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Abstract
We introduce a new geometric constant C(p)

NJ (X) for a Banach space X , called a
generalized von Neumann-Jordan constant. Next, it is shown that 1≤ C(p)

NJ (X) ≤ 2 for
any Banach space X and that the right hand side inequality is sharp if and only if X is
uniformly non-square. Moreover, a relationship between the James constant J(X) and
C(p)
NJ (X) is presented. Finally, the generalized von Neumann-Jordan constant of the

Lebesgue space Lr([0, 1]) is calculated and a relationship between C(p)
NJ (X) and the fixed

point property is found.
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1 Introduction
Recently many geometric constants for a Banach space X have been investigated. In par-
ticular, the von Neumann-Jordan constant CNJ (X) and the James constant J(X) are widely
treated. We introduce a new geometric constant, called the generalized von Neumann-
Jordan constant C(p)

NJ (X), which is related to the von Neumann-Jordan constant of a Banach
space X and can be used for much better characterization of a Banach space X.

In connection with the famous work [] (see also []) of Jordan and von Neumann con-
cerning inner products, the von Neumann-Jordan constant CNJ (X) for a Banach space X
was introduced by Clarkson [] as the smallest constant C, for which the estimates


C

≤ ‖x + y‖ + ‖x – y‖

(‖x‖ + ‖y‖)
≤ C

hold for all x, y ∈ X with (x, y) �= (, ). Equivalently,

CNJ (X) := sup

{‖x + y‖ + ‖x – y‖

(‖x‖ + ‖y‖)
: x, y ∈ X with (x, y) �= (, )

}
.

The classical von Neumann-Jordan constant CNJ (X) was investigated in many papers (see
for instance [–]).
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A Banach space X is said to be uniformly non-square in the sense of James if there exists
a positive number δ <  such that for any x, y ∈ SX := {x ∈ X : ‖x‖ = }, we have

min
(‖x + y‖,‖x – y‖) ≤ δ.

The James constant J(X) of a Banach space X is defined by

J(X) := sup
{
min

(‖x + y‖,‖x – y‖) : x, y ∈ SX
}

.

It is obvious that X is uniformly non-square if and only if J(X) < .
In this paper we introduce a new constant C(p)

NJ (X), generalizing the von Neumann-
Jordan constant CNJ (X). By the definition of C(p)

NJ (X), we will get a relationship between
C(p)

NJ (X) and J(X), as well as we will estimate the value of C(p)
NJ (X). Furthermore, the con-

stant C(p)
NJ (X) enable us to establish some new equivalent conditions for the uniform non-

squareness of a Banach space X. Since any uniformly non-square Banach space X has
the fixed point property (see []), our constant C(p)

NJ (X) is related to the fixed point the-
ory. Moreover, the value of the generalized von Neumann-Jordan constant for the space
Lr[, ] will be calculated. Finally, we will find a relationship between the constant C(p)

NJ (X)
and normal structure of X, and in such a way we have again its relationship to the fixed
point theory.

2 Preliminaries
Let X = (X,‖ · ‖) be a real Banach space. Geometrical properties of a Banach space X are
determined by its unit sphere SX or its unit ball B(X).

Definition  The generalized von Neumann-Jordan constant C(p)
NJ (X) is defined by

C(p)
NJ (X) := sup

{‖x + y‖p + ‖x – y‖p

p–
(‖x‖p + ‖y‖p

) : x, y ∈ X, (x, y) �= (, )
}

,

where  ≤ p < ∞.

We will also use the following parametrized formula for the constant C(p)
NJ (X) (see []

and [] in the case of the classical von Neumann-Jordan constant):

C(p)
NJ (X) = sup

{‖x + ty‖p + ‖x – ty‖p

p–( + tp)
: x, y ∈ SX ,  ≤ t ≤ 

}
,

where  ≤ p < ∞. By taking t =  and x = y, we obtain the estimate

C(p)
NJ (X) ≥ ‖x‖p

p–( + )
=

p

p– · 
= .

Definition  (see []) The modulus of uniform smoothness of X is defined as

ρX(t) := sup

{‖x + ty‖ + ‖x – ty‖


–  : x, y ∈ SX , t > 
}

.
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It is clear that ρX(t) is a convex function on the interval [,∞) satisfying ρX() = , whence
it follows that ρX is nondecreasing on [,∞). It is also easy to show that max{, t – } ≤
ρX(t) ≤ t.

Definition  (see []) A Banach space X is said to be uniformly smooth if (ρX)′+() :=
limt→+

ρX (t)
t = .

Definition  (see [] or []) A Banach space X is said to be q-uniformly smooth ( <
q ≤ ) if there exists a constant K >  such that ρX(t) ≤ Ktq for all t > .

Definition  (see []) Given any Banach space X and a number p ∈ [,∞), another func-
tion JX,p(t) is defined by

JX,p(t) := sup

{(‖x + ty‖p + ‖x – ty‖p



) 
p

: x, y ∈ SX

}

on the interval [,∞).

By the inequality

‖x + ty‖p + ‖x – ty‖p


≥

(‖x + ty‖ + ‖x – ty‖


)p

,

which follows by convexity of the function f (u) = up on [,∞), we get JX,p(t) ≥ ρX(t) + 
when  ≤ p < ∞. For p =  and p = , we have the equalities JX,(t) = ρX(t) +  and J

X,(t) =
E(t, X), respectively, where the constant E(t, X) was introduced by Gao [] in , and
it is defined by the formula

E(t, X) = sup
{‖x + ty‖ + ‖x – ty‖ : x, y ∈ SX

}
.

Definition  (see []) For any Banach space X, we define

μ(X) := inf
{

r > : lim sup
n→∞

‖x + xn‖ ≤ r lim sup
n→∞

‖x – xn‖, for any (xn) ⊂ X

with xn
w→  and any x ∈ X

}
.

Definition  A Banach space X is said to have normal (resp. weak normal) structure if X
contains no bounded and closed (resp. weakly compact) convex subset C with more than
one point which is diametral in the sense that, for all x ∈ C,

sup
{‖y – x‖ : y ∈ C

}
= diamC := sup

{‖y – z‖ : y, z ∈ C
}

.

Recall that the weak normal structure (so the normal structure as well) of a Banach space
X implies the weak fixed point property for X (see [, ]).

Remark . (see []) A sufficient condition for normal structure of a Banach space X is
the following: there exists ε ∈ (, ) such that


μ(X)

> max

{
ε


,  – δx(ε)

}
,
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where δx : [, ] → [, ] is the classical modulus of convexity of X defined as

δx(ε) = inf

{
 –



‖x + y‖ : x, y ∈ BX ,‖x – y‖ ≥ ε

}
.

Lemma . (see []) For any Banach space X and any  ≤ p < ∞ the following statements
are true:

() JX,p(·) is nondecreasing on (,∞).
() JX,p(·) is convex on (,∞).
() JX,p(·) is continuous on (,∞).
() JX,p(·)–

t is nondecreasing on (,∞).

The proof of this lemma can be found in [].

Lemma . For any  ≤ p < ∞ a Banach space X is uniformly smooth if and only if
limt→+

JX,p(t)–
t = .

Proof Since JX,p(t) ≥ ρX(t) +  for any t >  and  ≤ p < ∞, the sufficiency is obvious. Now
we will prove the necessity. Assume, to derive a contradiction, that limt→+

JX,p(t)–
t > . By

Lemma .(), there exists  < c <  such that limt→+
JX,p(t)–

t ≥ c. In particular, we can
choose  < t <  and x, y in X with ‖x‖ = , ‖y‖ = t satisfying

‖x + y‖p + ‖x – y‖p ≥ ( + ct)p. (.)

We can assume without loss of generality that min{‖x + y‖,‖x – y‖} = ‖x – y‖. Then, denot-
ing ‖x – y‖ = h, we have h ∈ [ – t,  + t], which follows from the inequalities |‖x‖ – ‖y‖| ≤
‖x – y‖ ≤ ‖x‖ + ‖y‖. By inequality (.), we obtain

‖x + y‖ + ‖x – y‖ ≥ h +
(
( + ct)p – hp) 

p =: f (h).

Since

f ′(h) =  –
hp–

(( + ct)p – hp)
p–

p
,

it is easy to see that f is an increasing function with respect to h on the interval [ – t,  + ct]
and decreasing on the interval [ + ct,  + t]. Hence the minimum value of the function f (h)
can be attained either at h =  – t or at h =  + t. In the case when the minimum value is
attained at the point  – t, we have by the definition of the modulus of uniform smoothness
that

ρX(t)
t

≥ f ( – t) – 
t

=
 – t + (( + ct)p – ( – t)p)


p – 

t
.

In the second case, we have

ρX(t)
t

≥ f ( + t) – 
t

=
 + t + (( + ct)p – ( + t)p)


p – 

t
.
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In both cases, letting t → + and using the L’Hôpital rule, we easily obtain limt→+
ρX (t)

t ≥
c > . Obviously, this contradicts the definition of uniform smoothness of X, and thus we
completed the proof. �

Lemma . (see []) Let  ≤ p < ∞ and  < q ≤ . A Banach space X is q-uniformly
smooth if and only if there exists a constant K ≥  such that

‖x + y‖p + ‖x – y‖p


≤ ‖x‖q + ‖Ky‖q, ∀x, y ∈ X.

Therefore, according to Lemma . and the definition of JX,p(·), the following lemma
holds.

Lemma . Let  ≤ p < ∞ and  < q ≤ . The following statements are equivalent:
() X is q-uniformly smooth.
() There exists a constant K ≥  such that the inequality JX,p(t) ≤ ( + Ktq)


q is satisfied

for any t > .

3 Main results
Theorem . For any Banach space X and any  ≤ p < ∞ the generalized von Neumann-
Jordan constant C(p)

NJ (X) satisfies the inequality C(p)
NJ (X) ≤ .

Proof We will use in the proof the following parametrized formula for the generalized von
Neumann-Jordan constant C(p)

NJ (X), where  ≤ p < ∞:

C(p)
NJ (X) = sup

{‖x + ty‖p + ‖x – ty‖p

p–( + tp)
: x, y ∈ SX ,  ≤ t ≤ 

}
.

Since

‖x + ty‖p + ‖x – ty‖p ≤ (‖x‖ + t‖y‖)p +
(‖x‖ + t‖y‖)p

= 
(‖x‖ + t‖y‖)p

= ( + t)p,

so

‖x + ty‖p + ‖x – ty‖p

p–( + tp)
≤ ( + t)p

p–( + tp)
. (.)

Applying convexity of the function ϕ(u) = |u|p, we get

( + t)p =
(

 ·  + t


)p

= p
(

 + t


)p

≤ p ·  + tp


= p–( + tp).

Combining this estimate with inequality (.), we get

‖x + ty‖p + ‖x – ty‖p

p–( + tp)
≤ ( + t)p

p–( + tp)
≤ 

p– · p– = .
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Hence

C(p)
NJ (X) = sup

{‖x + ty‖p + ‖x – ty‖p

p–( + tp)
: x, y ∈ SX ,  ≤ t ≤ 

}
≤ ,

and the proof is completed. �

Lemma . (see []) Let  < p < ∞. A Banach space X is uniformly non-square if and only
if there exists δ ∈ (, ) such that for any x, y ∈ X, we have

∥∥∥∥x + y


∥∥∥∥
p

+
∥∥∥∥x – y



∥∥∥∥
p

≤ ( – δ)
‖x‖p + ‖y‖p


.

According to Lemma ., we directly obtain the following theorem.

Theorem . Let  ≤ p < ∞. A Banach space X is uniformly non-square if and only if
C(p)

NJ (X) < .

Now let us present the following theorem indicating the relationship between constants
J(X) and C(p)

NJ (X).

Theorem . For any  < p < ∞ and any Banach space X, the following inequality holds:

J(X) ≤ 
p–

p p
√

C(p)
NJ (X).

Proof Indeed, if  < p < ∞, then for any x, y ∈ SX , we have


(
min

{‖x + y‖,‖x – y‖})p ≤ ‖x + y‖p + ‖x – y‖p

≤ p–(‖x‖p + ‖y‖p)C(p)
NJ (X)

= p– · C(p)
NJ (X),

so

min
{‖x + y‖,‖x – y‖} ≤ 

p–
p p

√
C(p)

NJ (X),

and the proof is completed. �

By Theorem ., we obtain the following corollary.

Corollary . For any Banach space X and any  ≤ p < ∞ the inequalities C(p)
NJ (X) <  and

J(X) <  are equivalent. Moreover, if X is a Banach space with C(p)
NJ (X) < , then X has the

fixed point property.

Proof It is well known that J(X) <  if and only if a Banach space X is uniformly non-square.
However, by Theorem ., we know that a Banach space X is uniformly non-square if and
only if C(p)

NJ (X) < . Hence, J(X) <  if and only if C(p)
NJ (X) < . Moreover, every uniformly

non-square Banach space have the fixed point property (see []), so if X is a Banach space
with C(p)

NJ (X) < , then X has the fixed point property. �
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Now we will calculate the generalized von Neumann-Jordan constant for the space
Lr[, ].

Theorem . Let X be the Banach space Lr[, ]. Let  < r ≤  and 
r + 

r′ = . Then
() if  < p ≤ r then C(p)

NJ (Lr[, ]) = –p and if r < p ≤ r′ then C(p)
NJ (Lr[, ]) = 

p
r –p+;

() if r′ < p < ∞ then C(p)
NJ (Lr[, ]) = .

Proof Let us note that r ≤  ≤ r′ and
() for any x, y ∈ SX and any  ≤ t ≤ , if  < p ≤ r′, then in virtue of Remark . from

[], we have

(‖x + ty‖p
r + ‖x – ty‖p

r
) 

p ≤ 

p
(‖x‖r

r + ‖ty‖r
r
) 

r = 

p
(
 + tr) 

r ,

which is equivalent to

‖x + ty‖p
r + ‖x – ty‖p

r ≤ 
(
 + tr) p

r .

Consequently,

‖x + ty‖p
r + ‖x – ty‖p

r

p–( + tp)
≤ ( + tr)

p
r

p–( + tp)
,

whence

sup

{‖x + ty‖p
r + ‖x – ty‖p

r

p–( + tp)
: x, y ∈ SX

}
≤ ( + tr)

p
r

p–( + tp)
,

and from the definition of C(p)
NJ (Lr[, ]), we have

C(p)
NJ

(
Lr[, ]

) ≤ sup

{
( + tr)

p
r

p–( + tp)
:  ≤ t ≤ 

}
.

Defining f (t) = (+tr)
p
r

+tp , we get (f (t))r = (+tr)p

(+tp)r =: G(t). Obviously, both functions f (t) and
G(t) are continuous and

G′(t) =
p( + tr)p–rtr–( + tp)r – r( + tp)r–ptp–( + tr)p

( + tp)r ,

whence it follows that G′(t) =  if and only if

p
(
 + tr)p–rtr–( + tp)r – r

(
 + tp)r–ptp–( + tr)p = ,

i.e. tr( + tp) – tp( + tr) = , which means that tr = tp. Let us observe that if p = r, then
G(t) =  for any t ∈ [, ], so G′(t) =  on the whole interval [, ].

Notice also that if  < p �= r, then there is no interior point of the interval [, ] at which
the derivative G′(t) vanishes. Therefore, the function f (t) can reach its biggest value on
the interval [, ] either at the point  (f () = ) or at the point  (f () = 

p
r –), depending

on the relationship between p and r. Namely:
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• if  < p ≤ r, then 
p
r – ≤ , so C(p)

NJ (Lr[, ]) ≤ 
p– ·  = –p;

• if r < p ≤ r′, then 
p
r – > , so C(p)

NJ (Lr[, ]) ≤ 
p– · 

p
r – = 

p
r –p+.

On the other hand, notice that the space Lr[, ] is r-uniformly smooth if  < r ≤ , and
the following Clarkson inequality is satisfied:

(‖x + ty‖r′ + ‖x – ty‖r′



) 
r′ ≤ (‖x‖r + ‖y‖r) 

r .

If  < p ≤ r′, the thesis in Lemma . holds with K = . Therefore, we have the inequality
JX,p(t) ≤ ( + tr) 

r for any t ≥ . Take x and y from the space Lr[, ], satisfying
∫ b

 |x(s)|r ds =
 and

∫ 
b |y(s)|r ds =  with some b ∈ (, ) and let

x(s) =

{
x(s),  ≤ s < b,
, b ≤ s ≤ ,

y(s) =

{
,  ≤ s < b,
y(s), b ≤ s ≤ .

Then ‖x(s)‖r = ‖y(s)‖r = , and if  < p < r′, we have

(‖x(s) + ty(s)‖p
r + ‖x(s) – ty(s)‖p

r



) 
p

=
(
 + tr) 

r .

Thus

‖x(s) + ty(s)‖p
r + ‖x(s) – ty(s)‖p

r

p–( + tp)
=

( + tr)
p
r

p–( + tp)
,

which means that if  < p ≤ r′. Therefore

C(p)
NJ

(
Lr[, ]

) ≥ ( + tr)
p
r

p–( + tp)
(∀t ∈ [, ]

)
.

Taking t = , we get C(p)
NJ (Lr[, ]) ≥ 

p
r –p+, while taking t = , we obtain C(p)

NJ (Lr[, ]) ≥
–p. Therefore:

• if  < p ≤ r then –p ≥ 
p
r –p+ and C(p)

NJ (Lr[, ]) ≥ –p;
• if r < p ≤ r′ then 

p
r –p+ > –p and C(p)

NJ (Lr[, ]) ≥ 
p
r –p+.

From what has been discussed above, the results from the thesis () of the theorem follow
immediately.

() In the case when r′ < p < ∞, in virtue of Remark . from [] we know that for any
x, y ∈ SX and any  ≤ t ≤ , we have

(‖x + ty‖p
r + ‖x – ty‖p

r
) 

p ≤ 

r′
(‖x‖r

r + t‖y‖r
r
) 

r = 

r′
(
 + tr) 

r ,

which is equivalent to

‖x + ty‖p
r + ‖x – ty‖p

r ≤ 
p
r′
(
 + tr) p

r .

Consequently,

‖x + ty‖p
r + ‖x – ty‖p

r

p–( + tp)
≤ 

p
r′ ( + tr)

p
r

p–( + tp)
= 

p
r′ –p+ · ( + tr)

p
r

 + tp .
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By the proof of thesis (), if r < p then the supremum of the function f is equal to 
p
r –, so

we have

C(p)
NJ

(
Lr[, ]

) ≤ 
p
r′ –p+ · 

p
r – = .

By the observation just after Definition  of C(p)
NJ (X), we have C(p)

NJ (X) ≥ , so thesis () is
proved and the proof of the theorem is completed. �

The following theorem gives a relationship between the constant C(p)
NJ (X) and the normal

structure of X. It is a generalization of a similar result from [] concerning only the case
p = .

Theorem . If  ≤ p < ∞ and X is a Banach space with C(p)
NJ (X) < 

p– ( + 
μ(X) )p, then X

has normal structure.

Proof Let us observe that by the inequality μ(X) ≥ , we have C(p)
NJ (X) < . We know that

if J(X) < , then X is reflexive (see []). Therefore, by Corollary ., C(p)
NJ (X) < , and so X

is reflexive and it has normal structure if and only if it has weak normal structure.
Looking for a contradiction, suppose that X fails to have weak normal structure. Then

it is well known (see []) that there exists a bounded sequence (xn) in X satisfying the
following statements:

(i) (xn) is weakly convergent to  in X ,
(ii) diam({xn : n = , , . . .}) = ,

(iii) for all x ∈ conv({xn : n = , , . . .}), we have

lim
n→∞‖x – xn‖ = diam

({xn : n = , , . . .}) = .

Let us fix ε >  as small as needed. Then, using the above properties of (xn) and the defi-
nition of μ := μ(X), we can find two positive integers n, m, with m > n, such that

() ‖xn‖ ≥  – ε,
() ‖xm – xn‖ ≤ ,
() ‖xm + xn‖ ≤ μ + ε,
() ‖( + 

μ+ε
)xm – ( – 

μ+ε
)xn‖ ≥ ( + 

μ+ε
)( – ε),

() ‖( – 
μ+ε

)xm – ( + 
μ+ε

)xn‖ ≥ ( + 
μ+ε

)‖xn‖ – ε.
Since

lim sup
n→∞

‖xm + xn‖ ≤ μ lim sup
n→∞

‖xm – xn‖,

by condition (), when m is big enough, we get

‖xm + xn‖ ≤ μ + ε,

and condition () is proved. We just need to prove conditions () and ().
Let us fix n ∈N and define again μ := μ(X). Notice that we can easily get from the Mazur

theorem
[(

 –


μ + ε

)/(
 +


μ + ε

)]
xn ∈ conv

({xk : k ∈N}) (.)
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for any n ∈ N. Indeed, since xn →  weakly as n → ∞, then by the Mazur theorem
 ∈ conv({xk : k ∈ N}), whence (.) follows immediately. Since (.) holds, so by the as-
sumption that X fails to have weak normal structure, for some m > n, we have

∥∥∥∥xm –
 – 

μ+ε

 + 
μ+ε

xn

∥∥∥∥ ≥  – ε,

and condition () follows. In the same way, we can get condition ().
Next, put x = xm – xn, y = (μ + ε)–(xm + xn) and use the previous estimates to obtain

‖x‖ ≤ , ‖y‖ ≤ , and

‖x + y‖ =
∥∥∥∥
(

 +


μ + ε

)
xm –

(
 –


μ + ε

)
xn

∥∥∥∥
≥

(
 +


μ + ε

)
( – ε),

‖x – y‖ =
∥∥∥∥
(

 –


μ + ε

)
xm –

(
 +


μ + ε

)
xn

∥∥∥∥
≥

(
 +


μ + ε

)
‖xn‖ – ε

≥
(

 +


μ + ε

)
( – ε) – ε.

By the definition of C(p)
NJ (X), we get the estimate

C(p)
NJ (X) ≥ ‖x + y‖p + ‖x – y‖p

p–(‖x‖p + ‖y‖p)

≥ ( + 
μ+ε

)p( – ε)p + [( + 
μ+ε

)( – ε) – ε]p

p–( + )
.

Finally, letting ε → +, we obtain

C(p)
NJ (X) ≥ 

p–

(
 +


μ

)p

,

which contradicts the hypothesis. This contradiction finishes the proof of the theorem.
�
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