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Abstract
We introduce the new classes of Kannan-type maps with respect to u-distance and
prove some fixed point theorems for these mappings. Then we present several
examples to illustrate the main theorems.

1 Introduction
A mapping T on a metric space (X, d) is called Kannan if there exists α ∈ [, 

 ) such that

d(Tx, Ty) ≤ αd(x, Tx) + αd(y, Ty) (.)

for all x, y ∈ X. Kannan [] proved that if X is complete, then a Kannan mapping has a
fixed point. It is interesting that Kannan’s theorem is independent of the Banach contrac-
tion principle []. Also, Kannan’s fixed point theorem is very important because Subrah-
manyam [] proved that Kannan’s theorem characterizes the metric completeness. That
is, a metric space X is complete if and only if every Kannan mapping on X has a fixed
point.

Using the concept of Hausdorff metric, Nadler [] proved the fixed point theorem for
multi-valued contraction maps, which is a generalization of the Banach contraction prin-
ciple []. Since then various fixed point results concerning multi-valued contractions have
appeared; for example, see [–] and the references cited there.

Without using the concept of Hausdorff metric, most recently Dehaish and Latif []
generalized fixed point theorems of Latif and Abdou [], Suzuki [], Suzuki and Takahashi
[].

In , Kada et al. [] introduced the notion of w-distance and improved several clas-
sical results including Caristi’s fixed point theorem. Suzuki and Takahashi [] introduced
single-valued and multi-valued weakly contractive maps with respect to w-distance and
proved fixed point results for such maps. Generalizing the concept of w-distance, in ,
Suzuki [] introduced the notion of τ -distance on a metric space and improved several
classical results including the corresponding results of Suzuki and Takahashi []. In ,
Ume [] introduced the new concept of a distance called u-distance, which generalizes
w-distance, Tataru’s distance and τ -distance. Then he proved a new minimization theo-
rem and a new fixed point theorem by using u-distance on a complete metric space.

Distances in uniform spaces were given by Vályi []. More general concepts of distances
were given by Wlodarczyk and Plebaniak [–] and Wlodarczyk [].

In this paper, we introduce the new classes of Kannan-type multi-valued maps without
using the concept of Hausdorff metric and Kannan-type single-valued maps with respect
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to u-distance and prove some fixed point theorems for these mappings. Then we present
several examples to illustrate the main theorems.

2 Preliminaries
Throughout this paper we denote by N the set of all positive integers, by R the set of all
real numbers and by R+ the set of all nonnegative real numbers.

Ume [] introduced u-distance as follows: Let X be metric space with metric d. Then
a function p : X × X → R+ is called u-distance on X if there exists a function θ : X × X ×
R+ × R+ → R+ such that the following hold for x, y, z ∈ X:

(u) p(x, z) ≤ p(x, y) + p(y, z).
(u) θ (x, y, , ) =  and θ (x, y, s, t) ≥ min{s, t} for all x, y ∈ X and s, t ∈ R+, for any x ∈ X and

for every ε > , there exists δ >  such that |s – s| < δ, |t – t| < δ, s, s, t, t ∈ R+ and
y ∈ X imply |θ (x, y, s, t) – θ (x, y, s, t)| < ε.

(u) limn→∞ xn = x and limn→∞ sup{θ (wn, zn, p(wn, xm), p(zn, xm)) : m ≥ n} =  imply
p(y, x) ≤ limn→∞ inf p(y, xn) for all y ∈ X .

(u) limn→∞ sup{p(xn, wm) : m ≥ n} = , limn→∞ sup{p(yn, zm) : m ≥ n} = , limn→∞ θ (xn,
wn, sn, tn) =  and limn→∞ θ (yn, zn, sn, tn) =  imply limn→∞ θ (wn, zn, sn, tn) =  or
limn→∞ sup{p(wm, xn) : m ≥ n} = , limn→∞ sup{p(zm, yn) : m ≥ n} = , limn→∞ θ (xn,
wn, sn, tn) =  and limn→∞ θ (yn, zn, sn, tn) =  imply limn→∞ θ (wn, zn, sn, tn) = .

(u) limn→∞ θ (wn, zn, p(wn, xn), p(zn, xn)) =  and limn→∞ θ (wn, zn, p(wn, yn), p(zn, yn)) =
 imply limn→∞ d(xn, yn) =  or limn→∞ θ (an, bn, p(xn, an), p(xn, bn)) =  and
limn→∞ θ (an, bn, p(yn, an), p(yn, bn)) =  imply limn→∞ d(xn, yn) = .

We recall remark, examples, definition and lemmas which will be useful in what follows.

Remark . ([]) (a) Suppose that θ from X ×X ×R+ ×R+ into R+ is a mapping satisfying
(u)∼(u). Then there exists a mapping η from X × X × R+ × R+ into R+ such that η is
nondecreasing in its third and fourth variable, satisfying (u)η∼(u)η , where (u)η∼(u)η
stand for substituting η for θ in (u)∼(u), respectively.

(b) On account of (a), we may assume that θ is nondecreasing in its third and fourth
variables, respectively, for a function θ from X × X × R+ × R+ into R+ satisfying (u)∼(u).

(c) Each τ -distance p on a metric space (X, d) is also a u-distance on X.

We present some examples of u-distance which are not τ -distance (for details, see []).

Example . Let X = R+ with the usual metric. Define p : X × X → R+ by p(x, y) = ( 
 )x.

Then p is a u-distance on X but not a τ -distance on X.

Example . Let X be a normed space with ‖ · ‖, then a function p : X × X → R+ defined
by p(x, y) = ‖x‖ for every x, y ∈ X is a u-distance on X but not a τ -distance.

It follows from the above examples and (c) of Remark . that u-distance is a proper
extension of τ -distance.

Definition . ([]) Let X be a metric space with a metric d and let p be a u-distance
on X. Then a sequence {xn} in X is called p-Cauchy if there exists a function θ from X ×
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X × R+ × R+ into R+ satisfying (u)∼(u) and a sequence {zn} of X such that

lim
n→∞ sup

{
θ
(
zn, zn, p(zn, xm), p(zn, xm)

)
: m ≥ n

}
=  or

lim
n→∞ sup

{
θ
(
zn, zn, p(xm, zn), p(xm, zn)

)
: m ≥ n

}
= .

Lemma . ([]) Let X be a metric space with a metric d and let p be a u-distance on X.
If {xn} is a p-Cauchy sequence, then {xn} is a Cauchy sequence.

Lemma . ([]) Let X be a metric space with a metric d and let p be a u-distance on X.
() If sequences {xn} and {yn} of X satisfy limn→∞ p(z, xn) =  and limn→∞ p(z, yn) =  for

some z ∈ X , then limn→∞ d(xn, yn) = .
() If p(z, x) =  and p(z, y) = , then x = y.
() Suppose that sequences {xn} and {yn} of X satisfy limn→∞ p(xn, z) =  and

limn→∞ p(yn, z) =  for some z ∈ X , then limn→∞ d(xn, yn) = .
() If p(x, z) =  and p(y, z) = , then x = y.

Lemma . ([]) Let X be a metric space with a metric d and let p be a u-distance on X.
Suppose that a sequence {xn} of X satisfies

lim
n→∞ sup

{
p(xn, xm) : m > n

}
=  or

lim
n→∞ sup

{
p(xm, xn) : m > n

}
= .

Then {xn} is a p-Cauchy sequence.

3 Main result
The following lemma plays an important role in proving our theorems.

Lemma . Let (X, d) be a metric space with a u-distance p on X and {an} and {bn} be
sequences of X such that

lim
n→∞ sup

{
p(an, am) : m > n

}
=  and

lim
n→∞ sup

{
p(an, bm) : m > n

}
= .

Then there exist a subsequence {akn} of {an} and a subsequence {bkn} of {bn} such that
limn→∞ d(akn , bkn ) = .

Proof Since p is a u-distance on X,

there exists a mapping θ : X × X × R+ × R+ → R+

such that θ is nondecreasing in its third and (.)

fourth variable respectively, satisfying (u)∼(u).

For each n ∈ N , let

αn = sup
{

p(an, am) : m > n
}

and βn = sup
{

p(an, bm) : m > n
}

. (.)



Ume Fixed Point Theory and Applications  (2015) 2015:38 Page 4 of 13

By hypotheses and (.), we have

lim
n→∞(αn + βn) = . (.)

Let k ∈ N be an arbitrary and fixed element. Then, by (u), for this ak ∈ X and ε = , there
exists δ >  such that

|s| = s < δ, |t| = t < δ, y ∈ X imply θ (ak , y, s, t) < . (.)

By virtue of (.) and (.), for this δ > , there exists M ∈ N such that

n ≥ M implies αn + βn < δ. (.)

Let k ∈ N be such that

k ≥ max{ + k, M}. (.)

Due to (.), we have

k < k and k ≥ M. (.)

From (.), (.), (.) and (.) we get

θ (ak , ak ,αk + βk ,αk + βk ) < . (.)

In terms of (u) and (.), for this ak ∈ X and ε = 
 , there exists δ >  such that |s| = s < δ,

|t| = t < δ, y ∈ X imply

θ (ak , y, s, t) <



. (.)

In view of (.) and (.), for this δ > , there exists M ∈ N such that

n ≥ M implies αn + βn < δ. (.)

Let k ∈ N be such that

k ≥ max{ + k, M}. (.)

On account of (.), (.), (.), we obtain

k < k and θ (ak , ak ,αk + βk ,αk + βk ) <



. (.)

Continuing this process, there exist a subsequence {akn} of {an} and a subsequence {bkn}
of {bn} such that for all n ∈ N ,

θ (akn , akn+ ,αkn+ + βkn+ ,αkn+ + βkn+ ) <

n

. (.)
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Using (.), (.) and (.), we know that

lim
n→∞

{
sup

[
p(akn , akm+ ) : m ≥ n

]}

≤ lim
n→∞

{
sup

[
p(akn , al) : l > kn

]}

= lim
n→∞αkn =  and

lim
n→∞ θ (akn , akn+ ,αkn+ + βkn+ ,αkn+ + βkn+ ) = .

(.)

Using (.), (.), (.) and putting xn = yn = akn , wm = zm = akm+ and sn = tn = αkn+ +βkn+

in (u), we deduce

lim
n→∞ θ

(
akn+ , akn+ , p(akn+ , akn+ ), p(akn+ , akn+ )

)
=  and

lim
n→∞ θ

(
akn+ , akn+ , p(akn+ , bkn+ ), p(akn+ , bkn+ )

)
= .

(.)

Using (.) and putting wn = zn = akn+ , xn = akn+ and yn = bkn+ in (u), we have

lim
n→∞ d(akn+ , bkn+ ) = . (.)

Due to (.) and (.), there exist a subsequence {akn} of {an} and a subsequence {bkn}
of {bn} such that

lim
n→∞ d(akn , bkn ) = . (.)

�

Definition . Let (X, d) be a metric space, X be a set of all nonempty subsets of X and
Cl(X) be a set of all nonempty closed subsets of X. Let T : X → X . Then an element z ∈ X
is a fixed point of T if z ∈ Tz.

A mapping T : X → X is called Kannan-type multi-valued p-contractive mapping if
there exist a u-distance p on X and r ∈ [, 

 ) such that
(i) p(y, y) ≤ r[p(x, y) + p(x, y)] for any x, x ∈ X , y ∈ Tx and y ∈ Tx,

(ii) Ty ⊆ Tx for all x, y ∈ X with y ∈ Tx.

In the next example we shall show that if (X, d) is a complete metric space with a
u-distance p and a mapping T : X → Cl(X) is not Kannan-type multi-valued p-contractive,
in general, T may have no fixed point in X.

Example . Let X = [, ] be a closed interval with the usual metric and p : X × X → R+

and T : X → Cl(X) be mappings defined as follows:

p(x, y) =

{
, x = ,
x, x 
= ,

(.)

Tx =

{
{ 

 }, x = ,
[ x

(+x) , x
(+x) ], x 
= .

(.)
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Define θ : X × X × R+ × R+ → R+ by

θ (x, y, s, t) = s (.)

for all x, y ∈ X and s, t ∈ R+.
From (.) and (.) easily we can obtain that p is a u-distance on X.
In terms of (.) and (.), we have

p(y, y) ≤ 


[
p(x, y) + p(x, y)

]
(.)

for all x, x ∈ X, y ∈ Tx and y ∈ Tx.
To show that (.) is satisfied, we need to consider several possible cases.

Case . Let x = x = . Then y ∈ Tx =
{




}
, y ∈ Tx =

{



}
,

p(y, y) = y =



, p(x, y) =  and p(x, y) =  and




[
p(x, y) + p(x, y)

]
=




[ + ] =  ≥ 


= p(y, y). Thus

p(y, y) ≤ 


[
p(x, y) + p(x, y)

]
.

(.)

Case . Let x =  and x 
= . Then y ∈ Tx =
{




}
,

y ∈ Tx =
[

x

( + x)
,

x

( + x)

]
, p(y, y) = y =




,

p(x, y) =  and p(x, y) = x. Thus




[
p(x, y) + p(x, y)

]
=




[ + x] ≥ 


= p(y, y).

(.)

Case . Let x 
=  and x = . Then y ∈ Tx =
[

x

( + x)
,

x

( + x)

]
,

y ∈ Tx =
{




}
, p(y, y) = y ≤ x

( + x)
, p(x, y) = x

and p(x, y) = . Thus




[
p(x, y) + p(x, y)

]
=




[x + ] ≥ x

( + x)
≥ p(y, y).

(.)

Case . Let x 
=  and x 
= . Then y ∈ Tx =
[

x

( + x)
,

x

( + x)

]
,

y ∈ Tx =
[

x

( + x)
x

( + x)

]
, p(y, y) = y ≤ x

( + x)
,

p(x, y) = x and p(x, y) = x. Thus




[
p(x, y) + p(x, y)

]
=




[x + x] ≥ max

{
x

( + x)
,

x

( + x)

}
≥ p(y, y).

(.)
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From (.)∼(.), we have

p(y, y) ≤ 


[
p(x, y) + p(x, y)

]
(.)

for all x, x ∈ X, y ∈ Tx and y ∈ Tx.
But there exist x =  ∈ X and y = 

 ∈ X with y ∈ Tx such that Ty = T 
 = [ 

 , 
 ] � { 

 } =
T. Therefore T is not Kannan-type multi-valued p-contractive and T does not have a
fixed point.

Using Lemma ., we have the following main theorem.

Theorem . Let (X, d) be a complete metric space and let T : X → Cl(X) be a Kannan-
type multi-valued p-contractive mapping. Then T has a unique fixed point in X.

Proof Let a ∈ X be arbitrary, a ∈ Ta and a ∈ Ta be chosen. Since T is Kannan-type
p-contractive,

p(a, a) ≤ r
[
p(a, a) + p(a, a)

]
, (.)

where r ∈ [, 
 ).

From (.), we get

p(a, a) ≤ kp(a, a), (.)

where k = r
–r ∈ [, ).

By (.) and (.), we obtain a sequence {an} in X such that

an+ ∈ Tan and p(an+, an+) ≤ kp(an, an+) (.)

for all n ∈ N .
By repeated application of (.), we have

p(an, an+) ≤ kn–p(a, a) (.)

for all n ∈ N .
Now we shall know that {an} is a Cauchy sequence.
Let n, m ∈ N be such that n < m. Then, by virtue of (.), we deduce

p(an, am) ≤ p(an, an+) + p(an+, an+) + · · · + p(am–, am)

=
m–∑

i=n

p(ai, ai+) ≤
m–∑

i=n

ki–p(a, a)

≤
(

kn–

 – k

)
p(a, a). (.)

In view of (.), we get

lim
n→∞ sup

{
p(an, am) : m > n

}
= . (.)
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On account of Lemma ., Lemma . and (.), {an} is a Cauchy sequence in X. Since X
is complete, there exists b ∈ X such that

lim
n→∞ an = b. (.)

By the same method as that in (.)∼(.), there exists a sequence {bn} in X such that

bn+ ∈ Tbn and p(bn, bn+) ≤ kn–p(b, b) (.)

for all n ∈ N .
Combining the hypothesis, (.), (.), (.), (.) and (.), we have

p(an, bm) ≤ p(an, am) + p(am, bm)

≤ p(an, am) + r
[
p(am–, am) + p(bm–, bm)

]

≤
(

kn–

 – k

)
p(a, a) + r

[
km–p(a, a) + km–p(b, b)

]

≤
(

kn–

 – k

)
p(a, a) + kn–p(a, a) + kn–p(b, b)

= kn–
{(


 – k

)
p(a, a) + p(a, a) + p(b, b)

}
(.)

for all n, m ∈ N with m > n.
By (.), we have

lim
n→∞ sup

{
p(an, bm) : m > n

}
= . (.)

Due to Lemma ., (.) and (.), there exist a subsequence {akn} of {an} and a subse-
quence {bkn} of {bn} such that

lim
n→∞ d(akn , bkn ) = . (.)

On account of the hypothesis and (.), we obtain

bn+ ∈ Tb (.)

for all n ∈ N .
By virtue of the hypothesis, (.), (.) and (.), we have

b ∈ Tb. (.)

Due to (.), b is a fixed point of T . To prove the unique fixed point of T , let c be another
fixed point of T . Then

c ∈ Tc. (.)
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Since T is Kannan-type multi-valued p-contractive, by (.) and (.), we have

p(b, b) ≤ r
[
p(b, b) + p(b, b)

]
, (.)

p(c, c) ≤ r
[
p(c, c) + p(c, c)

]
, (.)

p(b, c) ≤ r
[
p(b, b) + p

(
c, c′


)]

. (.)

Since r ∈ [, 
 ), from (.), (.) and (.), we get

p(b, b) = p(c, c) = p(b, c) = . (.)

By virtue of Lemma . and (.), we have

b = c. (.)

On account of (.), (.) and (.), T has a unique fixed point. �

Now we give an example to support Theorem ..

Example . Let X = [, ] be a closed interval with the usual metric, and p : X × X → R+

and T : X → Cl(X) be mappings defined as follows:

p(x, y) = x,

Tx =
[

,



x
]

.
(.)

Let θ : X × X × R+ × R+ → R+ be as in (.). Then, due to (.), we easily can obtain
that p is a u-distance on X.

From (.), we have

p(y, y) ≤ 


[
p(x, y) + p(x, y)

]
(.)

for all x, x ∈ X, y ∈ Tx and y ∈ Tx. To show that (.) is satisfied, let x, x ∈ X,
y ∈ Tx and y ∈ Tx. Then p(y, y) = y ≤ 

 x and 
 [p(x, y) + p(x, y)] = 

 (x + x) ≥

 x. Thus (.) is satisfied. Let x, y ∈ X be such that y ∈ Tx. Then  ≤ y ≤ 

 x and
Ty ⊆ [, 

 x] ⊆ [, 
 x] = Tx. Thus Ty ⊆ Tx for all x, y ∈ X with y ∈ Tx. Therefore all the

conditions of Theorem . are satisfied and T has a unique fixed point  in X.

Definition . Let (X, d) be a metric space. A mapping T : X → X is called Kannan-type
single-valued p-contractive mapping if there exist a u-distance p on X and r ∈ [, 

 ) such
that

(iii) p(Tx, Tx) ≤ r[p(x, Tx) + p(x, Tx)] for any x, x ∈ X ,
(iv) if {xn} is a sequence in X such that xn+ = Txn for each n ∈ N and limn→∞ xn = c ∈ X ,

then p(Tc, c) ≤ r[p(Tc, Tc) + p(c, Tc)] and p(c, Tc) ≤ r[p(Tc, Tc) + p(Tc, c)].

In the following example we show that if (X, d) is a complete metric space and a mapping
T : X → X is not Kannan-type single-valued p-contractive, in general, T may have no fixed
point in X.
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Example . Let X = [, ] be a closed interval with the usual metric, and p : X × X → R+

and T : X → X be mappings defined as follows:

p(x, y) =

{
, x = ,
x, x 
= ,

(.)

Tx =

{

 , x = ,

x
(+x) , x 
= .

(.)

Define θ : X × X × R+ × R+ → R+ by

θ (x, y, s, t) = s. (.)

By the same methods as in Example ., we know that p is a u-distance on X and T is not
Kannan-type single-valued p-contractive and T has no fixed point in X.

Theorem . Let (X, d) be a metric space with a u-distance p on X.
Let T : X → X be a Kannan-type single-valued p-contractive mapping such that there

exist a sequence {xn} of X and c ∈ X satisfying xn+ = Txn for each n ∈ N and limn→∞ xn =
c ∈ X. Then c is a fixed point of T , i.e., Tc = c.

Proof By hypotheses, we obtain

p(Tc, Tc) ≤ r
[
p(c, Tc) + p(c, Tc)

]
= rp(c, Tc), (.)

p(Tc, c) ≤ r
[
p(Tc, Tc) + p(c, Tc)

]

≤ r
[
rp(c, Tc) + p(c, Tc)

]

= r(r + )p(c, Tc), (.)

p(c, Tc) ≤ r
[
p(Tc, Tc) + p(Tc, c)

]

≤ r
{

rp(c, Tc) + r(r + )p(c, Tc)
}

=
(
r + r)p(c, Tc). (.)

Since r ∈ [, 
 ), r, r(r + ), (r + r) ∈ [, ) and thus, by (.), (.) and (.), we

have

p(Tc, Tc) = p(Tc, c) = p(c, Tc). (.)

In view of Lemma . and (.),

Tc = c. (.)

This means that c is a fixed point of T . �

Theorem . Let (X, d) be a complete metric space and let T : X → X be a Kannan-type
single-valued p-contractive mapping.

Then T has a unique fixed point in X.
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Proof Since T is Kannan type single-valued p-contractive, there exists a sequence {xn} of
X such that

xn+ = Txn and p(xn+, xn+) ≤ kp(xn, xn+) (.)

for all n ∈ N , where k ∈ [, ).
By repeated application of (.), we have

p(xn, xn+) ≤ kn–p(x, x) (.)

for all n ∈ N .
On account of (.), we get

p(xn, xm) ≤ p(xn, xn+) + p(xn+, xn+) + · · · + p(xm–, xm)

≤
m–∑

i=n

p(xi, xi+) ≤
m–∑

i=n

ki–p(x, x)

≤
(

kn–

 – k

)
p(x, x) (.)

for all n, m ∈ N with n < m.
In view of (.), we deduce that

lim
n→∞ sup

{
p(xn, xm) : m > n

}
= . (.)

By virtue of Lemma ., Lemma . and (.), we know that {xn} is a Cauchy sequence.
Since X is complete, there exists c ∈ X such that

lim
n→∞ xn = c. (.)

On account of the hypothesis, Theorem ., (.) and (.), we know that c is a fixed
point, i.e.,

Tc = c. (.)

By the same method as that in (.)∼(.), we can prove that T has a unique fixed
point X. �

From Theorem ., we have the following corollary.

Corollary . ([]) Let (X, d) be a complete metric space and let T : X → X be a mapping
such that

d(Tx, Ty) ≤ r
[
d(x, Tx) + d(y, Ty)

]

for all x, y ∈ X and some r ∈ [, 
 ).

Then T has a unique fixed point in X.
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Proof By the same methods as in (.)∼(.), we deduce that

lim
n→∞ sup

{
d(xn, xm) : m > n

}
= , (.)

where xn+ = Txn for all n ∈ N .
Since X is complete, there exists c ∈ X such that

lim
n→∞ xn = c. (.)

Due to the hypothesis and (.), we get

d(xn+, Tc) = d(Txn, Tc)

≤ r
[
d(xn, Txn) + d(c, Tc)

]

= r
[
d(xn, xn+) + d(c, Tc)

]
(.)

for all n ∈ N and some r ∈ [, 
 ).

Taking the limit as n → ∞ in (.), we obtain

d(c, Tc) ≤ rd(c, Tc) (.)

for some r ∈ [, 
 ).

From (.), we have

d(c, Tc) = . (.)

Since metric d is a u-distance, by view of (.), (.), (.) and the hypothesis, condi-
tions of Corollary . satisfy all conditions of Theorem ..

Therefore T has a unique fixed point. �

Finally we shall present an example to show that all conditions of Theorem . are sat-
isfied, but all conditions of Corollary . are not satisfied.

Example . Let X = [, ] be a closed interval with the usual metric, and p : X ×X → R+

and T : X × X be mappings defined as follows:

p(x, y) = x,

Tx =



x.
(.)

Then, due to (.), we easily can obtain that p is a u-distance on X, but not metric and

p(Tx, Ty) ≤ 


[
p(x, Tx) + p(y, Ty)

]
(.)

for all x, y ∈ X.
Suppose that {xn} is a sequence of X such that xn+ = Txn for all x ∈ N .
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Then, by (.), we have

xn+ = Txn =



xn (.)

for all n ∈ N .
By virtue of (.),

lim
n→∞ xn = lim

n→∞

(



)n–

x = . (.)

On account of (.)∼(.), all conditions of Theorem . are satisfied, but all conditions
of Corollary . are not satisfied since p is not metric.
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