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Abstract
We give a generalization of the Banach contraction principle on a modular metric
space endowed with a graph. The notion of a modular metric on an arbitrary set and
the corresponding modular spaces, generalizing classical modulars over linear spaces
like Orlicz spaces, were recently introduced. This paper can be seen as the modular
metric version of Jachymski’s fixed point result for mappings on a metric space with a
graph.
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1 Introduction
Fixed point theorems for monotone single-valued mappings in a metric space endowed
with a partial ordering have been widely investigated. These theorems are hybrids of the
two most fundamental and useful theorems in fixed point theory: Banach’s contraction
principle [], Theorem ., and Tarski’s fixed point theorem [, ]. The existence of fixed
points for single-valued mappings in partially ordered metric spaces was initially consid-
ered by Ran and Reurings in [] who proved the following result.

Theorem . [] Let (X,�) be a partially ordered set such that every pair x, y ∈ X has
an upper and lower bound. Let d be a metric on X such that (X, d) is a complete metric
space. Let f : X → X be a continuous monotone (either order preserving or order reversing)
mapping. Suppose that the following conditions hold:

() There exists a k ∈ (, ) with

d
(
f (x), f (y)

) � kd(x, y), for all x � y.

() There exists an x ∈ X with x � f (x) or x � f (x).
Then f is a Picard operator (PO), that is, f has a unique fixed point x∗ ∈ X and for each
x ∈ X, limn→∞ f n(x) = x∗.

After this, different authors considered the problem of existence of a fixed point for con-
traction mappings in partially ordered sets; see [–] and references cited therein. Nieto
et al. in [], proved the following.
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Theorem . [] Let (X, d) be a complete metric space endowed with a partial ordering �.
Let f : X → X be an order preserving mapping such that there exists a k ∈ [, ) with

d
(
f (x), f (y)

) � kd(x, y), for all x � y.

Assume that one of the following conditions holds:
() f is continuous and there exists an x ∈ X with x � f (x) or x � f (x);
() (X, d,�) is such that for any nondecreasing (xn)n∈N , if xn → x, then xn � x for n ∈ N ,

and there exists an x ∈ X with x � f (x);
() (X, d,�) is such that for any nonincreasing (xn)n∈N , if xn → x, then xn � x for n ∈ N ,

and there exists an x ∈ X with x � f (x).
Then f has a fixed point. Moreover, if (X,�) is such that every pair of elements of X has an
upper or a lower bound, then f is a PO.

Generalizing the partial order concept of the fixed point theorems by using graphs was
first established by Jachymski and Lukawska [, ]. Their works generalized and sub-
sumed the works of [, , , ] to single-valued mapping in metric spaces with a graph.
Jachymski [] obtained the following result.

Theorem . [] Let (X, d) be a complete metric space and let the triplet (X, d, G) have the
following property:

(P) for any sequence {xn}n∈N in X , if xn → x as n → ∞ and (xn, xn+) ∈ E(G), then
(xn, x) ∈ E(G), for all n.

Let f : X → X be a G-contraction. Then the following statements hold:
() Ff �= ∅ if and only if Xf �= ∅;
() if Xf �= ∅ and G is weakly connected, then f is a Picard operator, i.e., Ff = {x∗} and

sequence {f n(x)} → x∗ as n → ∞, for all x ∈ X ;
() for any x ∈ Xf , f |[x]G̃

is a Picard operator;
() if Xf ⊆ E(G), then f is a weakly Picard operator, i.e., Ff �= ∅ and, for each x ∈ X , we

have a sequence {f n(x)} → x∗(x) ∈ Ff as n → ∞.

The aim of this paper is to discuss the existence of fixed points for single Lipschitzian
mappings defined on some subsets of modular metric spaces X endowed with a graph
G. These modular metric spaces were introduced in [, ]. However, the way we ap-
proached the concept of modular metric spaces is different. Indeed we look at these spaces
as the nonlinear version of the classical modular spaces as introduced by Nakano [] on
vector spaces and modular function spaces introduced by Musielack [] and Orlicz [].
In [] the authors have defined and investigated the fixed point property in the framework
of modular metric space and introduced the analog of the Banach contraction principle
theorem in modular metric space.

2 Preliminaries
Let X be a nonempty set. Throughout this paper for a function ω : (,∞)×X ×X → (,∞)
we will write

ωλ(x, y) = ω(λ, x, y),

for all λ >  and x, y ∈ X.
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Definition . [, ] A function ω : (,∞) × X × X → [,∞] is said to be a modular
on X if it satisfies the following axioms:

(i) x = y if and only if ωλ(x, y) = , for all λ > ;
(ii) ωλ(x, y) = ωλ(y, x), for all λ > , and x, y ∈ X ;

(iii) ωλ+μ(x, y) ≤ ωλ(x, z) + ωμ(z, y), for all λ,μ >  and x, y, z ∈ X .

If instead of (i), we have only the condition (i′)

ωλ(x, x) = , for all λ > , x ∈ X,

then ω is said to be a pseudomodular on X. A modular ω on X is said to be regular if the
following weaker version of (i) is satisfied:

x = y if and only if ωλ(x, y) = , for some λ > .

Finally, ω is said to be convex if for λ,μ >  and x, y, z ∈ X, it satisfies the inequality

ωλ+μ(x, y) ≤ λ

λ + μ
ωλ(x, z) +

μ

λ + μ
ωμ(z, y).

Note that for a pseudomodular ω on a set X, and any x, y ∈ X, the function λ → ωλ(x, y) is
nonincreasing on (,∞). Indeed, if  < μ < λ, then

ωλ(x, y) ≤ ωλ–μ(x, x) + ωμ(x, y) = ωμ(x, y).

Definition . [, ] Let ω be a pseudomodular on X. Fix x ∈ X. The two sets

Xω = Xω(x) =
{

x ∈ X : ωλ(x, x) →  as λ → ∞}

and

X∗
ω = X∗

ω(x) =
{

x ∈ X : ∃λ = λ(x) >  such that ωλ(x, x) < ∞}

are said to be modular spaces (around x).

We obviously have Xω ⊂ X∗
ω . In general this inclusion may be proper. It follows from

[, ] that if ω is a modular on X, then the modular space Xω can be equipped with a
(nontrivial) distance, generated by ω and given by

dω(x, y) = inf
{
λ >  : ωλ(x, y) ≤ λ

}
,

for any x, y ∈ Xω . If ω is a convex modular on X, according to [, ] the two modular
spaces coincide, i.e. X∗

ω = Xω , and this common set can be endowed with the distance d∗
ω

given by

d∗
ω(x, y) = inf

{
λ >  : ωλ(x, y) ≤ 

}
,

for any x, y ∈ Xω . These distances will be called Luxemburg distances.
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First attempts to generalize the classical function spaces of the Lebesgue type Lp were
made in the early s by Orlicz and Birnbaum in connection with orthogonal expan-
sions. Their approach consisted in considering spaces of functions with some growth
properties different from the power type growth control provided by the Lp-norms.
Namely, they considered the function spaces defined as follows:

Lϕ =
{

f : R →R;∃λ >  : ρ(λf ) =
∫

R

ϕ
(
λ
∣
∣f (x)

∣
∣)dx < ∞

}
,

where ϕ : [,∞] → [,∞] was assumed to be a convex function increasing to infinity, i.e.
the function which to some extent behaves similarly to power functions ϕ(t) = tp. A mod-
ular function spaces Lϕ furnishes a wonderful example of a modular metric space. Indeed
define the function ω by

ωλ(f , g) = ρ

(
f – g

λ

)
=

∫

R

ϕ

( |f (x) – g(x)|
λ

)
dx,

for all λ > , and f , g ∈ Lϕ . Then ω is a modular metric on Lϕ . Moreover, the distance d∗
ω is

exactly the distance generated by the Luxemburg norm on Lϕ .
For more examples on modular function spaces, the reader may consult the book of

Kozlowski [], and for modular metric spaces [, ].

Definition . Let Xω be a modular metric space.
() The sequence {xn}n∈N in Xω is said to be ω-convergent to x ∈ Xω if and only if

ω(xn, x) → , as n → ∞. x will be called the ω-limit of {xn}.
() The sequence {xn}n∈N in Xω is said to be ω-Cauchy if ω(xm, xn) → , as m, n → ∞.
() A subset M of Xω is said to be ω-closed if the ω-limit of a ω-convergent sequence of

M always belong to M.
() A subset M of Xω is said to be ω-complete if any ω-Cauchy sequence in M is a

ω-convergent sequence and its ω-limit is in M.
() A subset M of Xω is said to be ω-bounded if we have

δω(M) = sup
{
ω(x, y); x, y ∈ M

}
< ∞.

In general if limn→∞ ωλ(xn, x) = , for some λ > , then we may not have limn→∞ ωλ(xn,
x) = , for all λ > . Therefore, as in modular function spaces, we will say that ω satisfies
the �-condition

• If limn→∞ ωλ(xn, x) = , for some λ >  implies limn→∞ ωλ(xn, x) = , for all λ > .
In [] and [], one will find a discussion of the connection between ω-convergence

and metric convergence with respect to the Luxemburg distances. In particular, we have

lim
n→∞ dω(xn, x) =  if and only if lim

n→∞ωλ(xn, x) = , for all λ > ,

for any {xn} ∈ Xω and x ∈ Xω . In particular we have ω-convergence and dω convergence
are equivalent if and only if the modular ω satisfies the �-condition. Moreover, if the
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modular ω is convex, then we know that d∗
ω and dω are equivalent which implies

lim
n→∞ d∗

ω(xn, x) =  if and only if lim
n→∞ωλ(xn, x) = , for all λ > ,

for any {xn} ∈ Xω and x ∈ Xω [, ].

Definition . Let (X,ω) be a modular metric space. We will say that ω satisfies the �-
type condition if for any α > , there exists a C >  such that

ωλ/α(x, y) ≤ Cωλ(x, y),

for any λ > , x, y ∈ Xω , with x �= y.

Note that if ω satisfies the �-type condition, then ω satisfies the �-condition. The
above definition will allow us to introduce the growth function in the modular metric
spaces as was done in the linear case.

Definition . Let (X,ω) be a modular metric space. Define the growth function 	 by

	(α) = sup

{
ωλ/α(x, y)
ωλ(x, y)

;λ > , x, y ∈ Xω, x �= y
}

,

for any α > .

The following properties were proved in [].

Lemma . (Lemma ., []) Let (X,ω) be a modular metric space. Assume that ω is a
convex regular modular metric which satisfies the �-type condition. Then

() 	(α) < ∞, for any α > ,
() 	 is a strictly increasing function, and 	() = ,
() 	(αβ) ≤ 	(α)	(β), for any α,β ∈ (,∞),
() 	–(α)	–(β) ≤ 	–(αβ), where 	– is the function inverse of 	,
() for any x, y ∈ Xω , x �= y, we have

d∗
ω(x, y) ≤ 

	–(/ω(x, y))
.

The following technical lemma will be useful later on in this work.

Lemma . [] Let (X,ω) be a modular metric space. Assume that ω is a convex regular
modular metric which satisfies the �-type condition. Let {xn} be a sequence in Xω such
that

ω(xn+, xn) ≤ Kαn, n = , . . . , ()

where K is an arbitrary nonzero constant and α ∈ (, ). Then {xn} is Cauchy for both ω

and d∗
ω .
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Note that this lemma is crucial since the main assumption () on {xn} will not be enough
to imply that {xn} is ω-Cauchy since ω fails the triangle inequality.

Let us finish this section with the needed graph theory terminology which will be used
throughout.

Let (X,ω) be a modular metric space and M be a nonempty subset of Xω . Let � denote
the diagonal of the cartesian product M × M. Consider a directed graph Gω such that
the set V (Gω) of its vertices coincides with M, and the set E(Gω) of its edges contains all
loops, i.e., E(Gω) ⊇ �. We assume Gω has no parallel edges (arcs), so we can identify Gω

with the pair (V (Gω), E(Gω)). Our graph theory notations and terminology are standard
and can be found in all graph theory books, like [] and []. Moreover, we may treat Gω

as a weighted graph (see [], p.) by assigning to each edge the distance between its
vertices.

By G– we denote the conversion of a graph G, i.e., the graph obtained from G by revers-
ing the direction of edges. Thus we have

E
(
G–) =

{
(y, x) | (x, y) ∈ E(G)

}
.

A digraph G is called an oriented graph if whenever (u, v) ∈ E(G), then (v, u) /∈ E(G). The
letter G̃ denotes the undirected graph obtained from G by ignoring the direction of edges.
Actually, it will be more convenient for us to treat G̃ as a directed graph for which the set
of its edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E
(
G–).

We call (V ′, E′) a subgraph of G if V ′ ⊆ V (G), E′ ⊆ E(G), and for any edge (x, y) ∈ E′, x, y ∈
V ′.

If x and y are vertices in a graph G, then a (directed) path in G from x to y of length
N is a sequence (xi)i=N

i= of N +  vertices such that x = x, xN = y and (xn–, xn) ∈ E(G) for
i = , . . . , N . A graph G is connected if there is a directed path between any two vertices. G is
weakly connected if G̃ is connected. If G is such that E(G) is symmetric and x is a vertex in
G, then the subgraph Gx consisting of all edges and vertices which are contained in some
path beginning at x is called the component of G containing x. In this case V (Gx) = [x]G,
where [x]G is the equivalence class of the following relation R defined on V (G) by the rule:

yRz if there is a (directed) path in G from y to z.

Clearly Gx is connected.

Definition . Let (X,ω) be a modular metric space and M be a nonempty subset of Xω .
A mapping T : M → M is called

(i) Gω-contraction if T preserves edges of Gω , i.e.,

∀x, y ∈ M
(
(x, y) ∈ E(Gω) ⇒ (

T(x), T(y)
) ∈ E(Gω)

)
,

and if there exists a constant α ∈ [, ) such that

ω
(
T(x), T(y)

) ≤ αω(x, y) for any (x, y) ∈ E(Gω).
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(ii) (ε,α)-Gω-uniformly locally contraction if T preserves edges of Gω and there exists a
constant α ∈ [, ) such that for any (x, y) ∈ E(Gω)

ω
(
T(x), T(y)

) ≤ αω(x, y) whenever ω(x, y) < ε.

Definition . A point x ∈ M is called a fixed point of T whenever x = T(x). The set of
fixed points of T will be denoted by Fix(T).

3 Fixed points of Gω-contractions
Throughout this section we assume that (X,ω) is a modular metric space, M be a
nonempty subset of Xω and Gω is a directed graph such that V (Gω) = M and E(Gω) ⊇ �.

Our first result can be seen as an extension of Jachymski’s fixed point theorem [] to
modular metric spaces. As Jachymski [] did, we introduce the following property.

We say that the triple (M, d∗
ω, Gω) has Property (P) if

(P) For any sequence {xn}n∈N in M, if xn → x as n → ∞ and (xn, xn+) ∈ E(Gω), then
(xn, x) ∈ E(Gω), for all n.

Note that property (P) is precisely the Nieto et al. [] hypothesis relaxing continuity as-
sumption as in Theorem .(() and ()) rephrased in terms of edges.

Theorem . Let (X,ω) be a modular metric space with a graph Gω . Suppose that ω is
a convex regular modular metric which satisfies the �-type condition. Assume that M =
V (Gω) is a nonempty ω-bounded, ω-complete subset of Xω and the triple (M, d∗

ω, Gω) has
property (P). Let T : M → M be Gω-contraction map and MT := {x ∈ M; (x, Tx) ∈ E(Gω)}.
If (x, T(x)) ∈ E(Gω), then the following statements hold:

() For any x ∈ MT , T |[x]G̃ω
has a fixed point.

() If Gω is weakly connected, then T has a fixed point in M.
() If M′ :=

⋃{[x]G̃ω
: x ∈ MT }, then T |M′ has a fixed point in M.

Proof () As (x, T(x)) ∈ E(Gω), then x ∈ MT . Since T is a Gω-contraction, there exists a
constant α ∈ [, ) such that (T(x), T(T(x))) ∈ E(Gω) and

ω
(
T(x), T

(
T(x)

)) ≤ αω
(
x, T(x)

)
.

By induction, we construct a sequence {xn} such that xn+ := T(xn), (xn, xn+) ∈ E(Gω),
and

ω(xn+, xn) ≤ αω(xn, xn–) ≤ αnω(x, x),

for any n ≥ . Since M is ω-bounded, we have

ω(xn+, xn) ≤ δω(M)αn

for any n ≥ . The technical Lemma . implies that {xn} is ω-Cauchy. Since M is ω-
complete, therefore {xn} ω-converges to some point x ∈ M. By property (P), (xn, x) ∈ E(Gω)
for all n, and hence

ω
(
xn+, T(x)

) ≤ αω(xn, x).



Alfuraidan Fixed Point Theory and Applications  (2015) 2015:46 Page 8 of 10

We conclude that limn→∞ ω(xn+, T(x)) = . Using the properties of ω, we have

ω
(
x, T(x)

) ≤ ω(x, xn+) + ω
(
xn+, T(x)

)
,

for all n ≥ . This implies ω(x, T(x)) = . Therefore, x = T(x), i.e., x is a fixed point of T .
As (x, x) ∈ E(Gω), we have x ∈ [x]G̃ω

.
() Since MT �= ∅, there exists an x ∈ MT , and since Gω is weakly connected, then

[x]G̃ω
= M and by (), mapping T has a fixed point.

() It follows easily from () and (). �

Edelstein [] has extended the classical fixed point theorem for contractions to the case
when X is a complete ε-chainable metric space and the mapping T : X → X is an (ε, k)-
uniformly locally contraction. Here we investigate Edelstein’s result in modular metric
spaces endowed with a graph. First let us introduce the ε-chainable concept in modu-
lar metric spaces with a graph. Our definition is slightly different from the one used in
the classical metric spaces since the modulars fail in general the triangle inequality (see
also []).

Definition . Let (X,ω) be a modular metric space, M = V (Gω) be a nonempty subset
of Xω . M is said to be finitely ε-chainable (where ε >  is fixed) if and only if there exists
an N ≥  such that for any a, b ∈ M with (a, b) ∈ E(Gω) there is an N , ε-chain from a to b
(that is, a finite set of vertices x, x, . . . , xN ∈ V (Gω) = M such that x = a, xN = b, (xi, xi+) ∈
E(Gω) and ω(xi, xi+) < ε, for all i = , , , . . . , N – ).

We have the following result.

Theorem . Let (X,ω) be a modular metric space. Suppose that ω is a convex regu-
lar modular metric which satisfies the �-type condition. Assume that M = V (Gω) is a
nonempty ω-complete and ω-bounded subset of Xω which is finitely ε-chainable, for some
fixed ε > . Suppose that the triple (M, d∗

ω, Gω) has property (P). Let T : M → M be (ε,α)-
Gω-uniformly locally contraction map. Then T has a fixed point in the vertex set of the
graph M.

Proof Since M is finitely ε-chainable, there exists an N ≥  such that for any a, b ∈ M with
(a, b) ∈ E(Gω) there is a finite set of vertices x, x, . . . , xN ∈ M such that x = a, xN = b,
(xi, xi+) ∈ E(Gω), and ω(xi, xi+) < ε, for all i = , , , . . . , N – . For any x, y ∈ M define

ω∗(x, y) = inf

{i=N–∑

i=

ω(xi, xi+)

}

,

where the infimum is taken over all N , ε-chains x, x, . . . , xN from x to y. Since M is finitely
ε-chainable it follows that ω∗(x, y) < ∞, for any x, y ∈ M. Using the basic properties of ω,
we get

ωN (x, y) ≤ ω∗(x, y),

for any x, y ∈ M with (x, y) ∈ E(Gω). Moreover, if ω(x, y) < ε, then we have ω∗(x, y) ≤
ω(x, y), for any x, y ∈ M with (x, y) ∈ E(Gω). Fix x ∈ M. Set z = x and z = T(z) with
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(z, z) ∈ E(Gω). Let x, . . . , xN be an N , ε-chain from z to z. Such an N , ε-chain exists
since M is finitely ε-chainable. Since T is (ε,α)-Gω-uniformly locally contraction map,
there exists a constant α ∈ [, ) such that

ω
(
T(xi), T(xi+)

) ≤ αω(xi, xi+) < αε < ε,

for every i. Clearly this implies that T(x), T(x), . . . , T(xN ) is N , ε-chain from T(z) to T(z)
and

ω∗(z, z) ≤ αω∗(z, z),

where z = T(z). By induction, we construct the sequence {zn} ∈ M with (zn, zn+) ∈ E(Gω)
such that

ω∗(zn, zn+) ≤ αω∗(zn–, zn),

for any n ≥ , where zn+ = T(zn). Obviously we have ω∗(zn, zn+) ≤ αnω∗(z, z), for any
n ≥ . Since ω satisfies the �-type condition, there exists C >  such that

ω(zn, zn+) ≤ CωN (zn, zn+) ≤ Cω∗(zn, zn+) ≤ Cαnω∗(z, z),

for any n ≥ . Lemma . implies that {zn} is ω-Cauchy. Since M is ω-complete, then {zn}
ω-converges to some z ∈ M. We claim that z is a fixed point of T . By property (P), (zn, z) ∈
E(Gω) for any n ≥ . Using the ideas developed above, we have

ω∗(zn+, T(z)
) ≤ αω∗(zn, z)

for any n ≥ . Since

ωN+
(
T(z), z

) ≤ ω(zn+, z) + ωN
(
zn+, T(z)

)

and

ωN
(
zn+, T(z)

) ≤ ω∗(zn+, z) ≤ αω∗(zn, z),

for any n ≥ , we conclude that ωN+(T(z), z) = . Indeed there exists n such that for any
n ≥ n we have ω(zn, z) < ε. By definition of ω∗ we have ω∗(zn, z) < ω(zn, z), for n ≥ n.
Hence limn→∞ ω∗(zn, z) = . Therefore ωN+(T(z), z) =  holds. Since ω is regular we get
z = T(z), i.e., z is a fixed point of T as claimed. �
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