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Abstract
In this article, we first give an existence and uniqueness common best proximity
points theorem for four mappings in a metric-type space (X ,D,K ) such that D is not
necessarily continuous. An example is also given to support our main result. We also
discuss the unique common fixed point existence result of four mappings defined on
such a metric space.
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1 Introduction and preliminary
Fixed point theory is essential for solving various equations of the form Tx = x for self-
mappings T defined on subsets of metric spaces or normed linear spaces. Given non-void
subsets A and B of a metric space and a non-self-mapping T : A → B, the equation Tx = x
does not necessarily have a solution, which is known as a fixed point of the mapping T .
However, in such conditions, it may be considered to determine an element x for which
the error d(x, Tx) is minimum, in which case x and Tx are in close proximity to each other.
It is remarked that best proximity point theorems are relevant to this end. A best proximity
point theorem provides sufficient conditions that confirm the existence of an optimal solu-
tion to the problem of globally minimizing the error d(x, Tx), and hence the existence of a
complete approximate solution to the equation Tx = x. In fact, with respect to the fact that
d(x, Tx) ≥ d(A, B) for all x, a best proximity point theorem requires the global minimum of
the error d(x, Tx) to be the least possible value d(A, B). Eventually, a best proximity point
theorem offers sufficient conditions for the existence of an element x, called a best prox-
imity point of the mapping T , satisfying the condition that d(x, Tx) = d(A, B). Moreover,
it is interesting to observe that best proximity theorems also appear as a natural general-
ization of fixed point theorems, for a best proximity point reduces to a fixed point if the
mapping under consideration is a self-mapping.

A study of several variants of contractions for the existence of a best proximity point can
be found in [–]. Best proximity point theorems for multivalued mappings are available in
[–]. Eldred et al. [] have established a best proximity point theorem for relatively non-
expansive mappings. Further, Anuradha and Veeramani have investigated best proximity
point theorems for proximal pointwise contraction mappings [].

On the other hand, Khamsi and Hussain [] generalized the definition of a metric and
defined the metric-type as follows.
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Definition . [] Let X be a non-empty set, K ≥  be a real number, and let the function
D : X × X → R satisfy the following properties:

(i) D(x, y) =  if and only if x = y;
(ii) D(x, y) = D(y, x) for all x, y ∈ X ;

(iii) D(x, z) ≤ K(D(x, y) + D(y, z)) for all x, y ∈ X .
Then (X, D, K) is called a metric-type space.

Obviously, for K = , a metric-type space is simply a metric space.

Afterward, other authors proved fixed point theorems in metric-type space [–].
Given two non-empty subsets A and B of a metric-type space (X, D, K), the following

notions and notations are used in the sequel.

D(A, B) = inf
{

d(x, y) : x ∈ A, y ∈ B
}

;

A =
{

x ∈ A : D(x, y) = D(A, B) for some y ∈ B
}

;

B =
{

y ∈ B : D(x, y) = D(A, B) for some x ∈ A
}

.

This study focuses upon resolving a more general problem as regards the existence of
common best proximity points for pairs of non-self-mappings in metric-type space. As a
result, the finding of this study verifies a common global minimal solution to the problem
of minimizing the real valued multi-objective functions x → d(x, Sx) and x → d(x, Tx),
which in turn gives rise to a common optimal approximate solution of the fixed point
equations Sx = x and Tx = x, where D is a metric-type space and the non-self-mappings
S : A → B and T : A → B satisfy a contraction-like condition. Our best proximity point
theorem generalizes a result due to Sadiq Basha []. Further, a common fixed point the-
orem for commuting self-mappings is a special case of our common best proximity point
theorem. Now, we review some definitions used throughout the paper.

Definition . An element x ∈ A is said to be a common best proximity point of the non-
self-mappings f, f, . . . , fn : A → B if it satisfies the condition that

D(x, fx) = D(x, fx) = · · · = D(x, fnx) = D(A, B).

Definition . The mappings S : A → B and T : A → B are said to be commute proximally
if they satisfy the condition that

[
D(u, Sx) = D(v, Tx) = D(A, B)

] ⇒ Sv = Tu.

Definition . If A �= ∅ then the pair (A, B) is said to have P-property if and only if for
any x, x ∈ A and y, y ∈ B

{
D(x, y) = D(A, B),
D(x, y) = D(A, B)

�⇒ D(x, x) = D(y, y).

2 Main result
We begin our study with the following definition.
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Definition . Let A and B be two non-empty subsets of a metric-type space (X, D, K).
Non-self-mappings f , g, S, T : A → B are said to satisfy a K-contractive condition if there
exists a non-negative number α < 

K such that for each x, y ∈ A

D(fx, gy) ≤ α max

{
D(Sx, Ty), D(fx, Sx), D(Ty, gy),


K

[
D(Sx, gy) + D(fx, Ty)

]}
.

Theorem . Let A and B be non-empty subsets of a complete metric-type space (X, D, K).
Moreover, assume that A and B are non-empty and A is closed. Let the non-self-
mappings f , g, S, T : A → B satisfy the following conditions:

(i) {f , S} and {g, T} commute proximally;
(ii) the pair (A, B) has the P-property;

(iii) f , g , S and T are continuous;
(iv) f , g , S, and T satisfy the K -contractive condition;
(v) f (A) ⊆ T(A), g(A) ⊆ S(A) and g(A) ⊆ B, f (A) ⊆ B.

Then f , g , S, and T have a unique common best proximity point.

Proof Fix x in A, since f (A) ⊆ T(A), then there exists an element x in A such that
f (x) = T(x). Similarly, a point x ∈ A can be chosen such that g(x) = S(x). Continuing
this process, we obtain a sequence {xn} ∈ A such that f (xn) = T(xn+) and g(xn+) =
S(xn+).

Since f (A) ⊆ B and g(A) ⊆ B, there exists {un} ∈ A such that

D
(
un, f (xn)

)
= D(A, B) and D

(
un+, g(xn+)

)
= D(A, B). ()

Since the pair (A, B) has the P-property, by () we have

D(un, un+) = D(fxn, gxn+)

≤ α max

{
D(Sxn, Txn+), D(fxn, Sxn), D(Txn+, gxn+),


K

[
D(Sxn, gxn+) + D(fxn, Txn+)

]}

≤ α max

{
D(un–, un), D(un, un–), D(un, un+),


K

[
D(un–, un+) + D(un, un)

]}
,

thus (note that 
K D(un–, un+) ≤ 

 [D(un–, un) + D(un, un+)] and α < )

D(un, un+) ≤ αD(un–, un). ()

Similarly

D(un+, un+) = D(fxn+, gxn+)

≤ α max

{
D(Sxn+, Txn+), D(fxn+, Sxn+), D(Txn+, gxn+),
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K

[
D(Sxn+, gxn+) + D(fxn+, Txn+)

]}

≤ α max

{
D(un+, un), D(un+, un+), D(un, un+),


K

[
D(un+, un+) + D(un+, un)

]}
,

thus (note that 
K D(un+, un) ≤ 

 [D(un+, un+) + D(un+, un)] and α < )

D(un+, un+) ≤ αD(un, un+). ()

Therefore, by () and () we have

D(un, un+) ≤ αD(un–, un),

and then

D(un, un+) ≤ αnD(u, u). ()

Let m, n ∈N and m < n; we have

D(um, un) ≤ K
[
D(um, um+) + D(um+, un)

]

≤ KD(um, um+) + K[D(um+, um+) + D(um+, un)
]

≤ · · ·
≤ KD(um, um+) + KD(um+, um+) + · · ·

+ Kn–m–[D(un–, un–) + D(un–, un)
]

≤ KD(um, um+) + KD(um+, um+) + · · ·
+ Kn–m–D(un–, un–) + Kn–mD(un–, un).

Now () and Kα <  imply that

D(um, un) ≤ (
Kαm + Kαm+ + · · · + Kn–mαn–)D(u, u)

≤ Kαm(
 + Kα + · · · + (Kα)n–m–)D(u, u)

≤ Kαm

 – Kα
D(u, u) →  when m → ∞;

then {un} is a Cauchy sequence.
Since {un} ⊂ A and A is a closed subset of the complete metric-type space (X, D, K),

we can find u ∈ A such that limn→∞ un = u.
By () and because of the fact {f , S} and {g, T} commute proximally, fun– = Sun and

gun = Tun+. Therefore, the continuity of f , g , S, and T and n → ∞ ascertain that fu =
gu = Tu = Su.

Since f (A) ⊆ B, there exists x ∈ A such that

D(A, B) = D(x, fu) = D(x, gu) = D(x, Su) = D(x, Tu).
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As {f , S} and {g, T} commute proximally, fx = gx = Sx = Tx. Since f (A) ⊆ B, there exists
z ∈ A such that

D(A, B) = D(z, fx) = D(z, gx) = D(z, Sx) = D(z, Tx).

Because the pair (A, B) has the P-property

D(x, z) = D(fu, gx)

≤ α max

{
D(Su, Tx), D(fu, Su), D(Tx, gx),


K

[
D(Su, gx) + D(fu, Tx)

]}

≤ α max

{
D(x, z), D(x, x), D(z, z),


K

[
D(x, z) + d(x, z)

]}

≤ αD(x, z),

which implies that x = z. Thus, it follows that

D(A, B) = D(x, fx) = (x, gx) = (x, Tx) = (x, Sx), ()

then x is a common best proximity point of the mappings f , g , S, and T .
Suppose that y is another common best proximity point of the mappings f , g , S, and T ,

so that

D(A, B) = D(y, fy) = (y, gy) = (y, Ty) = (y, Sy). ()

As the pair (A, B) has the P-property, from () and (), we have

D(x, y) ≤ αD(x, y),

which implies that x = y. �

Now we illustrate our common best proximity point theorem by the following example.

Example . Let X = [, ] × [, ]. Suppose that D(x, y) = d(x, y) for all x, y ∈ X, where d
is the Euclidean metric. Then (X, D, K) is a complete metric-type space with K = . Let

A :=
{

(, x) :  ≤ x ≤ 
}

, B :=
{

(, y) :  ≤ y ≤ 
}

.

Then D(A, B) = , A = A, and B = B. Let f , g , S, and T be defined as f (, y) = (, y
 ), g(, y) =

(, y
 ), S(, y) = (, y), and T(, y) = (, y

 ). Then for all x and y ∈ X we have

D(fx, gy) =
(

x


–
y



)

=



D(Sx, Ty).

Now, all the required hypotheses of Theorem . are satisfied. Clearly (, ) is unique
common best proximity point of f , g , S, and T .

By Theorem . we also obtain the following common fixed point theorem in metric-
type space.
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Theorem . Let (X, D, K) be a complete metric-type space. Let f , g, S, T : X → X be given
continuous mappings satisfying the K-contractive condition such that S and T commute
with f and g , respectively. Further let f (X) ⊆ T(X), g(X) ⊆ S(x). Then f , g , S, and T have a
unique common fixed point.

Proof We take the same sequence {un} and u as in the proof of Theorem .. Due to the
fact that S and T commute with f and g , respectively, we have

fun– = Sun, gun = Tun+.

By continuity of f , g , S, T , and n → ∞ we have

fu = Su, gu = Tu. ()

Since f , g, S, T : X → X satisfy the K-contractive condition, and by (),

D(fu, gu) ≤ α max

{
D(Su, Tu), D(fu, Su), D(Tu, gu),


K

[
D(Su, gu) + D(fu, Tu)

]}

≤ α max

{
D(fu, gu), D(fu, fu), D(gu, gu),


K

[
(fu, gu) + (fu, gu)

]}
,

we have D(fu, gu) ≤ αD(fu, gu). Therefore fu = gu, and by (), fu = gu = Su = Tu.
We set w = fu = gu = Su = Tu. Because of the fact that T commutes with g we obtain

gw = gTu = Tgu = Tw,

and

D(w, gw) = D(fu, gw)

≤ α max

{
D(Su, Tw), D(fu, Su), D(Tw, gw),


K

[
D(Su, gw) + D(fu, Tw)

]}

≤ α max

{
D(w, gw), D(w, w), D(gw, gw),


K

[
(w, gw) + (w, gw)

]}
.

Therefore, D(w, gw) ≤ αD(w, gw) and consequently

w = gw = Tw. ()

Similarly, we can show that

w = fw = Sw. ()

Hence, by () and () we deduce that w = fw = gw = Sw = Tw. Therefore, w is a common
fixed point of f , g , S, and T .

Assume to the contrary that p = fp = gp = Sp = Tp and q = fq = gq = Sq = Tq but p �= q.
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We have

D(p, q) = D(fp, gq)

≤ α max

{
D(Sp, Tq), D(fp, Sp), D(Tq, gq),


K

[
D(Sp, gq) + D(fp, Tq)

]}

≤ α max

{
D(p, q), D(p, p), D(q, q),


K

[
(p, q) + (p, q)

]}
.

Consequently D(p, q) ≤ αD(p, q) and α < ; then D(p, q) = , a contradiction. Therefore, f ,
g , S, and T have a unique fixed point. �
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