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Abstract
In this paper, by using Minkowski functional introduced by Kadelburg et al. (Appl.
Math. Lett. 24:370-374, 2011) or nonlinear scalarization function introduced by Du
(Nonlinear Anal. 72:2259-2261, 2010), we prove some equivalences between vectorial
versions of fixed point theorems for H-cone metrics in the sense of Arshad and
Ahmad and scalar versions of fixed point theorems for (general) Hausdorff-Pompeiu
metrics (in usual sense).
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1 Introduction
Recently, the investigation of possible equivalence between fixed point results in cone met-
ric spaces (or tvs-cone metric spaces) and metric spaces has become a hot topic in many
mathematical activities. Namely, by using the properties either of the Minkowski func-
tional qe or the nonlinear scalarization function ξe (in particular their monotonicity), some
scholars have made a conclusion that many fixed point results in the setting of cone metric
spaces or tvs-cone metric spaces can be directly obtained as a consequence of the corre-
sponding results in metric spaces (see [–]). However, so far these equivalences have
been referred to some fixed results only for single valued mappings, whereas, the ones for
multivalued mappings have been seldom involved. The aim of this paper is to consider
some fixed point theorem equivalences between H-cone metric fixed point theorems for
multivalued or generalized multivalued contractions and (usual) metric fixed point theo-
rems for (general) multivalued mappings. We mainly establish the equivalences between
Arshad’s and Ahmad’s theorem (see []) and Nadler’s theorem (see []), and between
Ðorić’s theorem (see []) and Achari’s theorem (see []), and Ćirić’s theorem (see []).

Definition . ([]) Let E be a real Banach space and θ be its zero element. Suppose that
a nonempty closed subset K of E satisfies the following:

() K �= {θ};
() a, b ∈R

+ and x, y ∈ K ⇒ ax + by ∈ K ;
() x, –x ∈ K ⇒ x = θ .
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Then K is called a cone. If int K �= ∅, then K is called a solid cone, where int K denotes the
interior of K .

Definition . ([]) Let K be a cone in a real Banach space (E,‖ ·‖). The partial orderings
�, ≺, and 	 on E with respect to P are defined as follows, respectively. Let x, y ∈ E. Then

() x � y if y – x ∈ K ;
() x ≺ y if x � y and x �= y;
() x 	 y if y – x ∈ int K ;
() we say that K is normal if there is M >  such that θ � x � y ⇒ ‖x‖ ≤ M‖y‖.

Throughout this paper, unless otherwise specified, we always suppose that E is a real
Banach space, K is a solid cone in E, �, ≺, 	 are partial orderings with respect to K ,
and Y is a locally convex Hausdorff topological vector space (tvs for short) with its zero
vector θ .

Definition . ([]) Let X be a nonempty set and (Y , K) be an ordered tvs. Suppose that
a vector-valued function d : X × X → Y satisfies:

(i) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X ;

(iii) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X .
Then d is called a tvs-cone metric on X, and (X, d) is called a tvs-cone metric space.

Remark . ([]) If Y = E in Definition ., then d is said to be a cone metric on X, and
(X, d) is said to be a cone metric space. In other words, cone metric space is a special case
of tvs-cone metric space.

Definition . ([]) Let (X, d) be a cone metric space and let A be a collection of
nonempty subsets of X. A map H : A × A → E is called an H-cone metric in the sense
of Wardowski if for any A, B ∈A, the following conditions hold:

(H) H(A, B) = θ ⇒ A = B;
(H) H(A, B) = H(B, A);
(H) for any ε � θ and each x ∈ A, there exists y ∈ B such that d(x, y) � H(A, B) + ε;
(H) one of the following is satisfied:

(i) for any ε � θ , there exists x ∈ A such that for each y ∈ B, H(A, B) � d(x, y) + ε;
(ii) for any ε � θ , there exists x ∈ B such that for each y ∈ A, H(A, B) � d(x, y) + ε.

Remark . If we substitute Y for E, then H is called a tvs-H-cone metric (see []).

Definition . ([]) Let (X, d) be a cone metric space and A a collection of nonempty
subsets of X. A map H : A×A → E is called an H-cone metric in the sense of Arshad and
Ahmad if the following conditions hold:

(H) θ � H(A, B) for all A, B ∈A and H(A, B) = θ if and only if A = B;
(H) H(A, B) = H(B, A) for all A, B ∈A;
(H) H(A, B) � H(A, C) + H(C, B) for all A, B, C ∈A;
(H) if A, B ∈ A, θ ≺ ε ∈ E with H(A, B) ≺ ε, then for each a ∈ A there exists b ∈ B such

that d(a, b) ≺ ε.
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Example . ([, ]) Let (X, d) be a metric space and let A be a family of all nonempty
closed bounded subsets of X. Then H : A×A→ R

+ given by the formula

H(A, B) = max
{

sup
x∈A

d(x, B), sup
y∈B

d(y, A)
}

, A, B ∈A, (.)

is an H-cone metric (called a Hausdorff-Pompeiu metric), which satisfies either Defini-
tion . or Definition ..

Remark . Compared with Definition ., Definition . minutely modifies Defini-
tion . to make it more comparable with a standard metric. The following example indi-
cates that Definition . is different from Definition ..

Example . Let X = {a, b, c} and d : X × X → [, +∞) be defined by

d(a, b) = d(b, a) =



, d(a, c) = d(c, a) = d(b, c) = d(c, b) = ,

d(a, a) = d(b, b) = d(c, c) = .

Let A = {{a}, {b}, {c}}, H : A × A → [, +∞) as H({a}, {b}) = H({b}, {a}) = , H({a}, {c}) =
H({c}, {a}) = H({b}, {c}) = H({c}, {b}) = , H({a}, {a}) = H({b}, {b}) = H({c}, {c}) = . Then H
is an H-cone metric which satisfies Definition . but not Definition .. In fact, (H) of
Definition . does not hold.

Recall (see [] or []) that if V is an absolutely convex and absorbing subset of a tvs Y ,
its Minkowski functional is defined by

E � x �→ qV (x) = inf{λ >  : x ∈ λV }.

It is a semi-norm on Y and V ⊂ W implies that qW (x) ≤ qV (x) for x ∈ Y . If V is an abso-
lutely convex neighborhood of θ in Y , then qV is continuous and

{
x ∈ E : qV (x) < 

}
= int V ⊂ V ⊂ V =

{
x ∈ Y : qV (x) ≤ 

}
.

Let (Y , K) be an ordered tvs and e ∈ int K . Then [–e, e] = (K – e) ∩ (e – K) = {z ∈ Y :
–e � z � e} is an absolutely convex neighborhood of θ ; its Minkowski functional q[–e,e]

will be denoted by qe. Clearly, int[–e, e] = (int K – e) ∩ (e – int K), qe(x) = inf{λ >  : x ≺
λe}. Moreover, qe(x) is an increasing function on K . Indeed, if θ � x � y, then {λ : x ∈
λ[–e, e]} ⊃ {λ : y ∈ λ[–e, e]} and it follows that qe(x) ≤ qe(y).

Lemma . ([]) Let (X, d) be a tvs-cone metric space and let e ∈ int K . Let qe be the cor-
responding Minkowski functional of [–e, e]. Then dq := qe ◦ d is a metric on X.

Lemma . ([]) Let (X, d) be a tvs-cone metric space and let e ∈ int K . Let ξe : Y → R

be a nonlinear scalarization function defined by ξe(y) = inf{r ∈ R : y ∈ re – K}. Then dξ :
X × X → [, +∞) defined by dξ := ξe ◦ d is a metric on X.

For the convenience of the reader, we present some well-known theorems as follows.
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Theorem . (Nadler []) Let (X, d) be a complete metric space and A be a collection
of nonempty, closed, and bounded subsets of X. Suppose that a mapping T : X → A is a
multivalued contraction, that is, there exists λ ∈ [, ) such that for all x, y ∈ X,

H(Tx, Ty) ≤ λd(x, y),

where H(·, ·) is the Hausdorff-Pompeiu metric (.) induced by d. Then T has a fixed
point.

Theorem . (Arshad and Ahmad []) Let (X, d) be a complete cone metric space. Let
A be a collection of nonempty closed subsets of X, and let H : A × A → E be an H-cone
metric in the sense of Arshad and Ahmad. If for a map T : X → A there exists λ ∈ [, )
such that for all x, y ∈ X,

H(Tx, Ty) � λd(x, y), (.)

then T has a fixed point.

Theorem . (Achari []) Let (X, d) be a complete metric space and let A be a family of
nonempty, closed, and bounded subsets of X. Suppose that T , S : X → A are two multival-
ued mappings and suppose that there exists λ ∈ [, ) such that for all x, y ∈ X,

H(Tx, Sy) ≤ λ · max

{
d(x, y), d(x, Tx), d(y, Sy),

d(x, Sy) + d(y, Tx)


}
,

where H(·, ·) is the Hausdorff-Pompeiu metric (.) induced by d. Then T and S have a
common fixed point.

Theorem . (Ðorić []) Let (X, d) be a complete cone metric space. Let A be a family of
nonempty, closed, and bounded subsets of X and let there exist an H-cone metric H : A×
A→ E in the sense of Arshad and Ahmad. Suppose that T , S : X →A are two multivalued
mappings and suppose that there is λ ∈ [, ) such that, for all x, y ∈ X, at least one of the
following conditions holds:

(C) H(Tx, Sy) � λ · d(x, y);
(C) H(Tx, Sy) � λ · d(x, u) for each fixed u ∈ Tx;
(C) H(Tx, Sy) � λ · d(y, v) for each fixed v ∈ Sy;
(C) H(Tx, Sy) � λ · d(x,v)+d(y,u)

 for each fixed v ∈ Sy and each fixed u ∈ Tx.
Then T and S have a common fixed point.

Theorem . (Ćirić []) Let (X, d) be a complete metric space and let A be a family
of nonempty, closed, and bounded subsets of X. Suppose that T : X → A is a generalized
multivalued contraction, that is, there exists λ ∈ [, ) such that for all x, y ∈ X,

H(Tx, Ty) ≤ λ · max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)


}
,

where H(·, ·) is the Hausdorff-Pompeiu metric (.) induced by d. Then T has a fixed
point.
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Theorem . (Ðorić []) Let (X, d) be a complete cone metric space. Let A be a family of
nonempty, closed, and bounded subsets of X and let there exist an H-cone metric H : A×
A → E in the sense of Arshad and Ahmad. Suppose that T : X → A is a cone generalized
multivalued contraction, that is, there exists λ ∈ [, ) such that, for all x, y ∈ X, one of the
following conditions holds:

(D) H(Tx, Ty) � λ · d(x, y);
(D) H(Tx, Ty) � λ · d(x, u) for each fixed u ∈ Tx;
(D) H(Tx, Ty) � λ · d(y, v) for each fixed v ∈ Ty;
(D) H(Tx, Ty) � λ · d(x,v)+d(y,u)

 for each fixed v ∈ Ty and each fixed u ∈ Tx.
Then T has a fixed point.

2 Main results
In what follows, by utilizing the Minkowski functional qe or the nonlinear scalarization
function ξe, we present two inequalities. Based on them, we thereupon obtain some equiv-
alences between some well-known theorems for multivalued or generalized multivalued
contractions.

Theorem . Let (X, d) be a cone metric space and A a collection of nonempty subsets
of X. Let H : A × A → E be an H-cone metric in the sense of Arshad and Ahmad and let
e ∈ int K and qe be the corresponding Minkowski functional of [–e, e]. If Hq = qe ◦ H and
dq = qe ◦ d, then

Hdq (A, B) ≤ Hq(A, B) (A, B ∈A),

where Hdq (A, B) is the Hausdorff-Pompeiu metric induced by dq.

Proof On account of (H)-(H) in Definition ., we conclude that (A, H) is a cone metric
space. Using Lemma ., one finds that dq is a metric on X and Hq is a metric onA. Denote

M =
{
λ >  : H(A, B) ≺ λe

}
(A, B ∈A),

N =
{
λ >  : d(x, y) ≺ λe

}
(x ∈ A, y ∈ B).

In view of (H), it is not hard to verify that M ⊆ N . Thus, inf M ≥ inf N . Further, we have

Hq(A, B) = qe
(
H(A, B)

)
= inf

{
λ >  : H(A, B) ≺ λe

}
= inf M.

Accordingly, for all A, B ∈A, it follows that

Hdq (A, B) = max
{

sup
x∈A

dq(x, B), sup
y∈B

dq(y, A)
}

= max
{

sup
x∈A

inf
y∈B

dq(x, y), sup
y∈B

inf
x∈A

dq(y, x)
}

= max
{

sup
x∈A

inf
y∈B

inf
{
λ >  : d(x, y) ≺ λe

}
,

sup
y∈B

inf
x∈A

inf
{
λ >  : d(x, y) ≺ λe

}}
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= max
{

sup
x∈A

inf
y∈B

inf N , sup
y∈B

inf
x∈A

inf N
}

≤ max
{

sup
x∈A

inf
y∈B

inf M, sup
y∈B

inf
x∈A

inf M
}

= max
{

sup
x∈A

inf
y∈B

Hq(A, B), sup
y∈B

inf
x∈A

Hq(A, B)
}

= Hq(A, B). �

Theorem . Let (X, d) be a cone metric space and A a collection of nonempty subsets
of X. Let H : A × A → E be an H-cone metric in the sense of Arshad and Ahmad and let
e ∈ int K and ξe be the corresponding nonlinear scalarization function. If Hξ = ξe ◦ H and
dξ = ξe ◦ d, then

Hdξ
(A, B) ≤ Hξ (A, B) (A, B ∈A),

where Hdξ
(A, B) is the Hausdorff-Pompeiu metric induced by dξ .

Proof Similarly as in the proof of Theorem ., by utilizing Lemma ., we obtain the
conclusion. �

Theorem . Theorem . is equivalent to Theorem ..

Proof In Theorem ., take E = R, K = [, +∞), and H to be the Hausdorff-Pompeiu met-
ric (.) introduced by d, and let A be a collection of nonempty, closed, and bounded sub-
sets of X. Then by Theorem ., we easily get Theorem .. Conversely, let Theorem .
hold. Applying the Minkowski functional qe to both sides of the inequality (.), we estab-
lish that

qe
(
H(Tx, Ty)

) ≤ qe
(
λd(x, y)

)
= λqe

(
d(x, y)

)
,

that is,

Hq(Tx, Ty) ≤ λdq(x, y).

Here, Hq = qe ◦ H and dq = qe ◦ d are metrics from Lemma .. By using Theorem ., for
all x, y ∈ X, it follows that

Hdq (Tx, Ty) ≤ λdq(x, y).

Hence by Theorem ., T has a fixed point. �

Theorem . Theorem . is equivalent to Theorem ..

Proof In Theorem ., take E = R, K = [, +∞), and let H be the Hausdorff-Pompeiu
metric (.) introduced by d. Then Theorem . is valid. Indeed, in this case, from (C)-
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(C) of Theorem ., we conclude that

H(Tx, Sy) ≤ λ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d(x, y),
d(x, Tx),
d(y, Sy),

 (d(y, Tx) + d(x, Sy)),

where d(a, B) = infb∈B d(a, b). Hence,

H(Tx, Sy) ≤ λ · max

{
d(x, y), d(x, Tx), d(y, Sy),

d(x, Sy) + d(y, Tx)


}
.

That is to say, we obtain Theorem ..
Conversely, let Theorem . hold. Then by (C)-(C), it follows that

H(Tx, Sy) � λ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d(x, y),
d(x, u), u ∈ Tx,
d(y, v), v ∈ Sy,

 (d(y, u) + d(x, v)), u ∈ Tx, v ∈ Sy.

Applying the Minkowski functional qe to both sides of the above inequalities, we establish
that

Hq(Tx, Sy) ≤ λ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dq(x, y),
infu∈Tx dq(x, u),
infv∈Sy dq(y, v),

 (infu∈Tx dq(y, u) + infv∈Sy dq(x, v)).

That is to say,

Hq(Tx, Sy) ≤ λ · max

{
dq(x, y), dq(x, Tx), dq(y, Sy),

dq(x, Sy) + dq(y, Tx)


}
,

where dq(a, B) = infb∈B dq(a, b). Hq = qe ◦ H and dq = qe ◦ d are metrics from Lemma ..
Thus by Theorem ., for all x, y ∈ X, we have

Hdq (Tx, Sy) ≤ λ · max

{
dq(x, y), dq(x, Tx), dq(y, Sy),

dq(x, Sy) + dq(y, Tx)


}
.

Therefore, by Theorem ., T and S have a common fixed point. �

Corollary . Theorem . is equivalent to Theorem ..

Proof If one takes S = T in Theorem . and Theorem ., then by Theorem ., the
proof is completed. �

Remark . According to Theorem ., Theorem . and Corollary ., we can easily
see that the vectorial versions of Nadler’s theorem, Achari’s theorem and Ćirić’s theorem
are just equivalent to their scalar versions, respectively. It is worth mentioning that it is
possible to obtain the same conclusion using the nonlinear scalarization function ξe.
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We finally pose the following problems:

Problem  Does Definition . imply Definition .?

Problem  Is Theorem . of [] equivalent to Theorem .?

Problem  Is Theorem . of [] equivalent to Theorem .?
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15. Ðorić, D: Common fixed point theorems for generalized multivalued contractions on cone metric spaces over a

non-normal solid cone. Fixed Point Theory Appl. 2014, Article ID 159 (2014)
16. Achari, J: Common fixed points of mappings and set-valued mappings. Rev. Roum. Math. Pures Appl. 24(2), 179-182

(1979)
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