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Abstract

In this paper, we investigate the common fixed points set of nonexpansive
semigroups of nonlinear mappings {T;}t>o, i.e., a family such that To(x) = x,

Toir = T(T¢(x)), where the domain is a metric space (M, d). In particular we prove that
under suitable conditions, the common fixed points set is the same as the common
fixed points set of two mappings from the family. Then we use the modified Mann
iteration process to approximate such common fixed points.
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1 Introduction

The purpose of this paper is to prove the existence of common fixed points for semi-
groups of nonlinear mappings acting in metric spaces. Recently, Khamsi and Kozlowski
presented a series of fixed point results for pointwise contractions, asymptotic pointwise
contractions, pointwise nonexpansive and asymptotic pointwise nonexpansive mappings
acting in modular function spaces [1, 2].

Let us recall that a family {7;};>o of mappings forms a semigroup if To(x) = x and T§,; =
Ts o Ty. Such a situation is quite typical in mathematics and applications. For instance, in
the theory of dynamical systems, the vector function space would define the state space
and the mapping (¢,x) — T;(x) would represent the evolution function of a dynamical
system. The question about the existence of common fixed points, and about the structure
of the set of common fixed points, can be interpreted as a question whether there exist
points that are fixed during the state space transformation 7} at any given point of time ¢,
and if yes - what the structure of a set of such points may look like. In the setting of this
paper, the state space is a nonlinear metric space.

The existence of common fixed points for families of contractions and nonexpansive
mappings in Banach spaces has been the subject of intense research since the early 1960s,
as investigated by Belluce and Kirk [3, 4], Browder [5], Bruck [6], DeMarr [7], and Lim [8].
The asymptotic approach for finding common fixed points of semigroups of Lipschitzian
(but not pointwise Lipschitzian) mappings has also been investigated, see, e.g., Tan and Xu
[9]. It is worthwhile mentioning the recent studies on the special case, when the parameter
set for the semigroup is equal to {0,1,2,3,...},and T, = T", the nth iterate of an asymptotic
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pointwise nonexpansive mapping. Kirk and Xu [10] proved the existence of fixed points
for asymptotic pointwise contractions and asymptotic pointwise nonexpansive mappings
in Banach spaces, while Hussain and Khamsi [11] extended this result to metric spaces,
and Khamsi and Kozlowski to modular function spaces [1, 2]. In the context of modu-
lar function spaces, Khamsi discussed in [12] the existence of nonlinear semigroups in
Musielak-Orlicz spaces and considered some applications to differential equations.

2 Uniform convexity in metric spaces

Throughout this paper, (M, d) will stand for a metric space. Suppose that there exists a
family F of metric segments such that any two points x, y in M are endpoints of a unique
metric segment [x,y] € F ([x,7] is an isometric image of the real line interval [0, d(x, y)]).
We shall denote by (1 — 8)x @ By the unique point z of [x, y] which satisfies

d(x,2) = Bd(x,y) and d(z,y) = (1 - B)d(x,y),

where § € [0,1]. Such metric spaces are usually called convex metric spaces [13]. Moreover,
if we have

1 11 1 1
dl Zp® =x,~p®d =y ) < =d(x,
(2p®2x 2p®2y>_2 ()

for all p, x, y in M, then M is said to be a hyperbolic metric space (see [14]).

Obviously, normed linear spaces are hyperbolic spaces. As nonlinear examples, one can
consider the Hadamard manifolds [15], the Hilbert open unit ball equipped with the hy-
perbolic metric [16], and the CAT(0) spaces [17-19] (see Example 2.1). We will say that a
subset C of a hyperbolic metric space M is convex if [x,y] C C whenever x, y are in C.

Definition 2.1 Let (M, d) be a hyperbolic metric space. We say that M is uniformly convex
(in short, UC) if for any a € M, for every r > 0, and for each € > 0,

1 /1 1
8(r,e) = inf{l— —d(ixea 5}1,61);6{(9{?,61) <r,dy,a) <r,dxy) > rs} > 0.
r

The definition of uniform convexity finds its origin in Banach spaces [20]. To the best
of our knowledge, the first attempt to generalize this concept to metric spaces was made
in [21]. The reader may also consult [14, 16, 22].

From now onwards we assume that M is a hyperbolic metric space and if (M, d) is uni-
formly convex, then for every s > 0, € > 0, there exists 7(s,€) > 0 depending on s and €
such that

8(r,e) >n(s,e) >0 foranyr>s.

Most of the results in this section may be found in [22].
Recall that the hyperbolic metric space (M, d) is said to be strictly convex if whenever

d(a,x) = d(a,y) = d(a, \x ® (1 - 1)y)

for any a,x,y € M and A € (0,1), then we must have x = y.
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Remark 2.1 2, 22]
(i) Let us observe that §(r,0) =0, and §(r, ¢) is an increasing function of ¢ for every
fixed r.
(ii) For ry < ry there holds

1- r_2<1 —5<}”2,82>) <8(r,¢).
r ry

(iii) If (M,d) is uniformly convex, then (M, d) is strictly convex.

Lemma 2.1 [2, 22] Assume that (M, d) is uniformly convex. Let {C,} C M be a sequence of
nonempty, nonincreasing, convex, bounded and closed sets. Let x € M be such that

0<d= lim d(x, C,) < oc.

n—00

Let x,, € C,, be such that d(x,x,) — d. Then {x,} is a Cauchy sequence.

Recall that a hyperbolic metric space (M, d) is said to have the property (R) if any nonin-
creasing sequence of nonempty, convex, bounded and closed sets has a nonempty inter-
section [23].

Our next result deals with the existence and the uniqueness of the best approximants
of convex, closed and bounded sets in a uniformly convex metric space. This result is of
interest by itself as uniform convexity implies the property (R), which reduces to reflexivity
in the linear case.

Theorem 2.1 [2, 22] Assume that (M,d) is complete and uniformly convex. Let C C M
be nonempty, convex and closed. Let x € M be such that d(x, C) < 0o. Then there exists a
unique best approximant of x in C, i.e., there exists a unique xo € C such that

d(x,x0) = d(x, C).

The following result gives the analogue of the well-known theorem that states any uni-
formly convex Banach space is reflexive (see Theorem 2.1 in [16]).

Theorem 2.2 [2,22] If(M,d) is complete and uniformly convex, then (M, d) has the prop-
erty (R).

Note that any hyperbolic metric space M which satisfies the property (R) is complete.

Example 2.1 Let (X, d) be a metric space. A geodesic from x to y in X is a mapping ¢ from
a closed interval [0,/] C R to X such that ¢(0) = x, ¢({) = y, and d(c(¢),c(t)) = |t — ¢| for
all ¢,¢' € [0,/]. In particular, ¢ is an isometry and d(x,y) = [. The image « of ¢ is called a
geodesic (or metric) segment joining x and y. The space (X, d) is said to be a geodesic space
if every two points of X are joined by a geodesic and X is said to be uniquely geodesic if
there is exactly one geodesic joining x and y for each x,y € X, which will be denoted by
[x,7] and called the segment joining x to y.

A geodesic triangle A(x1,%,,x3) in a geodesic metric space (X, d) consists of three points
X1, %2, x3 in X (the vertices of A) and a geodesic segment between each pair of vertices (the
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edges of A). A comparison triangle for geodesic triangle A(xy,%,,x3) in (X, d) is a triangle
Axy,%0,%3) 1= A(%1,%2,%3) in R? such that dra (X, %) = d(x;, %)) for i,j € {1,2,3}. Such a
triangle always exists (see [24]).

A geodesic metric space is said to be a CAT(0) space if all geodesic triangles of appro-
priate size satisfy the following CAT(0) comparison axiom:

Let A be a geodesic triangle in X and let A C R? be a comparison triangle for A. Then A
is said to satisfy the CAT(0) inequality if for all x,y € A and all comparison points x,y € A,

d(x,y) <d(x,)).

Complete CAT(0) spaces are often called Hadamard spaces (see [18]). If x, 1, y, are points
of a CAT(0) space and yj is the midpoint of the segment [y;, y>], which will be denoted by
yﬁ%, then the CAT(0) inequality implies

&) 1 1 1
d? (x, %) =< idZ(x,yl) + Edz(x,yg) - EdZ()/l,yZ)'

This inequality is the (CN) inequality of Bruhat and Tits [25]. As for the Hilbert space, the
(CN) inequality implies that CAT(0) spaces are uniformly convex with

6‘2
8(r,e) =1-/1- —.
(r,€) )

One may also find the modulus of uniform convexity via similar triangles.

3 Common fixed points of nonexpansive semigroups
Recall the definition of a nonexpansive mapping defined in metric spaces.

Definition 3.1 Let (M, d) be a metric space and C C M be a nonempty subset. A mapping
T : C — C is said to be nonexpansive if

d(T(x), T(y) < d(x,y)

foranywx,y € C. A pointx € Cis called a fixed point of T'if T'(x) = x. The set of fixed points
of T will be denoted by Fix(T).

This definition is now extended to a one-parameter family of mappings.

Definition 3.2 Let (M, d) be a metric space and C C M be a nonempty subset. A one-
parameter family F = {T; ¢ > 0} of mappings from C into itself is said to be a nonexpansive
semigroup on C if F satisfies the following conditions:
(i) To(x) =x forx e C;
(ii) Tyis(x) = Ty(Ts(x)) for x € C and ¢, s € [0, 00);
(iii) for each t> 0, T} is a nonexpansive mapping.
Define the set of all common fixed points of F as

Fix(F) = () Fix(Ty).

t>0
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First let us extend Bruck’s result [6] to metric spaces.

Lemma 3.1 [6] Let (M,d) be a hyperbolic metric space. Assume that (M,d) is strictly
convex. Let C be a subset of M. Let S and T be nonexpansive mappings from C into M
with a common fixed point. Then, for each A € (0,1), the mapping U : C — M defined by
U(x) = AS(x) ® (1 - 1) T(x) for x € C is nonexpansive and Fix(U) = Fix(S) N Fix(T) holds.

Proof Clearly we have Fix(S) N Fix(T) C Fix(U). Let us now prove that Fix({) C Fix(S) N
Fix(T). Let x € Fix(U), i.e., U(x) = x. Since S and T have a common fixed point, let a €
Fix(S) N Fix(T') be fixed. We have

d(a,x) = d(a, AS(x)d (1 - A)T(x)) < Ad(a, S(x)) +(1- A)d(ﬂ, T(x))

because of the hyperbolicity of M. Since a is a common fixed point of S and T which are

nonexpansive, we get
d(a,%) = d(a, 7S ® (1 - ) T®)) < rd(a,%) + (1 - Vd(a,x) = d(a,x).
Therefore we must have
d(a,5x)) = d(a, T(x)) = d(a,%)

since 0 < A < 1. The strict convexity of M will then imply S(x) = T'(x). Clearly from x =
AS(x) ® (1 — 1) T (x) we conclude that S(x) = T'(x) = x, i.e., x € Fix(S) N Fix(T). The proof of
Lemma 3.1 is complete. d

The next result concerns continuous semigroups.

Definition 3.3 Let (M, d) be a metric space and C C M be nonempty and closed. A one-
parameter family F = {T%;¢ > 0} of mappings from C into M is said to be continuous on

C if for any x € C, the mapping ¢ — T;(x) is continuous, i.e., for any £y > 0, we have

lim d(Tt(x), Ty, (x)) =0

t—>toy
foranyx e C.
The following result is easy to prove.

Proposition 3.1 Let (M, d) be a metric space and C C M be nonempty and closed. Let F =
{T};t > 0} be a one-parameter semigroup of mappings from C into M which is continuous
on C. Let A be a dense subset of [0, +00). Then we have

Fix(F) = [ Fix(T,).

acA

Recall the following lemma which can be found in any introductory course on real anal-

ysis.
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Lemma 3.2 [26] Let G be a nonempty additive subgroup of R. Then G is either dense in
R or there exists a > 0 such that G = a - 7 = {an,n € Z}. Therefore if « and B are two real

numbers such that % is irrational, then the set

Gla,B) ={an+ Bm;n,me 7}
is dense in R. In particular, the set G(«, B) N [0, +00) is dense in [0, +00).
The following result will be useful to prove our main result of this section.

Proposition 3.2 Let (M,d) be a metric space and C C M be nonempty and closed. Let
F ={T};t > 0} be a one-parameter semigroup of mappings from C into M. Let o and B be
any two positive real numbers. Then we have

() Fix(T,) = Fix(T,) N Fix(Tp),
aeGy(a,B)

where G, («, B) = {an + Bmy;n,m € Z} N [0, +00).

Proof Clearly we have ﬂa€G+(a_ﬂ) Fix(T,) C Fix(T,) N Fix(T}g) since «, B € G.(et, B). Con-
versely, let x € Fix(T,) N Fix(Tg). Let a € G.(«, B). Then there exist n,m € Z such that
a = no + mfB. Assume first that both # and m are positive. Then

T,(x) = Tna+mﬁ(x) = Tnot(Tmﬂ (x)) = TS(T;;"(x)) =X,

where we used the property T, is the identity map. Otherwise assume a = na — mf, where
both n and m are positive. Hence a + mf = no. So

To(®) = Ta( T3 %)) = Tarinp(®) = Tua (x) = T} (x) = x.
Hence x € Fix(T,) for any a € G, («, B). This completes the proof of Proposition 3.2. [
If we combine Propositions 3.1 and 3.2, we get the following result.
Theorem 3.1 [27] Let (M,d) be a metric space and C C M be nonempty and closed. Let

F ={T;;t = 0} be a one-parameter semigroup of mappings from C into M which is con-

Q@

5 is irrational, then we

tinuous on C. Let o and B be two positive real numbers such that
have

Fix(F) = Fix(Ty) N Fix(Tg).
In particular, we have
Fix(F) = Fix(T1) NFix(T s3) = Fix(T1) N Fix(Ty).

If the metric space (M, d) is hyperbolic strictly convex, Lemma 3.1 allows us to get the
following result.
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Theorem 3.2 Let (M, d) be a hyperbolic metric space. Assume that (M, d) is strictly convex
and C C M is nonempty and closed. Let F = {T;t > 0} be a one-parameter semigroup
of nonexpansive mappings from C into M which is continuous on C. Let o and B be two
positive real numbers such that % is irrational, then we have

Fix(F) = Fix(A T, + 1= A)Tp)
forany A €(0,1).

4 Approximation of common fixed points of semigroups

In this section we use the previous results to investigate the behavior of Mann iterates
generated by two mappings. These iterations will allow us to approximate common fixed
points of a continuous semigroup.

Definition 4.1 Let 7 : C — C be a nonexpansive mapping and o € (0,1). The Mann it-
eration process generated by the mapping T and the constant o, denoted by M(T,0), is
defined by the following iteration formula:

Xne1 =0 Tx, & (1 - 0)xy, (4.1)
where x; is chosen arbitrarily in C.
The following technical lemmas will be useful throughout.

Lemma 4.1 (2, 22] Let (M, d) be a uniformly convex hyperbolic metric space. Assume that
there exists R € [0, +00) such that

limsupd(x,,a) <R, limsupd(y,,a) <R, and lim d(a,ax,, d1- a)yn) =R

n—0o0 n—00 n—=00

for some o € (0,1). Then lim,,_, o d(x,,,y,) = 0.

Lemma4.2 Let (M,d) be a uniformly convex hyperbolic metric space. Let C be a nonempty,
bounded, closed and convex subset of M. Let T : C — C be nonexpansive, and let o € (0,1)
and x, be given by (4.1). Assume that o is a fixed point of T. Then the limit of {d(x,, w)}
exists.

Proof We have

A(xps1,0) = d(0Tx, & (1 - 0)xy, )
< od(Txy, ) + (1 - 0)d(x,, )
= 0d(Tx,, Tw) + (1 - 0)d(x,, ®)
<od@n )+ (1-0)dx, w)
= d(xy, )

for any # > 1. Hence the sequence {d(x,, ®)} is decreasing, which implies that it is conver-
gent. g
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Let us recall the definition of the asymptotic radius of a sequence.

Definition 4.2 Let (M, d) be a metric space and C be a nonempty subset of M. Let {x,}
be a bounded sequence in M. Define r(-, {x,}) : C — [0, 00) by

r(x, {x,,}) = limsup d(x, x,).

n—00

The asymptotic radius p¢ of {x,} with respect to C is given by
pc = inf{r(x, {x,,}) (X € C}.

p will denote the asymptotic radius of {x,} with respect to M. A point ¢ € Cis said to be an
asymptotic center of {x,} with respect to Cif r(§, {x,}) = r(C, {x,}) = min{r(x, {x,}) : x € C}.

The set of all asymptotic centers of {x,} with respect to C will be denoted by A(C, {x,}).
When C = M, we use the notation A({x,}) instead of A(M,{x,}). In general, the set
A(C, {«x,}) of asymptotic centers of a bounded sequence {x,} may be empty or contain
more than one point. Note that the asymptotic radius is also known in the literature as a
type function. For more on this we refer to [22].

Over the years many people were successful in defining the analogue of linear properties
in metric spaces. The weak-topology is still hard to define in the context of metric spaces.
An approach to weak-convergence was offered by Kuczumow [28] and Lim [8] which they

called A-convergence. Their approach was very successful in the case of CAT(0) spaces.

Definition 4.3 Let (M, d) be a metric space. A bounded sequence {x,} in M is said to A-
converge to x € M if and only if x is the unique asymptotic center of every subsequence

. A
{u,} of {x,}. We write x, — x whenever {x,} A-converges to x.

In this section, we study the iteration scheme (4.1) for nonexpansive mappings. In par-
ticular, we investigate the A-convergence in uniformly convex hyperbolic spaces. Note
that similar conclusions proved in Banach spaces require the Fréchet differentiability of
the norm.

In the sequel, the following results will be needed.

Lemma 4.3 [22, 29] Let (M,d) be a hyperbolic metric space. Assume that M is uniformly
convex. Let C be a nonempty, closed and convex subset of M. Then every bounded sequence

{x,} € M has a unique asymptotic center with respect to C.

Lemma 4.4 [22, 29] Let (M, d) be a hyperbolic metric space. Assume that M is uniformly
convex. Let C be a nonempty, closed and convex subset of M. Let {x,} be a bounded se-
quence in C such that A({x,}) = {y} and r({x,}) = p. If {ym} is a sequence in C such that

hmm—>oo V()/m; {xn}) =p0, then hmm—>oo Ym =Y.

The following result is similar to the demi-closed principle discovered by Géhde in uni-

formly convex Banach spaces [30].
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Lemma 4.5 [29] Let C be a nonempty, closed and convex subset of a complete uniformly
convex hyperbolic space (M,d). Let T : C — C be a nonexpansive mapping. Let {x,} € C
be an approximate fixed point sequence of T, i.e., lim,_, o d(x,, Tx,) = 0. If x € C is the
asymptotic center of {x,} with respect to C, then x is a fixed point of T. In particular, if
{x,} € C is an approximate fixed point sequence of T such that x, Y x, then x is a fixed
point of T.

The following theorem is necessary to discuss the behavior of the iterates defined by
(4.1).

Theorem 4.1 [29] Let (M,d) be a hyperbolic metric space. Assume that M is uniformly
convex. Let C be a nonempty, closed and convex subset of M. Let T : C — C be a nonex-
pansive mapping with a nonempty fixed points set. Let o € (0,1), x; € C and generate {x,}
by (4.1). Then we have

lim d(Tx,,x,) =0,

n—00

i.e., {x,} is an approximate fixed point sequence for T .

Proof Let w be a fixed point of T. From Lemma 4.2, there exists € R such that

lim d(x,,w) =r. (4.2)

n—00

Without loss of generality, we may assume r > 0. Note that

lim sup d(Tx,, w) = limsup d(Tx,, Tw) < limsupd(x,,w) = r (4.3)

n—00 n—0o0 n—00

and

r = limsupd(x,, ®) = limsupd(o Tx, ® (1 - 0)x,, )

n— 00 n— 00

<limsupod(Tx,, ) + (1 - o)d(x,, w)

<limsupod(x,,®)+ (1 -0o)d(x,, ®)

= limsupd(x,, ) =r.
n— 00

Hence

lim sup d(a Tx, ® (1 - a)x,,,a)) =7.

n—o0

Using Lemma 4.1, we conclude

lim sup d(Tx,,x,) = 0. O
n—0oQ0
Note that the assumption that 7" has a fixed point may be relaxed if we assume C is
bounded (for more see [22]). Next we discuss the A-convergence of the Mann iterates
defined by (4.1).
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Theorem 4.2 Let (M,d) be a complete hyperbolic metric space. Assume that M is uni-
formly convex. Let C be a nonempty, closed and convex subset of M. Let T : C — C be a
nonexpansive mapping with a nonempty fixed points set. Let o € (0,1), x; € C and generate
{x,} by (4.1). Then {x,} A-converges to x which is a fixed point of T, i.e., x € Fix(T).

Proof In [22] it is shown that Fix(7T') is convex and closed. Theorem 4.1 implies that {x,} is
an approximate fixed point sequence of T, i.e., lim,_, o d(Tx,,%,) = 0. Let x be the unique
asymptotic center of {x, }. Then Lemma 4.5 implies that x € Fix(7T'). Next we show that {x,}
A-converges to x. Let {x,,} be a subsequence of {x,}. Let z be the unique asymptotic center
of {x,,}. Again since {x,,} is an approximate fixed point sequence of T, we get z € Fix(T).
Hence

limsupd(x,,,z) <limsupd(x,,,x).

ni— 00 ni— 00

Since x,z € Fix(T), we get

limsupd(x,;,z) = lim d(x,,2), and limsupd(x,,x)= lim d(x,,x).
n— 00 n—00

H;j—> 00 ni— 00

Since «x is the unique asymptotic center of {x,}, we get x = z. This proves that {x,} A-
converges to x. |

If we combine Theorem 3.2 and Theorem 4.2, we obtain the following result.

Theorem 4.3 Let (M,d) be a complete hyperbolic metric space. Assume that M is uni-
formly convex. Let C be a nonempty, closed and convex subset of M. Let F = {T;t > 0} be
a one-parameter semigroup of nonexpansive mappings from C into C. Assume that F is
continuous and has a nonempty common fixed points set. Let o and 8 be two positive real
numbers such that % is irrational. Fix A, € (0,1) such that ).+ < 1. Let x; € C and define
a sequence {x,} in C by

Xpi1 = (U + ) (0 To(x0) ® ATp(x)) © (1 — o — M)y (4.4)
forany n > 1. Then {x,} A-converges to a common fixed point of the semigroup F.

Proof Set

2
iy S

S= o
n+A n+A

Observe that S: C — C is nonexpansive. Clearly we have Fix(F) C Fix(S). Let x; € C and
{x,,} be the sequence generated by (4.4). Then

KXn+l = o'S(xn) + (1 - G)xn:

where o =+ X € (0,1). Clearly {x,} is the same sequence generated by (4.1) for the map S.
Theorem 4.2 implies that {x,} A-converges to some x € Fix(S). From Theorem 3.2, we
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know that
Fix(F) = Fix(S).
Hence x € Fix(F), which completes the proof of Theorem 4.3. d

Using the techniques developed in [29], one may show that the conclusion of Theo-
rem 4.3 is still valid if we consider the modified Mann iteration

KXnl = Oy Ta (,Bn Tﬁ (xn) @D (1 - ,Bn)xn) @ (1 - an)xm

where «,, 8, € (0,1).
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