T) by Step , we can combine (.) and (.) and use (.) to conclude

lim sup
n→∞

〈
q – f (q), q – xn

〉
=

〈
q – f (q), q – p

〉 ≤ .

Step . We finally prove that xn → q in norm. Here again q ∈ Fix(T) is the unique fixed
point of the contraction PSf or in other words, q = PSf (q). We present the details as follows:

‖xn+ – q‖ =
∥∥∥∥( – αn)

(
T

(
xn + xn+



)
– q

)
+ αn

(
f (xn) – q

)
∥∥∥∥



= ( – αn)
∥∥∥∥T

(
xn + xn+



)
– q

∥∥∥∥



+ α
n
∥∥f (xn) – q

∥∥

+ αn( – αn)
〈
T

(
xn + xn+



)
– q, f (xn) – q

〉

≤ ( – αn)
∥∥∥∥

xn + xn+


– q

∥∥∥∥



+ α
n
∥∥f (xn) – q

∥∥

+ αn( – αn)
〈
T

(
xn + xn+



)
– q, f (xn) – f (q)

〉

+ αn( – αn)
〈
T

(
xn + xn+



)
– q, f (q) – q

〉

≤ ( – αn)
∥∥∥∥

xn + xn+


– q

∥∥∥∥



+ α
n
∥∥f (xn) – q

∥∥

+ ααn( – αn)
∥∥∥∥

xn + xn+


– q

∥∥∥∥ · ‖xn – q‖

+ αn( – αn)
〈
T

(
xn + xn+



)
– q, f (q) – q

〉
.

Let

βn = α
n
∥∥f (xn) – q

∥∥ + αn( – αn)
〈
T

(
xn + xn+



)
– q, f (q) – q

〉
. (.)

It turns out that

( – αn)
∥∥∥∥

xn + xn+


– q

∥∥∥∥



+ ααn( – αn)‖xn – q‖
∥∥∥∥

xn + xn+


– q

∥∥∥∥ + βn – ‖xn+ – q‖ ≥ .

Solving this quadratic inequality for ‖ xn+xn+
 – q‖ yields

∥∥∥∥
xn + xn+


– q

∥∥∥∥ ≥ 
( – αn)

{
–ααn( – αn)‖xn – q‖

+
√

αα
n( – αn)‖xn – q‖ – ( – αn)

(
βn – ‖xn+ – q‖

)}

=
–ααn‖xn – q‖ +

√
αα

n‖xn – q‖ + ‖xn+ – q‖ – βn

 – αn
.



Xu et al. Fixed Point Theory and Applications  (2015) 2015:41 Page 7 of 12

This implies that



‖xn+ – q‖ +



‖xn – q‖ ≥ –ααn‖xn – q‖ +

√
αα

n‖xn – q‖ + ‖xn+ – q‖ – βn

 – αn
.

We therefore get




(
( – αn)‖xn+ – q‖ +

(
 + (α – )αn

)‖xn – q‖) ≥ αα
n‖xn – q‖ + ‖xn+ – q‖ – βn,

which is reduced to the inequality




( – αn)‖xn+ – q‖ +



(
 + (α – )αn

)‖xn – q‖

+



( – αn)
(
 + (α – )αn

)‖xn – q‖‖xn+ – q‖

≥ αα
n‖xn – q‖ + ‖xn+ – q‖ – βn,

which is further reduced by using the elementary inequality

‖xn – q‖‖xn+ – q‖ ≤ ‖xn – q‖ + ‖xn+ – q‖

to the following inequality:

(
 –




( – αn) –



( – αn)
(
 + (α – )αn

))‖xn+ – q‖

≤
(




(
 + (α – )αn

) +



( – αn)
(
 + (α – )αn

)
– αα

n

)
‖xn – q‖ + βn.

Solving for ‖xn+ – q‖ yields

‖xn+ – q‖

≤

 ( + (α – )αn) + 

 ( – αn)( + (α – )αn) – αα
n

 – 
 ( – αn) – 

 ( – αn)( + (α – )αn)
‖xn – q‖ + γn, (.)

where

γn =
βn

 – 
 ( – αn) – 

 ( – αn)( + (α – )αn)
. (.)

Observing

 –



( – αn) –



( – αn)
(
 + (α – )αn

)
=  –




( – αn)
(
 – ( – α)αn

)

and




(
 + (α – )αn

) +



( – αn)
(
 + (α – )αn

)
– αα

n

=


(
 + (α – )αn

)(
 – ( – α)αn

)
– αα

n,
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we can rewrite (.) as

‖xn+ – q‖ ≤

 ( + (α – )αn)( – ( – α)αn) – αα

n

 – 
 ( – αn)( – ( – α)αn)

‖xn – q‖ + γn. (.)

Consider the function

h(t) :=

t

{
 –


 ( + (α – )t)( – ( – α)t) – αt

 – 
 ( – t)( – ( – α)t)

}
, t > .

It is not hard (after certain manipulations) to rewrite h(t) as

h(t) =
( – α) – ( – α)t + αt
 – 

 ( – t)( – ( – α)t)
.

It turns out that

lim
t→

h(t) = ( – α) > .

Let δ >  satisfy

h(t) > ε := ( – α) > ,  < t < δ.

In other words, we have


 ( + (α – )t)( – ( – α)t) – αt

 – 
 ( – t)( – ( – α)t)

<  – εt,  < t < δ.

As αn →  as n → ∞, we have an integer N big enough so that αn < δ for all n ≥ N. It
then turns out from (.) that, for all n ≥ N,

‖xn+ – q‖ ≤ ( – εαn)‖xn – q‖ + γn. (.)

Notice that by Steps  and , we have

∥∥∥∥T
(

xn + xn+



)
– xn

∥∥∥∥ →  (as n → ∞).

It then turns out from the definition (.) of βn and (.) that

lim sup
n→∞

βn

αn
≤ ,

which in turn implies that

lim sup
n→∞

γn

αn
≤ . (.)

Finally, (.) and the conditions (C) and (C) enable us to apply Lemma . to the in-
equality (.) to conclude that limn→∞ ‖xn – q‖ = , namely, xn → q in norm. The proof
is therefore complete. �
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4 Applications
4.1 Application to variational inequalities
Consider the variational inequality (VI)

〈
Ax∗, x – x∗〉 ≥ , x ∈ C, (.)

where A is a (single-valued) monotone operator in H and C is a closed convex subset of H .
We assume C ⊂ dom(A). An example of (.) is the constrained minimization problem

min
x∈C

ϕ(x), (.)

where ϕ : H → R is a lower-semicontinuous convex function. If ϕ is (Fréchet) differen-
tiable, then the minimization (.) is equivalently reformulated as (.) with A = ∇ϕ.

Notice that the VI (.) is equivalent to the fixed point problem, for any λ > ,

Tx∗ = x∗, Tx := PC(I – λA)x. (.)

If A is Lipschitzian and strongly monotone, then, for λ >  small enough, T is a contraction
and its unique fixed point is also the unique solution of the VI (.). However, if A is not
strongly monotone, T is no longer a contraction, in general. In this case we must deal with
nonexpansive mappings for solving the VI (.). More precisely, we assume

(A) A is L-Lipschitzian for some L > , that is,

‖Ax – Ay‖ ≤ L‖x – y‖, x, y ∈ H .

(A) A is μ-inverse strongly monotone (μ-ism) for some μ > , namely,

〈Ax – Ay, x – y〉 ≥ μ‖Ax – Ay‖, x, y ∈ H .

Note that if ∇ϕ is L-Lipschtzian, then ∇ϕ is 
L -ism.

Under the conditions (A) and (A), it is well known [] that the operator T = PC(I –λA)
is nonexpansive provided  < λ < μ. It turns out that for this range of values of λ, fixed
point algorithms can be applied to solve the VI (.). Applying Theorem . we get the
result below.

Theorem . Assume the VI (.) is solvable. Assume also A satisfies (A) and (A), and
 < λ < μ. Let f : C → C be a contraction. Define a sequence {xn} by the viscosity implicit
midpoint rule:

xn+ = αnf (xn) + ( – αn)PC(I – λA)
(

xn + xn+



)
, n ≥ .

In addition, assume {αn} satisfies the conditions (C)-(C). Then {xn} converges in norm to
a solution x∗ of the VI (.) which is also a solution to the VI

〈
(I – f )x∗, x – x∗〉 ≥ , x ∈ A–().
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4.2 Application to hierarchical minimization
We next consider a hierarchical minimization problem (see [] and references therein).

Let ϕ,ϕ : H →R be lower semicontinuous convex functions. Consider the hierarchical
minimization

min
x∈S

ϕ(x), S := arg min
x∈H

ϕ(x). (.)

Here we always assume that S is nonempty. Let S = arg minx∈S ϕ(x) and assume S 
= ∅.
Assume ϕ and ϕ are differentiable and their gradients satisfy the Lipschitz continuity

conditions:

∥∥∇ϕ(x) – ∇ϕ(y)
∥∥ ≤ L‖x – y‖,

∥∥∇ϕ(x) – ∇ϕ(y)
∥∥ ≤ L‖x – y‖. (.)

Note that the condition (.) implies that ∇ϕi is 
Li

-ism (i = , ). Now let

T = I – γ∇ϕ, T = I – γ∇ϕ,

where γ >  and γ > . Note that Ti is (averaged) nonexpansive [] if  < γi < /Li (i =
, ). Also, it is easily seen that S = Fix(T).

The optimality condition for x∗ ∈ S to be a solution of the hierarchical minimization
(.) is the VI:

x∗ ∈ S,
〈∇ϕ

(
x∗), x – x∗〉 ≥ , x ∈ S. (.)

This is the VI (.) with C = S and A = ∇ϕ. We therefore have the following result.

Theorem . Assume the hierarchical minimization problem (.) is solvable. Assume
(.) and  < γi < /Li (i = , ). Let f : C → C be a contraction. Define a sequence {xn} by
the viscosity implicit midpoint rule:

xn+ = αnf (xn) + ( – αn)PS (I – λ∇ϕ)
(

xn + xn+



)
, n ≥ .

In addition, assume {αn} satisfies the conditions (C)-(C). Then {xn} converges in norm to
a solution x∗ of the VI (.) which also solves the VI

〈
(I – f )x∗, x – x∗〉 ≥ , x ∈ S.

4.3 Application to nonlinear evolution equation
Browder [] proved the existence of a periodic solution of the time-dependent nonlinear
evolution equation in a (real) Hilbert space H ,

du
dt

+ A(t)u = f (t, u), t > , (.)

where A(t), a family of closed linear operators in H , and f : R×H → H satisfy the following
conditions:
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(B) A(t) and f (t, u) are periodic in t of period ξ > .
(B) For each t and each pair u, v ∈ H ,

〈
f (t, u) – f (t, v), u – v

〉 ≤ .

(B) For each t and each u ∈ D(A(t)), 〈A(t)u, u〉 ≥ .
(B) There exists a mild solution u of (.) on R

+ for each initial value v ∈ H . Recall that
u is a mild solution of (.) with initial value u() = v if, for each t > ,

u(t) = U(t, )v +
∫ t


U(t, s)f

(
s, u(s)

)
ds,

where {U(t, s)}t≥s≥ is the evolution system for the homogeneous linear system

du
dt

+ A(t)u =  (t > s). (.)

(B) There exists some R >  such that

〈
f (t, u), u

〉
< 

for ‖u‖ = R and all t ∈ [, ξ ].
Note that under the conditions (B)-(B), the solution u has period ξ and ‖u()‖ < R.

We now apply our viscosity technique for IMR to (.). To this end, we define a mapping
T : H → H by

Tv := u(ξ ), v ∈ H ,

where u is the solution of (.) satisfying the initial condition u() = v.
It is easy to find that T is nonexpansive. Moreover, the assumption (B) implies that T

is a self-mapping of the closed ball B := {v ∈ H : ‖v‖ ≤ R}. Consequently, T has a fixed
point in B which we denote by v, and the corresponding solution u of (.) is the periodic
solution of (.) with period ξ with the initial condition u() = v. In other words, finding a
periodic solution of (.) is equivalent to finding a fixed point of T . Therefore, our viscosity
technique for IMR is applicable to (.). It turns out that the sequence {vn} defined by the
IMR

vn+ = αnf (vn) + ( – αn)T
(

vn + vn+



)
(.)

with {αn} satisfying the conditions (C)-(C) of Theorem ., converges weakly to a fixed
point v of T , and then the corresponding mild solution u of (.) with initial value u() = ξ

is a periodic solution of (.). Note that the iteration procedure (.) is essentially to find
a mild solution of the nonlinear evolution system (.) with the initial value (vn + vn+)/.
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