
Gabeleh and Plebaniak Fixed Point Theory and Applications  (2015) 2015:50 
DOI 10.1186/s13663-015-0300-y

R E S E A R C H Open Access

Multivalued SK-contractions with respect to
b-generalized pseudodistances
Moosa Gabeleh1 and Robert Plebaniak2*

*Correspondence:
robpleb@math.uni.lodz.pl
2Department of Nonlinear Analysis,
University of Łódź, Banacha 22,
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Abstract
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1 Introduction
Let A and B be two nonempty subsets of a metric space X. A non-self-mapping T : A → B
is said to be a contraction if there exists a constant r ∈ [, ), such that d(Tx, Ty) ≤ rd(x, y),
for all x, y ∈ A. The well-known Banach contraction principle states that if A is a complete
subset of X and T is a contraction self-mapping, then the fixed point equation Tx = x has
exactly one solution.

The Banach contraction principle is a very important tool in nonlinear analysis and there
are many extensions of this principle; see, e.g., [] and the references therein.

Let (X, d) be a metric space. A self-mapping T : X → X is called a Kannan mapping if
there exists α ∈ [, 

 ) such that

d(Tx, Ty) ≤ α
[
d(x, Tx) + d(y, Ty)

]
,

for all x, y ∈ X. We know that if X is a complete metric space, every Kannan self-mapping
defined on X has a unique fixed point []. Note that the notion of contraction mappings
and Kannan mappings are independent. That is, there exists a contraction mapping which
is not a Kannan, and a Kannan mapping which is not a contraction. Therefore, we cannot
compare these two classes of mappings directly. However, the Banach and Kannan fixed
point theorems can be unified (for details see [–]).

Kikkawa and Suzuki in [], established the following fixed point theorem, which is an
extension of the Kannan fixed point theorem.
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Theorem . ([]) Define a non-increasing function ϕ from [, ) into ( 
 , ] by

ϕ(r) =

⎧
⎨

⎩
 if  ≤ r < √

 ,


+r if √
 ≤ r < .

Let (X, d) be a complete metric space and let T be a self-mapping on X. Let α ∈ [, 
 ) and

put r := α
–α

∈ [, ). Assume that

ϕ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ α
[
d(x, Tx) + d(y, Ty)

]
, (.)

for all x, y ∈ X. Then T has a unique fixed point z and limn Tnx = z holds for every x ∈ X.

It is interesting to note that the function ϕ(r) defined in Theorem . is the best constant
for every r (see Theorem . of []).

The multivalued version of Theorem . was presented in [] as below.

Theorem . (Damjanovic and Doric []) Define a non-increasing function ϕ(r) from [, )
into (, ] by

ϕ(r) =

⎧
⎨

⎩
 if  ≤ r <

√
–
 ,

 – r if
√

–
 ≤ r < .

Let (X, d) be a complete metric space and let T be a mapping from X into CB(X), where
CB(X) denotes the family of all nonempty, bounded and closed subsets of X. Assume that

ϕ(r)d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ r max
{

D(x, Tx), D(y, Ty)
}

, (.)

for all x, y ∈ X, where D(x, A) := inf{d(x, y) : y ∈ A} for x ∈ X and A ⊂ X. Then there exists
z ∈ X such that z ∈ Tz.

Now, let (A, B) be a nonempty pair of subsets of a metric space (X, d) and let T : A → B

be a multivalued non-self-mapping. Then for each x ∈ A we have D(x, Tx) ≥ dist(A, B),
where dist(A, B) := inf{d(x, y) : (x, y) ∈ A × B} and D(x, Tx) := dist({x}, Tx). So, it is quite
natural to seek an approximate solution x ∈ A that is optimal in the sense that the distance
D(x, Tx) with respect to D is minimum. As the minimality of the value D(x, Tx) connotes
the highest closeness between the elements x and Tx, one attempts to determine an el-
ement x for which D(x, Tx) assumes the least possible value dist(A, B). Such an optimal
solution x for which D(x, Tx) = dist(A, B) is called a best proximity point of the multival-
ued non-self-mapping T . The existence of best proximity points for multivalued non-self-
mappings was first studied in [] for multivalued nonexpansive non-self-mappings in hy-
perconvex metric spaces and in Hilbert spaces (see also [–] for different approaches to
the same problem).

The main purpose of this article is to elicit a best proximity point theorem for a new class
of multivalued non-self-mappings in the setting of b-metric spaces. Our results improve
and extend the main results in [, ].
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2 Preliminaries
Let A and B be two nonempty subsets of a metric space (X, d). When we say that a pair
(A, B) satisfies a special property, we mean that both A and B satisfy the mentioned prop-
erty. We will use the following notations:

∀a∈A
{
D∗(a, B) = D(a, B) – dist(A, B)

}
,

∀A,B∈CB(X)

{
H(A, B) = max

{
sup
x∈A

D(x, B), sup
y∈B

D(y, A)
}}

,

A =
{

x ∈ A : d(x, y) = dist(A, B), for some y ∈ B
}

,

B =
{

y ∈ B : d(x, y) = dist(A, B), for some x ∈ A
}

.

It is easy to see that if (A, B) is a nonempty weakly compact pair in a Banach space X, then
(A, B) is a pair of nonempty subsets of X.

Definition . Let (A, B) be a pair of nonempty subsets of a metric space (X, d) with
A 
= ∅.

(I) [] The pair (A, B) is said to have the P-property if and only if

{
d(x, y) = dist(A, B),
d(x, y) = dist(A, B)

⇒ d(x, x) = d(y, y),

where x, x ∈ A and y, y ∈ B.
(II) [] The pair (A, B) is said to have the WP-property if and only if

{
d(x, y) = dist(A, B),
d(x, y) = dist(A, B)

⇒ d(x, x) ≤ d(y, y),

where x, x ∈ A and y, y ∈ B.

The notion of the WP-property notion is weaker than the notion of the P-property.

Example . ([]) Let (A, B) be a nonempty, closed, and convex pair of subsets of a
Hilbert space H. Then (A, B) satisfies the WP-property.

Example . Let (A, B) be a nonempty pair of subsets of a metric space (X, d) such that
A 
= ∅ and dist(A, B) = . Then (A, B) has the WP-property.

Example . ([]) Let (A, B) be a nonempty bounded, closed and convex pair of subsets
of a uniformly convex Banach space X. Then (A, B) has the WP-property.

Example . Consider X := R with the usual metric. Suppose that

A := [, ] and B := {–, , }.

Then we have dist(A, B) =  and A = {, }, B := {, }. If (x, x) = (, ) and (y, y) = (, ),
then

d(x, y) = d(x, y) = dist(A, B) and d(x, x) < d(y, y),
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from which one deduces that (A, B) has the WP-property. Note that (B, A) does not have
the WP-property and so (A, B) does not have the P-property. We mention that in []
the authors studied the existence of some nonlinear programming problems by using the
geometric notion of the WP-property.

The notion of b-metric space was introduced by Czerwik [] as below.

Definition . ([]) Let X be a nonempty set and s ≥  be a given real number. A function
d : X × X → [,∞) is b-metric if the following three conditions are satisfied:

(d) ∀x,y∈X{d(x, y) =  ⇔ x = y};
(d) ∀x,y∈X{d(x, y) = d(y, x)};
(d) ∀x,y,z∈X{d(x, z) ≤ s[d(x, y) + d(y, z)]}.

If d is a b-metric on X (with constant s ≥ ), then the pair (X, d) is called a b-metric space.
Note that every metric space is a b-metric space. Throughout this paper, we assume that
the b-metric d : X × X → [,∞) is continuous on X. For more precise information as
regards b-metric spaces and best proximity point results we can see [–].

One can refer to [] for the interesting results concerning fixed point theorems in
b-metric spaces.

Definition . ([]) Let X be a b-metric space (with constant s ≥ ). The map J : X ×X →
[,∞) is said to be a b-generalized pseudodistance on X if the following two conditions
hold:

(J) ∀x,y,z∈X{J(x, z) ≤ s[J(x, y) + J(y, z)]};
(J) for any sequences (xm : m ∈N) and (ym : m ∈ N) in X such that

lim
n→∞ sup

m>n
J(xn, xm) =  (.)

and

lim
m→∞ J(xm, ym) = , (.)

we have

lim
m→∞ d(xm, ym) = . (.)

Remark . If (X, d) is a b-metric space (with s ≥ ), then the b-metric d : X ×X → [,∞)
is a b-generalized pseudodistance on X. However, there exists a b-generalized pseudodis-
tance on X which is not a b-metric (for details see Example . of []).

Remark . From (J) and (J) it follows that if x 
= y, x, y ∈ X, then

J(x, y) >  ∨ J(y, x) > .

It is worth noticing that in fixed point theory, on defining contractions, many authors
replaced the metric by some more general mapping. In the literature there exist many
examples of different distances. Now we recall some of them.
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Let X be a metric space with metric d. Then a function p from X × X into R+ is called
a w-distance on X if it satisfies the following:

(p) p(x, y) ≤ p(x, z) + p(z, y) for all x, y, z ∈ X ;
(p) p is lower semicontinuous in its second variable;
(p) for each ε > , there exists δ >  such that p(z, x) ≤ δ and p(z, y) ≤ δ imply

p(x, y) ≤ ε.
The metric d is a w-distance on X. The concept of w-distance was first introduced by

Kada et al. [].
Let X be a subset of a Banach space and let {T(t) : t ∈ R+} be a strongly continuous

semigroup of nonexpansive mappings on X, i.e.,
(sg) for each t ∈R+, T(t) is a nonexpansive mapping on X ;
(sg) T()x = x, for all x ∈ X ;
(sg) T(s + t) = T(s) ◦ T(t) for all s, t ∈R+;
(sg) for each x ∈ X , the mapping T(x) from R+ into X is continuous.
In [], Tataru introduced the distance

p(x, y) = inf
{

t +
∥∥T(t)x – y

∥∥ : t ∈R+
}

,

for all x, y ∈ X.
Let X be a metric space with metric d. Then a function p from X × X into R+ is called

a τ -distance on X (introduced by Suzuki []) if there exists a function η : X ×R+ into R+

and the following are satisfied:
(S) ∀x,y,z∈X{p(x, z) ≤ p(x, y) + p(y, z)};
(S) ∀x∈X∀t>{η(x, ) =  ∧ η(x, t) ≥ t} and η is concave and continuous in its second

variable;
(S)

{
lim

n→∞ xn = x ∧ lim
n→∞ sup

m≥n
η
(
zn, p(zn, xm)

)
= 

}

⇒
{
∀w∈X

{
p(w, x) ≤ lim inf

n→∞ p(w, xn)
}}

;

(S) {limn→∞ supm≥n p(xn, ym) =  ∧ limn→∞ η(xn, tn) = } ⇒ {limn→∞ η(yn, tn) = };
(S) {limn→∞ η(zn, p(zn, xn)) =  ∧ limn→∞ η(zn, p(zn, yn)) = } ⇒ {limn→∞ d(xn, yn) = }.
In , Lin and Du [] introduced the following concept of a τ -function.
Let X be a metric space with metric d. A map p from X ×X into R+ is called a τ -function

on X if the following conditions hold:
(L) p(x, y) ≤ p(x, z) + p(z, y) for all x, y, z ∈ X ;
(L) if x ∈ X and {yn} in X with limn→∞ yn = y and p(x, yn) ≤ M for some M = M(x) > ,

then p(x, y) ≤ M;
(L) for any sequence {xn} in X with limn→∞ sup{p(xn, xm) : m > n} = , if there exists a

sequence {yn} in X such that limn→∞ p(xn, yn) = , then limn→∞ d(xn, yn) = ;
(L) for x, y, z ∈ X , p(x, y) = , and p(x, z) =  imply that y = z.
In , Valyi [] introduced and used in uniform spaces the new concept of distance

which in our conventions we will call the Valyi distance.
Let X be a metric space with metric d. A map p from X × X into R+ is called a distance

of Valyi on X if the following conditions hold:
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(V) p(x, y) ≤ p(x, z) + p(z, y) for all x, y, z ∈ X ;
(V) p is lsc in its second variable;
(V) ∀x,y∈X{p(x, y) ≥  ∧ [p(x, y) =  ⇔ x = y]};
(V) ∀ε>∃δ>∀x,y∈X{p(x, y) < δ ⇒ d(x, y) < ε}.

Remark .
(i) Let p be a w-distance on a metric space X . Then p is also a τ -distance on X (see

Proposition  in []).
(ii) Let {T(t) : t ∈ R+} be a strongly continuous semigroup of nonexpansive mappings

on a subset X of a Banach space. Then the Tataru distance p on X is also a
τ -distance on X (see Proposition  in []).

(iii) Let p be a w-distance on X . Then p is a τ -function on X (see Remark . in []).
(iv) In the literature there are no studies concerning relations between Valyi distances

[] and τ -distances [] and τ -functions [].

Remark . ([]) Let X be a b-metric space (with s = ), i.e. X be a metric space with
metric d. Then

(i) if p is a τ -distance, then p is a generalized pseudodistance;
(ii) if p is a τ -function, then p is a generalized pseudodistance;

(iii) if p is a Valyi distance, then p is a generalized pseudodistance;
(iv) there exists a generalized pseudodistance which is not a τ -distance;
(v) there exists a generalized pseudodistance which is not τ -function;

(vi) there exists a generalized pseudodistance which is not a Valyi distance.

After this short introduction concerning the distances that were used in fixed point the-
ory, by using the notion of b-generalized pseudodistance on a b-metric space X, we can
define the HJ Hausdorff distance as below.

Definition . Let X be a b-metric space (with s ≥ ) and let the map J : X × X → [,∞)
be a b-generalized pseudodistance on X. Let ∀u∈X∀V∈CB(X){J(u, V ) = infv∈V J(u, v)}. Define
HJ : CB(X) × CB(X) → [,∞) by

∀A,B∈CB(X)

{
HJ (A, B) = max

{
sup
u∈A

J(u, B), sup
v∈B

J(v, A)
}}

.

Similarly, the following definitions and notations can be constructed in b-metric spaces
equipped with a b-generalized pseudodistance.

Let (X, d) be a b-metric space (with s ≥ ) and let (A, B) be a pair of subsets of X and let
the map J : X × X → [,∞) be a b-generalized pseudodistance on X. We set

A :=
{

x ∈ A : J(x, y) = dist(A, B), for some y ∈ B
}

;

B :=
{

y ∈ B : J(x, y) = dist(A, B), for some x ∈ A
}

;

J∗(a, B) =

s

J(a, B) – dist(A, B), for a ∈ A.

Definition . Let X be a b-metric space (with s ≥ ) and let the map J : X × X → [,∞)
be a b-generalized pseudodistance on X. Let (A, B) be a pair of nonempty subset of X with
A 
= ∅.
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(I) The pair (A, B) is said to have the WPJ -property if and only if

{[
J(x, y) = dist(A, B)

] ∧ [
J(x, y) = dist(A, B)

]}

⇒ {
J(x, x) ≤ J(y, y)

}
,

where x, x ∈ A and y, y ∈ B.
(II) We say that the b-generalized pseudodistance J is associated with the pair (A, B) if

for any sequences (xm : m ∈N) and (ym : m ∈N) in X such that limm→∞ xm = x;
limm→∞ ym = y; and

∀m∈N
{

J(xm, ym–) = dist(A, B)
}

,

then d(x, y) = dist(A, B).

We mention that for a b-metric space (X, d) if we put J = d, then the map d is associated
with each pair (A, B), where (A, B) is a nonempty pair in X because of the continuity of d.

Definition . Let τ be a topological vector space. Let X be a certain space and (A, B) be
a nonempty pair of subsets of X. The multivalued non-self-mapping T : A → B is called
closed whenever (xm : m ∈ N) is a sequence in A converging to x ∈ A and (ym : m ∈ N) is
a sequence in B satisfying the condition ∀m∈N{ym ∈ T(xm)} and converging to y ∈ B, then
y ∈ T(x).

The following lemma will be used in the sequel.

Lemma . ([]) Let X be a complete b-metric space (with s ≥ ) equipped with the
b-generalized pseudodistance J and let the sequence (xm : m ∈ {} ∪N) satisfy

lim
n→∞ sup

m>n
J(xn, xm) = .

Then (xm : m ∈ {} ∪N) is a Cauchy sequence on X.

3 Main results
We begin our main results of this paper with the following notion.

Definition . Define the strictly decreasing function ζ : [, 
 ) → ( 

 , ] by

ζ (α) =  – α.

Let X be a b-metric space (with s ≥ ) and let the map J : X ×X → [,∞) be a b-generalized
pseudodistance on X. Let (A, B) be a pair of nonempty of subsets of X. A multivalued non-
self-mapping T : A → B is said to be an SK-contraction with respect to b-generalized
pseudodistances provided that

∃α∈[, 
 )∀x,y∈A

{{
ζ (α)

s
J∗(x, T(x)

) ≤ J(x, y)
}

⇒ {
sHJ(T(x), T(y)

) ≤ α
[
J∗(x, Tx) + J∗(y, Ty)

]}
}

. (.)
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We now state the main result of this paper.

Theorem . Let X be a complete b-metric space (with s ≥ ) and let the map J : X × X →
[,∞) be a b-generalized pseudodistance on X. Let (A, B) be a pair of nonempty closed
subsets of X with A 
= ∅ and such that (A, B) has the WPJ -property and J is associated with
(A, B). Let T : A → B be a closed multivalued non-self-mapping which is an SK-contraction
with respect to b-generalized pseudodistances. If T(x) ∈ CB(X) for all x ∈ A, and T(x) ⊂ B

for each x ∈ A, then T has a best proximity point in A.

Proof Take a real number β with  ≤ α < β < 
 . Let x ∈ A and y ∈ Tx. Since Tx ⊆ B,

there exists x ∈ A such that J(x, y) = dist(A, B). We have

J(x, Tx) ≤ d(x, y) ≤ s
[
J(x, x) + J(x, y)

]
,

and so

J∗(x, Tx) =

s

J(x, Tx) – dist(A, B) ≤ 
s

s
[
J(x, x) + J(x, y)

]
– dist(A, B) = J(x, x).

Since ζ (α)
s ≤ , we obtain

ζ (α)
s

J∗(x, Tx) ≤ J(x, x).

It now follows from the fact that T is an SK-contraction with respect to b-generalized
pseudodistances that

sJ(y, Tx) ≤ sHJ (Tx, Tx) ≤ α
[
J∗(x, Tx) + J∗(x, Tx)

]

< β
[
J∗(x, Tx) + J∗(x, Tx)

]

= β

[

s
(
J(x, Tx) + J(x, Tx)

)
–  dist(A, B)

]
.

Consider y ∈ Tx such that sJ(y, y) ≤ β[ 
s (J(x, Tx) + J(x, Tx)) –  dist(A, B)]. Then

J(y, y) ≤ β

s

[

s
(
J(x, y) + J(x, y)

)
–  dist(A, B)

]

≤ β

s

[

s
[
s
(
J(x, x) + J(x, y)

)
+ s

(
J(x, y) + J(y, y)

)]
–  dist(A, B)

]

=
β

s
[
J(x, x) + J(y, y)

]
,

which implies that

J(y, y) ≤ β

s – β
J(x, x).

Again, since Tx ⊆ B and y ∈ Tx, there exists x ∈ A such that J(x, y) = dist(A, B). Also,

J(x, Tx) ≤ J(x, y) ≤ s
[
J(x, x) + J(x, y)

]
,
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from which one concludes that

J∗(x, Tx) =

s

J(x, Tx) – dist(A, B)

≤ 
s

s
[
J(x, x) + J(x, y)

]
– dist(A, B) = J(x, x),

and so

ζ (α)
s

J∗(x, Tx) ≤ J(x, x).

Thus

sJ(y, Tx) ≤ sHJ (Tx, Tx) ≤ α
[
J∗(x, Tx) + J∗(x, Tx)

]

≤ β

[

s
(
J(x, Tx) + J(x, Tx)

)
–  dist(A, B)

]
.

Therefore, there exists y ∈ Tx such that

sJ(y, y) ≤ β

[

s
(
J(x, Tx) + J(x, Tx)

)
–  dist(A, B)

]

≤ β

[

s
(
J(x, y) + J(x, y)

)
–  dist(A, B)

]

≤ β

[

s
[
s
(
J(x, x) + J(x, y)

)
+ s

(
J(x, y) + J(y, y)

)]
–  dist(A, B)

]

= β
[
J(x, x) + J(y, y)

]
.

We now have

J(y, y) ≤ β

s – β
J(x, x).

Continuing this process, by induction we can find sequences (xm : m ∈ {} ∪N) and (ym :
m ∈ {} ∪N) such that

∀m∈{}∪N{xm ∈ A ∧ ym ∈ B},
∀m∈{}∪N

{
ym ∈ T(xm)

}
,

∀m∈N
{

J(xm, ym–) = dist(A, B)
}

and

∀m∈N
{

J(ym–, ym) ≤ β

s – β
J(xm–, xm)

}
.

We now have ∀m∈N{J(xm, ym–) = dist(A, B) ∧ J(xm+, ym) = dist(A, B)}. Since (A, B) satisfies
the WPJ -property, we conclude that

∀m∈N
{

J(xm, xm+) ≤ J(ym–, ym)
}

.
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Now, we obtain

J(xm, xm+) ≤ J(ym–, ym) ≤ β

s – β
J(xm–, xm)

≤ β

s – β
J(ym–, ym–) ≤

(
β

s – β

)

J(xm–, xm–)

≤
(

β

s – β

)

J(ym–, ym–) ≤
(

β

s – β

)

J(xm–, xm–)

≤ · · · ≤
(

β

s – β

)m

J(y, y) ≤
(

β

s – β

)m+

J(x, x).

So, for each m > n we have

J(xn, xm) ≤ s
[
J(xn, xn+) + J(xn+, xm)

]

≤ sJ(xn, xn+) + s
[
J(xn+, xn+) + J(xn+, xm)

]

= sJ(xn, xn+) + sJ(xn+, xn+) + sJ(xn+, xm)

≤ · · · ≤
m–(n+)∑

k=

sk+J(xn+k , xn+k+) ≤
m–(n+)∑

k=

sk+
(

β

s – β

)k+n+

J(x, x)

≤
(

β

s – β

)n m–(n+)∑

k=

(
sβ

s – β

)k+

J(x, x).

Since sβ
s–β

< , if n → ∞ in the above relation, we obtain

lim
n→∞ sup

m>n
J(xn, xm) = .

Similarly,

∀n>m

{

J(yn, ym) ≤
m–(n+)∑

k=

(
sβ

s – β

)
skJ(xn+k , xn+k+)

≤
(

sβ
s – β

)n+ m–(n+)∑

k=

(
sβ

s – β

)k

J(x, x)

}

.

Thereby, limn→∞ supm>n J(yn, ym) = . From Lemma . it follows that (xm : m ∈ {} ∪N)
and (ym : m ∈ {} ∪ N) are Cauchy sequences in A and B, respectively. Since (A, B) is a
closed pair of subsets of the complete b-metric space X, there exists p ∈ A and q ∈ B such
that xm → p and ym → q. Besides, since ∀m∈{}∪N{ym ∈ T(xm)}, by the closedness of T , we
obtain q ∈ Tp. On the other hand, since ∀m∈N{J(xm, ym–) = dist(A, B)} and J is associated
with (A, B), we conclude that d(p, q) = dist(A, B). We now have

dist(A, B) ≤D(p, B) ≤D(p, Tp) ≤ d(p, q) = dist(A, B),

that is, D(p, Tp) = dist(A, B) and so p ∈ A is a best proximity point of the non-self-
mapping T . �
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The next results are straightforward consequences of Theorem ..

Corollary . Let X be a complete b-metric space (with s ≥ ). Let (A, B) be a pair of
nonempty closed subsets of X with A 
= ∅ and such that (A, B) has the WP-property. Let
T : A → B be a closed multivalued non-self-mapping which is an SK-contraction with re-
spect to the b-metric. If T(x) ∈ CB(X) for all x ∈ A, and T(x) ⊂ B for each x ∈ A, then T
has a best proximity point in A.

Corollary . Let (A, B) be a pair of nonempty closed subsets of a complete metric space
(X, d) such that A 
= ∅ and (A, B) satisfies the WP-property. Let T : A → B be a closed
multivalued non-self-mapping which is SK-contraction with respect to the b-metric, that is,

∃α∈[, 
 )∀x,y∈A

{{
ζ (α)

s
D∗(x, T(x)

) ≤ d(x, y)
}

⇒ {
sH

(
T(x), T(y)

) ≤ α
[
D∗(x, Tx) + D∗(y, Ty)

]}}
. (.)

If T(x) ∈ CB(X) for all x ∈ A, and T(x) is included in B for each x ∈ A, then T has a
best proximity point in A.

Corollary . Let X be a complete b-metric space (with s ≥ ) and let the map J : X ×X →
[,∞) be a b-generalized pseudodistance on X. Let (A, B) be a pair of nonempty closed
subsets of X with A 
= ∅ and such that (A, B) has the WPJ -property and J is associated
with (A, B). Let T : A → B be a continuous single-valued non-self-mapping which is an SK-
contraction with respect to b-generalized pseudodistances. If T(A) ⊆ B, then T has a best
proximity point in A.

Corollary . Let X be a complete b-metric space (with s ≥ ). Let (A, B) be a pair of
nonempty closed subsets of X with A 
= ∅ and such that (A, B) has the WP-property. Let
T : A → B be a continuous single-valued non-self-mapping which is an SK-contraction with
respect to the b-metric. If T(A) ⊆ B, then T has a best proximity point in A.

Corollary . Let X be a complete b-metric space (with s ≥ ). Let A be a nonempty closed
subset of X. Let T : A → A be a closed multivalued mapping which is an SK-contraction
with respect to the b-metric. If T(x) ∈ CB(X) for all x ∈ A, then T has a fixed point.

Notice that we can omit the condition of closedness of the multivalued mapping T in
Corollary ..

Theorem . (Compare with Theorem .) Let X be a complete b-metric space (with
s ≥ ). Let A be a nonempty closed subset of X. Let T : A → A be a multivalued mapping
which is an SK-contraction. If T(x) ∈ CB(X) for all x ∈ A, then T has a fixed point.

Proof In especial case, if J = d and A = B in Theorem ., then we obtain a sequence (xm :
m ∈ {} ∪N) such that

∀m∈{}∪N
{

xm+ ∈ T(xm)
}

,

∀m∈N
{

d(xm, xm+) ≤ β

s – β
d(xm–, xm)

}
.
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Moreover, we proved that xm → p ∈ A. We now assert that

∀x∈A–{p}
{

D(p, Tx) ≤ α

s
D(x, Tx)

}
. (.)

Since xm → p and d is continuous, d(xm, p) → . So,

∃N∈N∀m≥N

{
d(p, xm) ≤ 

s
d(p, x)

}
.

We have

D(xm, Txm) ≤ d(xm, xm+) ≤ s
[
d(xm, p) + d(p, xm+)

]
.

So, 
s D(xm, Txm) ≤ d(xm, p) + d(p, xm+). By the fact that ζ (α) ≤ , for all m > N we obtain

ζ (α)
s

D(xm, Txm) ≤ [
d(xm, p) + d(p, xm+)

]

≤ 
s

d(p, x) =

s

d(p, x) –

s

d(p, x)

≤ 
s

d(p, x) – d(p, xm) ≤ d(xm, x).

Thereby,

∀m≥N
{

sH(Txm, Tx) ≤ α
[
D(xm, Txm) + D(x, Tx)

]} ≤ α
[
d(xm, xm+) + D(x, Tx)

]
.

We have

sD(xm+, Tx) ≤ sH(Txm, Tx) ≤ α
[
d(xm, xm+) + D(x, Tx)

]
.

Letting m → ∞, we obtain D(p, Tx) ≤ α
s D(x, Tx), that is, (.) holds. We next verify that

∀x∈A{sH(Tp, Tx) ≤ α[D(p, Tp) + D(x, Tx)]}. This is trivial when x = p. Suppose x 
= p. Then
for every n ∈N there exists zn ∈ Tx such that d(p, zn) ≤ D(p, Tx) + 

n d(x, p). So,

D(x, Tx) ≤ d(x, zn) ≤ s
[
d(x, p) + d(p, zn)

]
,

which, by (.), implies that


s

D(x, Tx) ≤ d(x, p) +

n

d(x, p) + D(p, Tx) ≤ d(x, p) +

n

d(x, p) +
α

s
D(x, Tx).

Thus ζ (α)
s D(x, Tx) ≤ ( + 

n )d(p, x) for all n ∈ N, from which one concludes that ζ (α)
s D(x,

Tx) ≤ d(p, x). So, sH(Tp, Tx) ≤ α[D(p, Tp) + D(x, Tx)]. Hence,

D(p, Tp) = lim
m→∞ D(xm, Tp)

≤ lim
m→∞H(Txm–, Tp) ≤ lim

m→∞
α

s
[
D(p, Tp) + D(xm–, Txm–)

]

≤ α

s
D(p, Tp) + lim

m→∞
α

s
d(xm–, xm) =

α

s
D(p, Tp).
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Since α
s < , we must have D(p, Tp) = . That is, p ∈ Tp = Tp and this completes the proof

of the theorem. �

4 Examples and remarks
Now, we will present some examples illustrating the concepts having been introduced
so far. First, we present an example of generalized pseudodistances in metric spaces and
b-metric spaces, respectively.

Example . Let X be a metric space (b-metric space respectively) where the metric d :
X × X → [,∞) is of the form d(x, y) = |x – y| (b-metric d(x, y) = |x – y|), x, y ∈ X. Let the
closed set E ⊂ X, containing at least two different points, be arbitrary and fixed. Let c > 
such that c > δ(E), where δ(E) = sup{d(x, y) : x, y ∈ E} be arbitrary and fixed. Define the map
J : X × X → [,∞) as follows:

J(x, y) =

⎧
⎨

⎩
d(x, y) if {x, y} ∩ E = {x, y},
c if {x, y} ∩ E 
= {x, y}.

(.)

Then J : X × X → [,∞) is a generalized pseudodistance on X [] (b-generalized pseu-
dodistance on X []).

Let us illustrate Theorem . with the following example.

Example . Let (X, d) be a b-metric space (with constant s = ), where X = R, d(x, y) =
|x – y|, x, y ∈ X. Let (A, B) be a pair of subsets of X, where A = [, ] and B = [, ]. Let
E = [, ] ∪ {, } and let J : X × X → [,∞) be defined by the formula

J(x, y) =

⎧
⎨

⎩
d(x, y) if E ∩ {x, y} = {x, y},
 if E ∩ {x, y} 
= {x, y},

x, y ∈ X. (.)

It is easy to show that J is a b-generalized pseudodistance. Assume that T : A → B is of
the form

T(x) =

⎧
⎪⎪⎨

⎪⎪⎩

{} if x = ,

[ 
 , ] if x ∈ (, ),

{ 
 } if x = .

(.)

I. We show that the pair (A, B) has the WPJ -property.
Indeed, we observe that dist(A, B) =  and by (.) we obtain

A =
{

x ∈ A : there exists u ∈ B such that J(x, u) = d(A, B)
}

= {},
B =

{
u ∈ B : there exists x ∈ B such that J(x, u) = d(A, B)

}
= {}.

Hence, it is easy to verify that the pair (A, B) has the WPJ -property.
II. We see that A is complete and by (.) we have T(A) = T({}) = {} ⊂ B.
III. We see that T is an SK-contraction with respect to the b-generalized pseudodistance.



Gabeleh and Plebaniak Fixed Point Theory and Applications  (2015) 2015:50 Page 14 of 20

Indeed, first we observe that by (.) and the definition of E, we calculate

HJ
([




, 
]

,
{




})
= HJ

(
{},

{



})
=




. (.)

Let α = 
 < 

 and let x, y ∈ A be arbitrary and fixed. Additionally, we calculate

J∗(, T()
)

=



J
(
, T()

)
–  =




J
(
, {}) –  = –




, (.)

J∗(, T()
)

=



J
(
, T()

)
–  =




J
(

,
[

,



])
–  =




–  =



(.)

and

∀x∈(,)

{
J∗(x, T(x)

)
=




J
(

x,
[




, 
])

– 
}

=  (since x /∈ E). (.)

Now, we consider the following cases.
Case . If x =  and y = , then by (.)-(.) we obtain

HJ(T(x), T(y)
)

= HJ
(

{},
{




})
=




=
,
,

<
,
,

=



· 


=



[
–




+



]
=




[
J∗(x, T(x)

)
+ J∗(y, T(y)

)]
. (.)

Case . If x =  and y = , then by (.)-(.) we obtain

HJ(T(x), T(y)
)

= HJ
({




}
, {}

)
=




=
,
,

<
,
,

=



· 


=



[



+
(

–



)]
=




[
J∗(x, T(x)

)
+ J∗(y, T(y)

)]
. (.)

Case . If x =  and y ∈ (, ), then by (.)-(.) we obtain

HJ(T(x), T(y)
)

= HJ
(

{},
[




, 
])

=  ≤ 


[
–




+ 
]

≤ 


[
J∗(x, T(x)

)
+ J∗(y, T(y)

)]
. (.)

Case . If x = (, ) and y = , then by (.)-(.) we obtain

HJ(T(x), T(y)
)

= HJ
([




, 
]

, {}
)

=  ≤ 


[
 +

(
–




)]

≤ 


[
J∗(x, T(x)

)
+ J∗(y, T(y)

)]
. (.)

Case . If x =  and y ∈ (, ), then by (.)-(.) we obtain

HJ(T(x), T(y)
)

= HJ
({




}
,
[




, 
])

=



=
,
,

<
,
,

=



[
–




+



]

<



[



+ 
]

≤ 


[
J∗(x, T(x)

)
+ J∗(y, T(y)

)]
. (.)
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Case . If x ∈ (, ) and y = , then by (.)-(.) we obtain

HJ(T(x), T(y)
)

= HJ
([




, 
]

,
{




})
=




=
,
,

<
,
,

=



[
–




+



]

<



[
 +




]
≤ 


[
J∗(x, T(x)

)
+ J∗(y, T(y)

)]
. (.)

Case . If x, y ∈ (, ), then by (.)-(.) we obtain

HJ(T(x), T(y)
)

= HJ
([




, 
]

,
[




, 
])

=  ≤ 


[ + ]

≤ 


[
J∗(x, T(x)

)
+ J∗(y, T(y)

)]
. (.)

Now, from (.)-(.), we have (we recall s =  and α = 
 )

∀x,y∈A
{

sHJ(T(x), T(y)
) ≤ α

[
J∗(x, T(x)

)
+ J∗(y, T(y)

)]}
.

Hence, obviously

∃α= 
 ∈[, 

 )∀x,y∈A

{{
ζ (α)

s
J∗(x, T(x)

) ≤ J(x, y)
}

⇒ {
sHJ(T(x), T(y)

) ≤ α
[
J∗(x, T(x)

)
+ J∗(y, T(y)

)]}
}

.

In consequence, the map T is an SK-contraction with respect to the b-generalized pseu-
dodistance.

IV. We see that all assumptions of Theorem . are satisfied.
Indeed, the map T is closed, and J is associated with (A, B) (by (.) and continuity of d).
V. There exists a best proximity point of T .
Indeed, for z =  we have inf{d(z, u) : u ∈ T(z)} = inf{d(, u) : u ∈ {}} =  = dist(A, B).

In conclusion, in order to compare our result with Theorem . and Theorem ., we
need to reformulate the definition of the SK-contraction.

Definition . Define the strictly decreasing function ζ : [, 
 ) → ( 

 , ] by

ζ (α) =  – α.

Let X be a metric space (i.e. b-metric space with s = ) and let J : X × X → [,∞) be a
b-generalized pseudodistance (for short: generalized pseudodistance) on X.

(I) Let T : X → X . In this case, J∗(x, T(x)) = J(x, T(x)), where x ∈ X . A single-valued
self-mapping T is said to be a SK-contraction with respect to generalized
pseudodistance provided that

∃α∈[, 
 )∀x,y∈X

{{
ζ (α)J

(
x, T(x)

) ≤ J(x, y)
}

⇒ {
J
(
T(x), T(y)

) ≤ α
[
J(x, Tx) + J(y, Ty)

]}}
.
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(II) Let T : X → CB(X). In this case, J∗(x, T(x)) = J(x, T(x)) = inf{J(x, y) : y ∈ T(x)},
where x ∈ X . A multivalued self-mapping T is said to be an SK-contraction with
respect to the generalized pseudodistance provided that

∃α∈[, 
 )∀x,y∈X

{{
ζ (α)J

(
x, T(x)

) ≤ J(x, y)
}

⇒ {
HJ(T(x), T(y)

) ≤ α
[
J(x, Tx) + J(y, Ty)

]}}
.

Now, we can formulate the following remarks:

Remark .
(i) There exist SK-contractions with respect to b-generalized pseudodistances which

are not contractions of Kannan type as introduced by Kikkawa and Suzuki [] (see
Examples . and .) and not contractions as introduced by Damjanovic and
Doric [] (see Examples . and .).

(ii) Theorem . is an essential generalization of Theorem . (see Examples .
and .).

(iii) Theorem . is an essential generalization of Theorem . (see Examples .
and .).

Example . Let (X, d) be a metric space (i.e. b-metric space with constant s = ), where
X = [, ] ⊂R, d(x, y) = |x – y|, x, y ∈ X. Let E = [, 

 ] and let J : X × X → [,∞) be defined
by the formula

J(x, y) =

⎧
⎨

⎩
d(x, y) if E ∩ {x, y} = {x, y},
 if E ∩ {x, y} 
= {x, y},

x, y ∈ X. (.)

It is easy to show that J is a b-generalized pseudodistance (we recall s = ). Assume that
T : X → X is of the form

T(x) =

⎧
⎨

⎩


 if x ∈ [, 

 ],

x – 
 if x ∈ ( 

 , ].
(.)

I. We see that T is an SK-contraction.
Indeed, let α = 

 and let x, y ∈ X be arbitrary and fixed. We consider the following cases.
Case . If x, y ∈ [, 

 ], then by (.) we obtain Tx = Ty = 
 . Hence, J(Tx, Ty) = d(Tx, Ty) =

 ≤ 
 [J(x, Tx) + J(y, Ty)]. Moreover,

ζ (α)J(x, Tx) ≤ J(x, y) implies J(Tx, Ty) ≤ α
[
J(x, Tx) + J(y, Ty)

]
. (.)

Case . If x, y ∈ ( 
 , ], then by (.) and (.) we obtain J(x, Tx) = J(y, Ty) = . Hence,

J(Tx, Ty) = d(Tx, Ty) ≤  and hence J(Tx, Ty) ≤  < 
 = 

 [J(x, Tx) + J(y, Ty)]. Moreover,

ζ (α)J(x, Tx) ≤ J(x, y) implies J(Tx, Ty) ≤ α
[
J(x, Tx) + J(y, Ty)

]
. (.)

Case . If x ∈ [, 
 ], y ∈ ( 

 , ], then by (.) and (.) we obtain J(x, Tx) = d(x, Tx) ≤
 and J(y, Ty) = . Hence, J(Tx, Ty) = d(Tx, Ty) ≤  and so J(Tx, Ty) ≤  < 

 = 
 [ + ] =
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 [min{J(x, Tx) : x ∈ [, 

 ]} + J(y, Ty)] ≤ 
 [J(x, Tx) + J(y, Ty)]. Moreover,

ζ (α)J(x, Tx) ≤ J(x, y) implies J(Tx, Ty) ≤ α
[
J(x, Tx) + J(y, Ty)

]
. (.)

Now, by (.)-(.) and the symmetry of J , we obtain

∃α= 
 ∈[, 

 )∀x,y∈X
{{

ζ (α)J
(
x, T(x)

) ≤ J(x, y)
}

⇒ {
J
(
T(x), T(y)

) ≤ α
[
J
(
x, T(x)

)
+ J

(
y, T(y)

)]}}
.

In consequence, the map T is an SK-contraction on X.
II. We see that all assumptions of Theorem . are satisfied.
Indeed, the map T is a closed self-mapping which is an SK-contraction.
III. There exists a fixed point for T .
Indeed, for z =  we have  ∈ T({}).

Example . Let (X, d) be a metric space (i.e. b-metric space with constant s = ), where
X = [, ] ⊂R, d(x, y) = |x – y|, x, y ∈ X. Let T be as in Example .. We show that the map
T is not a contraction of Kannan type as introduced by Kikkawa and Suzuki [].

Indeed, we suppose that the map T satisfies (.). Then there exists α ∈ [, 
 ) such that

r = α
–α

and

ϕ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ α
[
d(x, Tx) + d(y, Ty)

]
. (.)

In particular, for x = , y = , by (.) we get Tx = 
 , d(x, Tx) = d(, 

 ) = 
 , Ty = 

 ,
d(y, Ty) = d(, 

 ) = 
 , and

ϕ(r)d(x, Tx) ≤ d(x, Tx) =



<  = d(x, y).

Hence, by (.) we obtain

 = d
(




,



)
= d(Tx, Ty) ≤ α

[
d(x, Tx) + d(y, Ty)

]

<
[
d(x, Tx) + d(y, Ty)

]
= ,

which is impossible. In consequence the map T is not a contraction of Kannan type [].

Example . Let (X, d) be a metric space (i.e. b-metric space with constant s = ), where
X = [, ] ⊂ R, d(x, y) = |x – y|, x, y ∈ X. Let E = [, 

 ] and let J : X × X → [,∞) be as in
Example ., i.e.

J(x, y) =

⎧
⎨

⎩
d(x, y) if E ∩ {x, y} = {x, y},
 if E ∩ {x, y} 
= {x, y},

x, y ∈ X. (.)

Let T : X → X be of the form

T(x) =

⎧
⎨

⎩
{ 

 } if x ∈ [, 
 ],

[x – 
 , x – 

 ] if x ∈ ( 
 , ].

(.)
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I. We see that T is a multivalued self -SK-contraction.
Indeed, let α = 

 and let x, y ∈ X be arbitrary and fixed. We consider the following cases.
Case . If x, y ∈ [, 

 ], then by (.) we obtain Tx = Ty = { 
 }. Hence, from (.),

HJ (Tx, Ty) = H(Tx, Ty) =  ≤ 
 [J(x, Tx) + J(y, Ty)]. Moreover,

ζ (α)J(x, Tx) ≤ J(x, y) implies HJ (Tx, Ty) ≤ α
[
J(x, Tx) + J(y, Ty)

]
. (.)

Case . If x, y ∈ ( 
 , ], then by (.) and (.) we obtain J(x, Tx) = J(y, Ty) = . Hence,

HJ (Tx, Ty) = H(Tx, Ty) ≤  and hence HJ (Tx, Ty) ≤  < 
 = 

 [J(x, Tx) + J(y, Ty)]. Moreover,

ζ (α)J(x, Tx) ≤ J(x, y) implies HJ (Tx, Ty) ≤ α
[
J(x, Tx) + J(y, Ty)

]
. (.)

Case . If x ∈ [, 
 ], y ∈ ( 

 , ], then by (.) and (.) we obtain J(x, Tx) = d(x, Tx) ≤ 
and J(y, Ty) = . Hence, HJ (Tx, Ty) = H(Tx, Ty) ≤  and hence HJ (Tx, Ty) ≤  < 

 = 
 [ +

] = 
 [min{J(x, Tx) : x ∈ [, 

 ]} + J(y, Ty)] ≤ 
 [J(x, Tx) + J(y, Ty)]. Moreover,

ζ (α)J(x, Tx) ≤ J(x, y) implies HJ (Tx, Ty) ≤ α
[
J(x, Tx) + J(y, Ty)

]
. (.)

Now by (.)-(.) and the symmetry of J , we obtain

∃α= 
 ∈[, 

 )∀x,y∈X
{{

ζ (α)J
(
x, T(x)

) ≤ J(x, y)
}

⇒ {
HJ(T(x), T(y)

) ≤ α
[
J(x, Tx) + J(y, Ty)

]}}
.

In consequence, the map T is a multivalued self-SK-contraction on X.
II. We see that all assumptions of Theorem . are satisfied.
Indeed, the map T is a closed self-mapping which is a SK-contraction.
III. There exists a fixed point for T .
Indeed, for z =  we have  ∈ T({}).

Example . Let (X, d) be a metric space (i.e. b-metric space with constant s = ), where
X = [, ] ⊂R, d(x, y) = |x – y|, x, y ∈ X. Let T be as in Example .. We show that the map
T is not contraction as introduced by Damjanovic and Doric [].

Indeed, we suppose that the map T satisfies (.). Then there exists r ∈ [, ) such that

ϕ(r)D(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ r max
{

D(x, Tx), D(y, Ty)
}

. (.)

In particular, for x = , y = , by (.) we get Tx = { 
 }, D(x, Tx) = D(, { 

 }) = 
 , Ty =

{ 
 }, D(y, Ty) = D(, { 

 }) = 
 and

ϕ(r)D(x, Tx) ≤ D(x, Tx) =



<  = d(x, y).

Hence, by (.) we obtain

 = H
({




}
,
{




})
= H(Tx, Ty) ≤ r max

{
D(x, Tx), D(y, Ty)

}
<




,

which is impossible. In consequence the map T is not a contraction as introduced by Dam-
janovic and Doric [].
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