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Abstract
Let ρ ∈ � (the class of all nonzero regular function modulars defined on a nonempty
set �) and G be a directed graph defined on a subset C of Lρ . In this paper, we discuss
the existence of fixed points of monotone G-contraction and G-nonexpansive
mappings in modular function spaces. These results are the modular version of
Jachymski fixed point results for mappings defined in a metric space endowed with
a graph.
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1 Introduction
Fixed point theorems for monotone single-valued mappings in a metric space endowed
with a partial ordering have been widely investigated. These theorems are hybrids of
the two most fundamental and useful theorems in fixed point theory: Banach’s contrac-
tion principle ([], Theorem .) and Tarski’s fixed point theorem [, ]. Generalizing the
Banach contraction principle for multivalued mappings to metric spaces, Nadler [] ob-
tained the following result.

Theorem . [] Let (X, d) be a complete metric space. Denote by CB(X) the set of all
nonempty closed bounded subsets of X. Let F : X → CB(X) be a multivalued mapping. If
there exists k ∈ [, ) such that

H
(
F(x), F(y)

) ≤ kd(x, y)

for all x, y ∈ X, where H is the Hausdorff metric on CB(X), then F has a fixed point in X.

A number of extensions and generalizations of Nadler’s theorem were obtained by dif-
ferent authors; see, for instance, [, ] and the references cited therein. Tarski’s theorem
was extended to multivalued mappings by different authors; see [–]. Investigation of
the existence of fixed points for single-valued mappings in partially ordered metric spaces
was initially considered by Ran and Reurings in [] who proved the following result.

Theorem . [] Let (X,�) be a partially ordered set such that every pair x, y ∈ X has
an upper and lower bound. Let d be a metric on X such that (X, d) is a complete metric
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space. Let f : X → X be a continuous monotone (either order preserving or order reversing)
mapping. Suppose that the following conditions hold:

() There exists k ∈ (, ) with

d
(
f (x), f (y)

) ≤ kd(x, y) for all x � y.

() There exists x ∈ X with x � f (x) or x � f (x).
Then f is a Picard operator (PO), that is, f has a unique fixed point x∗ ∈ X and for each
x ∈ X, limn→∞ f n(x) = x∗.

After this, different authors considered the problem of existence of a fixed point for con-
traction mappings in partially ordered sets; see [–] and the references cited therein.
Nieto et al. in [] proved the following theorem.

Theorem . [] Let (X, d) be a complete metric space endowed with a partial ordering �.
Let f : X → X be an order preserving mapping such that there exists k ∈ [, ) with

d
(
f (x), f (y)

) ≤ kd(x, y) for all x � y.

Assume that one of the following conditions holds:
() f is continuous and there exists x ∈ X with x � f (x) or x � f (x);
() (X, d,�) is such that for any nondecreasing (xn)n∈N , if xn → x, then xn � x for n ∈ N ,

and there exists x ∈ X with x � f (x);
() (X, d,�) is such that for any nonincreasing (xn)n∈N , if xn → x, then xn � x for n ∈ N ,

and there exists x ∈ X with x � f (x).
Then f has a fixed point. Moreover, if (X,�) is such that every pair of elements of X has an
upper or a lower bound, then f is a PO.

Recently, two results have appeared, giving sufficient conditions for f to be a PO, if (X, d)
is endowed with a graph. The first result in this direction was given by Jachymski and
Lukawska [, ], which generalized the results of [, , , ] to a single-valued map-
ping in metric spaces with a graph instead of partial ordering. Subsequently, Beg et al. []
tried to extend the results of [] to multivalued mappings, but their extension was not
carried correctly (see []). The aim of this paper is to give the correct extension by study-
ing the existence of fixed points for multivalued mappings in modular function spaces
endowed with a graph G. Recall that the fixed point theory in modular function spaces
was initiated by Khamsi et al. []. The reader interested in fixed point theory in modular
function spaces is referred to [–].

2 Preliminaries
Let � be a nonempty set and � be a nontrivial σ -algebra of subsets of �. Let P be a
δ-ring of subsets of � such that E ∩ A ∈ P for any E ∈ P and A ∈ �. Let us assume that
there exists an increasing sequence of sets Kn ∈P such that � =

⋃
Kn. By E we denote the

linear space of all simple functions with supports from P . By M∞ we denote the space
of all extended measurable functions, i.e., all functions f : � → [–∞,∞] such that there
exists a sequence {gn} ⊂ E , |gn| ≤ |f | and gn(ω) → f (ω) for all ω ∈ �. By A we denote the
characteristic function of the set A.



Alfuraidan Fixed Point Theory and Applications  (2015) 2015:42 Page 3 of 14

Definition . Let ρ : M∞ → [,∞] be a nontrivial even function. We say that ρ is a
regular function pseudomodular if:

(i) ρ() = ;
(ii) ρ is monotone, i.e., |f (ω)| ≤ |g(ω)| for all ω ∈ � implies ρ(f ) ≤ ρ(g), where

f , g ∈M∞;
(iii) ρ is orthogonally subadditive, i.e., ρ(f A∪B) ≤ ρ(f A) + ρ(f B) for any A, B ∈ � such

that A ∩ B = ∅, f ∈M;
(iv) ρ has the Fatou property, i.e., |fn(ω)| ↑ |f (ω)| for all ω ∈ � implies ρ(fn) ↑ ρ(f ),

where f ∈M∞;
(v) ρ is order continuous in E , i.e., gn ∈ E and |gn(ω)| ↓  implies ρ(gn) ↓ .

Similarly as in the case of measure spaces, we say that a set A ∈ � is ρ-null if ρ(gA) = 
for every g ∈ E . We say that a property holds ρ-almost everywhere if the exceptional set
is ρ-null. As usual we identify any pair of measurable sets whose symmetric difference is
ρ-null as well as any pair of measurable functions differing only on a ρ-null set. With this
in mind, we define

M(�,�,P ,ρ) =
{

f ∈M∞ :
∣∣f (ω)

∣∣ < ∞ ρ-a.e. for every ω ∈ �
}

, ()

where each f ∈ M(�,�,P ,ρ) is actually an equivalence class of functions equal ρ-a.e.
rather than an individual function. Where no confusion exists, we will write M instead of
M(�,�,P ,ρ).

Definition . Let ρ be a regular function pseudomodular.
() We say that ρ is a regular function semimodular if ρ(αf ) =  for every α >  implies

f =  ρ-a.e.;
() We say that ρ is a regular function modular if ρ(f ) =  implies f =  ρ-a.e.

The class of all nonzero regular function modulars defined on � will be denoted by �.

Let us denote ρ(f , E) = ρ(f E) for f ∈M, E ∈ �. It is easy to prove that ρ(f , E) is a func-
tion pseudomodular in the sense of Definition .. in [] (more precisely, it is a function
pseudomodular with the Fatou property). Therefore, we can use all results of the standard
theory of modular function spaces as per the framework defined by Kozlowski in [, ,
].

Definition . [, , ] Let ρ be a function modular.
(a) A modular function space is the vector space Lρ(�,�), or briefly Lρ , defined by

Lρ =
{

f ∈M;ρ(λf ) →  as λ → 
}

.

(b) The following formula defines a norm in Lρ (frequently called Luxemburg norm):

‖f ‖ρ = inf
{
α > ;ρ(f /α) ≤ 

}
.

In the following theorem we recall some of the properties of modular spaces.

Theorem . [, , ] Let ρ ∈ �.
() (Lρ ,‖ · ‖ρ) is complete and the norm ‖ · ‖ρ is monotone w.r.t. the natural order in M.
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() ‖fn‖ρ →  if and only if ρ(αfn) →  for every α > .
() If ρ(αfn) →  for α > , then there exists a subsequence {gn} of {fn} such that gn → 

ρ-a.e.
() ρ(f ) ≤ lim infn→∞ ρ(fn), whenever fn → f ρ-a.e. Note this property will be referred to

as the Fatou property.

The following definition plays an important role in the theory of modular function
spaces.

Definition . Let ρ ∈ �. We say that ρ has the 
-property if supn ρ(fn, Dk) →  as
k → ∞ whenever Dk ↓ ∅ and supn ρ(fn, Dk) → , where {fn}n≥ ⊂ M and Dk ∈ �.

We have the following interesting result.

Theorem . [] Let ρ ∈ �. The following conditions are equivalent:
(a) ρ has the 
-property,
(b) if ρ(fn) → , then ρ(fn) → ,
(c) if ρ(αfn) →  for α > , then ‖fn‖ρ → , i.e., the modular convergence is equivalent to

the norm convergence.
Moreover, if ρ has the 
-type condition, i.e., there exists k ∈ [, +∞) such that

ρ(f ) ≤ kρ(f ) for any f ∈ Lρ ,

then ρ has the 
-property. In general, the converse is not true (see Example .. of []).

Remark . It is easy to check that ρ has the 
-type condition if and only if for any λ > ,
there exists k ∈ [, +∞) such that

ρ(λf ) ≤ kρ(f )

for any f ∈ Lρ .

We will also use another type of convergence which is situated between norm and mod-
ular convergence. It is defined, among other important terms, in the following definition.

Definition . Let ρ ∈ �.
(a) We say that {fn} is ρ-convergent to f and write fn → f (ρ) if and only if ρ(fn – f ) → .
(b) A sequence {fn}, where fn ∈ Lρ , is called ρ-Cauchy if ρ(fn – fm) →  as n, m → ∞.
(c) A set B ⊂ Lρ is called ρ-closed if for any sequence of fn ∈ B, the convergence

fn → f (ρ) implies that f belongs to B.
(d) A set B ⊂ Lρ is called ρ-bounded if sup{ρ(f – g); f , g ∈ B} < ∞.
(e) A set C ⊂ Lρ is called ρ-a.e. closed if for any {fn} in C which ρ-a.e. converges to

some f , then we must have f ∈ C.
(f ) A set C ⊂ Lρ is called ρ-a.e. compact if for any {fn} in C, there exists a subsequence

{fnk } which ρ-a.e. converges to some f ∈ C.

Let us note that ρ-convergence does not necessarily imply ρ-Cauchy condition. Also,
fn → f does not imply in general λfn → λf , λ > . Using Theorem . it is not difficult to
prove the following.
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Proposition . Let ρ ∈ �.
(i) Lρ is ρ-complete.

(ii) Lρ is a lattice, i.e., for any f , g ∈ Lρ , we have max{f , g} ∈ Lρ and min{f , g} ∈ Lρ .
(iii) ρ-balls Bρ(x, r) = {y ∈ Lρ ;ρ(x – y) ≤ r} are ρ-closed and ρ-a.e. closed.

Using the property () of Theorem ., we get the following result.

Theorem . Let ρ ∈ � and {fn} be a ρ-Cauchy sequence in Lρ . Assume that {fn} is mono-
tone increasing, i.e., fn ≤ fn+ ρ-a.e. (resp. decreasing, i.e., fn+ ≤ fn ρ-a.e.) for any n ≥ .
Then there exists f ∈ Lρ such that ρ(fn – f ) →  and fn ≤ f ρ-a.e. (resp. f ≤ fn ρ-a.e.) for
any n ≥ .

It seems that the terminology of graph theory instead of partial ordering sets can give
clearer pictures and yield to generalize the contraction theorems. Let us finish this section
with such terminology for the modular space mapping which will be studied throughout.

Let C ⊆ Lρ with ρ ∈ �. Let G be a directed graph (digraph) with a set of vertices of G
being the elements of C and a set of edges E(G) containing all the loops, i.e., (x, x) ∈ E(G)
for any x ∈ V (G). We also assume that G has no parallel edges (arcs) and so we can identify
G with the pair (V (G), E(G)). Our graph theory notations and terminology are standard
and can be found in all graph theory books, like [] and []. Moreover, we may treat G
as a weighted graph (see [], p.]) by assigning to each edge the distance between its
vertices. By G– we denote the conversion of a graph G, i.e., the graph obtained from G by
reversing the direction of edges. Thus we have

E
(
G–) =

{
(y, x) | (x, y) ∈ E(G)

}
.

A digraph G is called an oriented graph if whenever (u, v) ∈ E(G), then (v, u) /∈ E(G). The
letter G̃ denotes the undirected graph obtained from G by ignoring the direction of edges.
Actually, it will be more convenient for us to treat G̃ as a directed graph for which the set
of its edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E
(
G–).

We call (V ′, E′) a subgraph of G if V ′ ⊆ V (G), E′ ⊆ E(G) and for any edge (x, y) ∈ E′,
x, y ∈ V ′.

If x and y are vertices in a graph G, then a (directed) path in G from x to y of length
N is a sequence {xi}i=N

i= of N +  vertices such that x = x, xN = y, and (xn–, xn) ∈ E(G) for
i = , . . . , N . A graph G is connected if there is a directed path between any two vertices. G is
weakly connected if G̃ is connected. If G is such that E(G) is symmetric and x is a vertex in
G, then the subgraph Gx consisting of all edges and vertices which are contained in some
path beginning at x is called the component of G containing x. In this case V (Gx) = [x]G,
where [x]G is the equivalence class of the following relation R defined on V (G) by the rule:

yRz if there is a (directed) path in G from y to z.

Clearly, Gx is connected.
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In the sequel we assume that ρ ∈ � is a convex, σ -finite modular function, and C is a
nonempty subset of the modular function space Lρ . We denote by C(C) the collection of all
nonempty ρ-closed subsets of C, and by K(C) the collection of all nonempty ρ-compact
subsets of C.

Definition . We say that a mapping T : C → C is G-edge preserving if

∀f , g ∈ C, (f , g) ∈ E(G) ⇒ (
T(f ), T(g)

) ∈ E(G).

Definition . Let ρ ∈ � and C ⊂ Lρ be nonempty ρ-closed and ρ-bounded. A multi-
valued mapping T : C → C is said to be a monotone increasing G-contraction if there
exists α ∈ [, ) such that for any f , h ∈ C with (f , h) ∈ E(G) and any F ∈ T(f ) there exists
H ∈ T(h) such that

(F , H) ∈ E(G) and ρ(F – H) ≤ αρ(f – h).

Similarly we will say that the multivalued mapping T : C → C is monotone increasing
G-nonexpansive if for any f , h ∈ C with (f , h) ∈ E(G) and any F ∈ T(f ) there exists H ∈ T(h)
such that

(F , H) ∈ E(G) and ρ(F – H) ≤ ρ(f – h).

f ∈ C is called a fixed point of T if and only if f ∈ T(f ). The set of all fixed points of a
mapping T is denoted by Fix T .

Our definition of monotone multivalued mappings is slightly different from the one used
in []. Indeed in Definition . in [], one may let α go to , which is very restrictive.
Because of this, the proof of the main result is incorrect. In this work, we will show how
our definition will give the correct proof.

Definition . [] Let ρ ∈ � be convex and satisfy the 
-type condition. Define the
growth function ω by

ω(α) = sup

{
ρ(αf )
ρ(f )

; f ∈ Lρ , f = 
}

for any α ≥ .

The following properties were proved in [].

Lemma . [] Let ρ ∈ � be convex and satisfy the 
-type condition. Then the growth
function ω satisfies the following properties:

() ω(α) < ∞ for any α > ,
() ω is a strictly increasing function, and ω() = ,
() ω(αβ) ≤ ω(α)ω(β) for any α,β ∈ (,∞),
() ω–(α)ω–(β) ≤ ω–(αβ), where ω– is the function inverse of ω,
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() for any f ∈ Lρ , f = , we have

‖f ‖ρ ≤ 
ω–(/ρ(f ))

.

The following technical lemma will be useful later on in this work.

Lemma . [] Let ρ ∈ � be convex and satisfy the 
-type condition. Let {fn} be a se-
quence in Lρ such that

ρ(fn+ – fn) ≤ Kαn, n = , . . . ,

where K is an arbitrary nonzero constant and α ∈ (, ). Then {fn} is Cauchy for ‖ · ‖ρ and
ρ-Cauchy.

Note that this lemma is crucial since the main assumption on {fn} will not be enough to
imply that {fn} is ρ-Cauchy since ρ fails the triangle inequality.

Property . For any sequence {fn}n∈N in C, if fn ρ-converges to f and (fn, fn+) ∈ E(G) for
n ∈N, then (fn, f ) ∈ E(G).

3 Main results
We begin with the following theorem that gives the existence of a fixed point for monotone
multivalued mappings in modular spaces endowed with a graph. The key feature in this
theorem is that the Lipschitzian condition on the nonlinear map is only assumed to hold
on elements that are comparable in the natural partial order of Lρ .

Theorem . Let ρ ∈ � be convex. Let C ⊂ Lρ be a nonempty and ρ-closed subset. As-
sume that ρ satisfies the 
-type condition. Let T : C → C(C) be a monotone increasing
ρ-contraction mapping and CT := {f ∈ C; f ≤ g ρ-a.e. for some g ∈ T(f )}. If CT = ∅, then T
has a fixed point in C.

Proof Recall that T is a monotone increasing ρ-contraction mapping if and only if there
exists α ∈ [, ) such that for all f , g ∈ C with f ≤ g ρ-a.e., then for any F ∈ T(f ), there
exists G ∈ T(g) such that F ≤ G ρ-a.e. and

ρ(F – G) ≤ αρ(f – g).

Fix f ∈ CT . Then there exists f ∈ T(f) such that f ≤ f ρ-a.e. Since T is a monotone
increasing ρ-contraction, there exists f ∈ T(f), f ≤ f ρ-a.e., such that

ρ(f – f) ≤ αρ(f – f),

where α <  is associated to the definition of T being a monotone increasing ρ-contraction.
Without loss of generality, we may assume α > . By induction, we construct a sequence
{fn} such that fn+ ∈ T(fn), fn ≤ fn+ ρ-a.e. and

ρ(fn+ – fn) ≤ αρ(fn – fn–) ≤ αnρ(f – f)
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for any n ≥ . The technical Lemma . implies that {fn} is ρ-Cauchy and converges to
some f ∈ C since Lρ is ρ-complete. We claim that f ∈ T(f ), i.e., f is a fixed point of T .
Indeed Theorem . implies that fn ≤ f ρ-a.e. for any n ≥ . Since T is a monotone in-
creasing ρ-contraction, there exists gn ∈ T(f ) such that fn+ ≤ gn and

ρ(fn+ – gn) ≤ αρ(fn – f ).

Hence {fn+ – gn} ρ-converges to . Since ρ satisfies the 
-type condition, we conclude
that {‖fn+ – gn‖ρ} converges to . Hence {gn} also ρ-converges to f . Since T(f ) is ρ-closed,
we conclude that f ∈ T(f ). �

Note that the fixed point may not be unique. Indeed if we take A, any nonempty ρ-closed
subset of C, then the multivalued map T : C → C(C) defined by T(f ) = A, for any f ∈ C, is
a monotone increasing ρ-contraction mapping. The set of fixed points of T is exactly the
set A.

An easy consequence of Theorem . is the following result.

Proposition . Let ρ ∈ � be convex. Let C ⊂ Lρ be a nonempty and ρ-closed con-
vex subset. Assume that ρ satisfies the 
-type condition and C is ρ-bounded. Let T :
C → C(C) be a monotone increasing ρ-nonexpansive mapping and CT := {f ∈ C; f ≤
g ρ-a.e. for some g ∈ T(f )}. If CT = ∅, then T has an approximate fixed point sequence
{fn} ∈ C, that is, for any n ≥ , there exists gn ∈ T(fn) such that

lim
n→∞ρ(fn – gn) = .

In particular, we have limn→∞ distρ(fn, T(fn)) = , where

distρ
(
fn, T(fn)

)
= inf

{
ρ(fn – g); g ∈ T(fn)

}
.

Proof Recall that T is a monotone increasing ρ-nonexpansive mapping if and only if for
all f , g ∈ C with f ≤ g ρ-a.e. and for any F ∈ T(f ), there exists G ∈ T(g) such that F ≤ G
ρ-a.e. and

ρ(F – G) ≤ ρ(f – g).

Fix λ ∈ (, ) and h ∈ C. Define the multivalued map Tλ on C by

Tλ(f ) = λh + ( – λ)T(f ) =
{
λh + ( – λ)g; g ∈ T(f )

}
.

Note that Tλ(f ) is nonempty and ρ-closed subset of C. Let us show that Tλ is a mono-
tone increasing ρ-contraction. Let f , g ∈ C such that f ≤ g ρ-a.e. Since T is a monotone
increasing ρ-nonexpansive mapping, for any F ∈ T(f ), there exists G ∈ T(g) such that
F ≤ G ρ-a.e. and ρ(F – G) ≤ ρ(f – g). Since

ρ
((

λh + ( – λ)F
)

–
(
λh + ( – λ)G

))
= ρ

(
( – λ)(F – G)

)
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and ρ is convex, we get

ρ
((

λh + ( – λ)F
)

–
(
λh + ( – λ)G

)) ≤ ( – λ)ρ(F – G).

Using the basic properties of the partial order of Lρ , we get λh + ( – λ)F ≤ λh + ( – λ)G
ρ-a.e. This clearly shows that Tλ is a monotone increasing ρ-contraction as claimed. Note
that if CT is not empty, then CTλ

is also nonempty. Using Theorem . we conclude that
Tλ has a fixed point fλ ∈ C. Thus there exists Fλ ∈ T(fλ) such that

fλ = λh + ( – λ)Fλ.

In particular we have

ρ(fλ – Fλ) = ρ
(
λ(h – Fλ)

) ≤ λδρ(C),

which implies distρ(fλ, T(fλ)) ≤ λδρ(C). If we choose λ = 
n for n ≥ , there exist fn ∈ C and

Fn ∈ T(fn) such that ρ(fn – Fn) ≤ 
nδρ(C), which implies

distρ
(
fn, T(fn)

) ≤ 
n

δρ(C).

The proof of Proposition . is therefore complete. �

Remark . We can modify slightly the above proof to show that the approximate fixed
point sequence {fn} and its associated sequence {Fn} satisfy fn ≤ fn+ ≤ Fn+ ρ-a.e. Indeed,
set {λn} = {/(n + )}n≥. Let f ∈ CT . Then from the above proof, there exists a fixed point
f = λf + ( – λ)F with f ≤ f ρ-a.e. It is easy to check that f ≤ f ≤ F ρ-a.e. Clearly
f ∈ CT . By induction we build the sequences {fn} and {Fn} with Fn ∈ T(fn), fn+ = λn+fn +
( – λn+)Fn+, and fn ≤ fn+ ≤ Fn+ for every n ≥ . Since λn →  as n go to ∞, we conclude
that {fn} is an approximate fixed point sequence of T .

Using the above results, we are now ready to prove the main fixed point theorem
for ρ-nonexpansive monotone multivalued mappings. This theorem may be seen as the
monotone version of Theorem . of []. Note that the authors of [] must assume that
ρ is additive to be able to have their conclusion. To avoid the additivity of ρ , we need the
following property.

Definition . Let ρ ∈ �. We will say that Lρ satisfies the ρ-a.e.-Opial property if for every
(fn) in Lρ ρ-a.e. convergent to , such that there exists β >  for which supn ρ(βfn) < +∞,
then we have

lim inf
n→+∞ ρ(fn) < lim inf

n→+∞ ρ(fn + f )

for every f ∈ Lρ not equal to .

Theorem . Let ρ ∈ � be convex. Let C ⊂ Lρ be a nonempty, ρ-closed, and ρ-bounded
convex subset. Assume that ρ satisfies the 
-type condition, Lρ satisfies the ρ-a.e.-Opial
property, and C is ρ-a.e. compact. Then each monotone increasing ρ-nonexpansive map
T : C →K(C) has a fixed point.



Alfuraidan Fixed Point Theory and Applications  (2015) 2015:42 Page 10 of 14

Proof Proposition . and Remark . ensure us with the existence of a sequence {fn} in
C and a sequence {Fn} such that Fn ∈ T(fn), fn ≤ fn+ ≤ Fn+ ρ-a.e., for every n ≥ , and
limn→∞ ρ(fn – Fn) = . Without loss of generality, we may assume that fn ρ-a.e. converges
to f ∈ C, and Fn ρ-a.e. converges to F ∈ C. The Fatou property implies

ρ(f – F) ≤ lim
n→∞ infρ(fn – Fn) = .

Hence f = F . Clearly we have fn ≤ f ρ-a.e. for any n ≥ . Since T is a monotone increasing
ρ-nonexpansive map, then there exists a sequence {Hn} in T(f ) such that Fn ≤ Hn ρ-a.e.
and

ρ(Fn – Hn) ≤ ρ(fn – f )

for all n ≥ . Since T(f ) is ρ-compact, we may assume that {Hn} is ρ-convergent to some
h ∈ T(f ). Since ρ satisfies the 
-condition, Lemma . in [] implies

lim inf
n→∞ ρ(fn – h) = lim inf

n→∞ ρ(fn – Fn + Fn – Hn + Hn – h) = lim inf
n→∞ ρ(Fn – Hn).

Since ρ(Fn – Hn) ≤ ρ(fn – f ), we get

lim inf
n→∞ ρ(fn – h) ≤ lim inf

n→∞ ρ(fn – f ).

Since C is ρ-bounded and ρ satisfies the 
-condition, the ρ-a.e.-Opial property implies
that f = h, i.e., f ∈ T(f ). Hence f is a fixed point of T . �

Next we give the graph versions of our results found above.

Theorem . Let ρ ∈ � be convex. Let C ⊂ Lρ be a nonempty, ρ-closed subset that has
Property .. Assume that ρ satisfies the 
-type condition and C is ρ-bounded. Let T :
C = V (G) → C(C) be a monotone increasing G-contraction mapping and CT := {f ∈ C :
(f , g) ∈ E(G) for some g ∈ T(f )}. If CT = ∅, then the following statements hold:

() For any f ∈ CT , T |[f ]G̃
has a fixed point.

() If f ∈ C with (f̄ , f ) ∈ E(G), where f̄ is a fixed point of T , then there exists a sequence
{fn} such that fn+ ∈ T(fn) for every n ≥ , and {fn} ρ-converges to f̄ .

() If G is weakly connected, then T has a fixed point in G.
() If C′ :=

⋃{[f ]G̃ρ
: f ∈ CT }, then T |C′ has a fixed point in C.

Proof . Let f ∈ CT , then there exists f ∈ T(f) with (f, f) ∈ E(G). Since T is a monotone
increasing G-contraction, there exists f ∈ T(f) such that (f, f) ∈ E(G) and

ρ(f, f) ≤ αρ(f, f),

where α <  is the constant associated to the contraction definition of T . Similarly, there
exists f ∈ T(f) such that (f, f) ∈ E(G) and

ρ(f, f) ≤ αρ(f, f).
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By induction we build {fn} in C with fn+ ∈ T(fn) and (fn, fn+) ∈ E(G) such that

ρ(fn+, fn) ≤ αρ(fn, fn–)

for every n ≥ . Hence

ρ(fn+, fn) ≤ αnρ(f, f)

for every n ≥ . The technical Lemma . implies that {fn} is ρ-Cauchy. Since Lρ is
ρ-complete and C is ρ-closed, therefore {fn} ρ-converges to some point g ∈ C. Since
(fn, fn+) ∈ E(G), for every n ≥ , then (fn, g) ∈ E(G) by Property .. Since T is a mono-
tone increasing G-contraction, there exists gn ∈ T(g) such that

ρ(fn+, gn) ≤ αρ(fn, g)

for every n ≥ . Hence

ρ

(
gn – g



)
≤ ρ(gn – fn+) + ρ(fn+ – g)

≤ αρ(fn – g) + ρ(fn+ – g)

for every n ≥ . Since {fn} ρ-converges to g , we conclude that limn→∞ ρ((gn – g)/) = . The

-type condition satisfied by ρ implies that limn→∞ ρ(gn – g) = , i.e., {gn} ρ-converges
to g . Since T(g) is ρ-closed, we conclude that g ∈ T(g), i.e., g is a fixed point of T .

. Let f ∈ C such that (f̄ , f ) ∈ E(G). Since T is a monotone increasing G-contraction,
then there exists f ∈ T(f ) such that (f̄ , f) ∈ E(G) and

ρ(f̄ – f) ≤ αρ(f̄ – f ).

By induction, we construct a sequence {fn} such that fn+ ∈ T(fn), (f̄ , fn) ∈ E(G), and

ρ(f̄ – fn+) ≤ αρ(f̄ – fn)

for every n ≥ . Hence we have

ρ(f̄ – fn) ≤ αnρ(f̄ – f )

for every n ≥ . Since α < , we conclude that {fn} ρ-converges to f̄ .
. Since CT = ∅, there exists f ∈ CT , and since G is weakly connected, then [f]G̃ρ

= C,
and by  the mapping T has a fixed point.

. It follows easily from  and . �

Remark . If we assume that G is such that E(G) := C × C, then clearly G is connected
and our Theorem . gives Nadler’s theorem. Moreover, if T is single-valued, then we get
the Banach contraction theorem and if T is multivalued, then we get the corrected version
of the analogue of the main result of Beg et al. [] in modular function spaces.
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The following is a direct consequence of Theorem ..

Corollary . Let ρ ∈ � be convex. Let C ⊂ Lρ be a nonempty and ρ-closed subset that
has Property .. Assume that ρ satisfies the 
-type condition and C is ρ-bounded. As-
sume that G is weakly connected. Let T : C = V (G) → C(C) be a monotone increasing
G-contraction multivalued mapping such that there exist f and f ∈ T(f) with (f, f) ∈
E(G). Then T has a fixed point.

Let us give an example which will illustrate the role of the above defined notions.

Example . Consider L∞[, ] (the space of all bounded measurable functions on [, ] or
rather all measurable functions which are bounded except possibly on a subset of measure
zero). Notice that we identify functions which are equivalent, i.e., we should say that the
elements of L∞[, ] are not functions both, rather equivalent classes of functions. Then
L∞[, ] is a normed linear space with

‖f ‖ = ‖f ‖∞ = inf
{

M :
∣∣f (t)

∣∣ ≤ M a.e.
}

= inf
{

M : m
{

t : f (t) > M
}

= 
}

.

Let C = {f, f, f}, where:
() f is the step function on [, ] with partition  = x < x < x < · · · < xn =  such that

f = ci = 
i+ on (xi–, xi) and f(xi) = di arbitrary real number. Note that

‖f‖∞ = max |ci| = 
 .

() f = ex on [, ]. So ‖f‖∞ = e.
() f = X on [, ]. So ‖f‖∞ = .

Let ρ := ‖ · ‖∞ and T : C → C(C) be defined as follows:

T(f ) =

{
f if f = f,
f if f = f, f.

Therefore, E(G) = {(f, f), (f, f), (f, f), (f, f), (f, f)}. The digraph of G is shown in Fig-
ure .

Now, for all (f , g) ∈ E(G), T is a G-contraction. Also all other assumptions of Theo-
rem . are satisfied and T has a fixed point.

As an application of Theorem ., we have the following result whose proof is similar to
Proposition ..

Proposition . Let ρ ∈ � be convex. Let C ⊂ Lρ be a nonempty and ρ-closed convex sub-
set. Assume that ρ satisfies the 
-type condition and C is ρ-bounded that has Property ..

Figure 1 The digraph of G.
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Let T : C → C(C) be a monotone increasing G-nonexpansive map. Then there exists an ap-
proximate fixed points sequence {fn} in C, i.e., for any n ≥ , there exists Fn ∈ T(fn) such
that

lim
n→∞ρ(fn – Fn) = .

Note that a similar conclusion to Theorem . in terms of graph may be found under
strong properties satisfied by the graph G.
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