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1 Introduction
The study of fixed points for nonlinear mappings is an important subject of nonlinear
function analysis, and the theory of fixed points is frequently applied to nonlinear integral
equations and differential equations (see [–] and the references given there). Besides,
the work of Caristi [], in which a partial ordering was introduced in metric spaces by
a function and a fixed point theorem was proved, is worthy of attention. In , in the
work of Huang and Zhang [], the concept of cone metric spaces as a generalization of
general metric spaces was introduced, in which the distance d(x, y) of x and y is defined
to be a vector in an ordered Banach space E. It was also proved that the Banach contrac-
tion principle remains true in the setting of cone metric spaces. After that, based on the
work of Huang and Zhang [], the fixed point results of some mappings with certain con-
tractive property on cone metric spaces appeared like mushrooms after rain (see [–]
and the references therein and [–]). Among those works, the results of [, ] attract
much attention since they give an answer to the natural problem that whether cone met-
ric spaces are equivalent to metric spaces in terms of the existence of fixed points of the
involved mappings. Concretely, the authors showed that any cone metric space (X, d) is
equivalent to a usual metric space (X, d∗) if the real-valued metric function d∗ is defined by
a nonlinear scalarization function ξe (see []) or by a Minkowski functional qe (see []).

In , in order to generalize the Banach contraction principle to a more general form,
Liu and Xu [, ] introduced the concept of cone metric spaces over Banach algebras
by replacing Banach spaces with Banach algebras and proved some fixed point theorems
of generalized Lipschitz mappings with weaker and natural conditions on the generalized
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Lipschitz constant k by means of spectral radius and pointed out that it is significant to in-
troduce the concept of cone metric spaces over Banach algebras because it can be proved
that cone metric spaces over Banach algebras are not equivalent to metric spaces in terms
of the existence of fixed points of the generalized Lipschitz mappings (see []). Liu and
Xu [] showed that their results could not be reduced to a consequence of correspond-
ing results in metric spaces by means of the methods in the literature. In , Xu and
Radenović [] keenly discovered that the proofs of the main results of [] strongly de-
pend on the condition that the underlying solid cone is normal. Naturally, they considered
that whether the conclusions of [] remain valid if ‘normal’ is deleted from the hypothe-
ses. By means of some properties of spectral radius, they proved that the main results of
[] still hold without the assumption of normality of the cone involved. Hence Xu and
Radenović [] improved the results of [].

In this paper, on the basis of [, ], we introduce a partial ordering given by a continu-
ous function in cone metric spaces over Banach algebras as well as the concept of ordered
contractive mappings that differ from the known contractive mappings, and present sev-
eral fixed point results of such mappings under some natural conditions. Finally, as an
application of one of our results, we give a concrete example.

2 Preliminaries
Consistent with Huang and Zhang [] and Liu and Xu [], the following definitions and
results are needed in the sequel.

Let A always be a real Banach algebra, that is, A is a real Banach space in which an
operation of multiplication is defined, subject to the following properties (for all x, y, z ∈A,
α ∈ R):

() (xy)z = x(yz);
() x(y + z) = xy + xz and (x + y)z = xz + yz;
() α(xy) = (αx)y = x(αy);
() ‖xy‖ ≤ ‖x‖‖y‖.
Here and subsequently, we assume that a Banach algebra has a unit (i.e., a multiplicative

identity) e such that ex = xe = x for all x ∈ A. x ∈ A is said to be invertible if there is an
inverse element y ∈ A such that xy = yx = e. The inverse of x is denoted by x–. We refer
the reader to [] for more details.

A non-empty closed convex subset P of a Banach algebra A is called a cone if
(i) {θ , e} ⊂ P;

(ii) αP + βP ⊂ P;
(iii) P = PP ⊂ P;
(iv) P ∩ (–P) = {θ},

where θ denotes the null of the Banach algebra A.
Fix a cone P ⊂ A, a partial ordering ‘�’ with respect to P can be defined by x � y if and

only if y – x ∈ P. x ≺ y stands for x � y and x 
= y. x � y stands for y – x ∈ int(P), here int(P)
denotes the interior of P. P is called a solid cone if int(P) 
= ∅. P is called normal if there
exists a positive constant N such that for all x, y ∈A, θ � x � y ⇒ ‖x‖ ≤ N‖y‖.

Definition . ([]) Let X be a non-empty set and A be a real Banach algebra. Suppose
that the mapping d : X × X →A satisfies:

() θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
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() d(x, y) = d(y, x) for all x, y ∈ X ;
() d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X .

Then d is called a cone metric on X and (X, d) is called a cone metric space over the Banach
algebra A.

See [] for some examples of cone metric spaces over Banach algebras.

Definition . ([]) Let (X, d) be a cone metric space over the Banach algebra A, x ∈ X
and let {xn} be a sequence in X. Then:

() {xn} converges to x if for each c ∈A with θ � c, there is a natural number N such
that d(xn, x) � c for all n > N . We denote this by limn→∞ xn = x or xn → x.

() {xn} is a Cauchy sequence if for each c ∈A with θ � c, there is a natural number N
such that d(xn, xm) � c for all n, m > N .

() (X, d) is a complete cone metric space if every Cauchy sequence is convergent.

Definition . Let (X, d) be a cone metric space over the Banach algebraA and ϕ : X →A
be a mapping. A relation ‘≤’ (for the sake of differing from the partial ordering ‘�’ in A,
we denote it by ‘≤’) in X is defined as follows:

x, y ∈ X, x ≤ y if and only if d(x, y) � ϕ(x) – ϕ(y).

Clearly ‘≤’ is a partial ordering in X and x ≤ y implies ϕ(x) � ϕ(y). Here we call it the
partial ordering induced by ϕ. Meanwhile, (X, d) is called a partial ordering cone metric
space over the Banach algebra A.

Definition . Let (X, d) be a partial ordering cone metric space over the Banach alge-
bra A. We say that x, y ∈ X are comparable if x ≤ y or y ≤ x holds.

If x ≤ y and x 
= y, we write x < y. We write x = x∨y if y ≤ x and write y = x∨y if x ≤ y. The
same notions as those in Definition . can be defined in A as follows: For any x, y ∈A, if
x � y or y � x holds, we say that x and y are comparable. Let u, v ∈ A. Similarly, we write
v = u ∨ v if u � v and write u = v ∨ u if v � u. From Definition ., it is evident that ϕ(x)
and ϕ(y) are comparable in A if x, y ∈ X are comparable.

Remark . Suppose that A is a real Banach algebra, u, v, w ∈ A. The following results
are clear.

(i) If u and v are comparable, then u – v and v – u are comparable and
θ � (u – v) ∨ (v – u).

(ii) If u and v, u and w together with v and w are comparable, then

(u – v) ∨ (v – u) � (
(u – w) ∨ (w – u)

)
+

(
(w – v) ∨ (v – w)

)
.

Definition . Let (X, d) be a cone metric space over the Banach algebraA and A : X → X
be a mapping. We say that A is continuous if for any {xn} ⊂ X, xn → x implies Axn → Ax
(n → ∞).

In the rest of this section, we always assume that A is a real Banach algebra and (X, d) is a
complete partial ordering cone metric space over A with the partial ordering ‘≤’ induced
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by ϕ, where ϕ : X →A is continuous, P is a solid cone ofAwhich gives the partial ordering
‘�’ in A.

Definition . A mapping A : X → X is said to be ϕ-ordered contractive if there exists
k ∈ P with  ≤ r(k) <  such that for any x, y ∈ X, if x and y are comparable, then Ax and
Ay are comparable and

(
ϕ(Ax) – ϕ(Ay)

) ∨ (
ϕ(Ay) – ϕ(Ax)

) � k
[(

ϕ(x) – ϕ(y)
) ∨ (

ϕ(y) – ϕ(x)
)]

. (.)

Remark . See Example . for a support example of Definition ., Definition ., Def-
inition . and Definition ..

Lemma . ([]) Let {xn} and {yn} be two sequences in X and xn → x, yn → y as n → ∞.
Then d(xn, yn) → d(x, y) (n → ∞).

Lemma . Let u, vn ∈ X (n = , , . . .). If for any natural number n, u and vn are compa-
rable and vn → v (n → ∞), then u and v are comparable.

Proof Since for any natural number n, u and vn are comparable, there exists a subsequence
{vnk } of {vn} such that for any k, u ≤ vnk or vnk ≤ u. Without loss of generality, we as-
sume that for any k, u ≤ vnk . As vn → v when n → ∞, we have vnk → v as k → ∞. By
Lemma . and the continuity of ϕ and noting u ≤ vnk for all k ≥ , we have

d(u, v) = lim
k→∞

d(u, vnk ) � lim
k→∞

(
ϕ(u) – ϕ(vnk )

)
= ϕ(u) – ϕ(v).

So u ≤ v. That is u and v are comparable. �

Lemma . Let un, vn ∈ X (n = , , , . . .). If for any natural number n, un and vn are com-
parable and un → u, vn → v (n → ∞), then u and v are comparable. In particular, if
for any natural number n, un ≤ vn and un → u, vn → v (n → ∞), then u ≤ v.

Proof Because the proof is similar to that of Lemma ., we omit it. �

Lemma . ([]) Let x, y be vectors in A. If x and y commute, then the spectral radius r
satisfies the following properties:

(i) r(xy) ≤ r(x)r(y);
(ii) r(x + y) ≤ r(x) + r(y);

(iii) |r(x) – r(y)| ≤ r(x – y).

Lemma . ([]) Let k ∈ A. If  ≤ r(k) < , then e – k is invertible and r((e – k)–) ≤
( – r(k))–.

3 Main results
In this section, we will present the main results and their proofs. For simplicity, we always
assume thatA is a real Banach algebra and (X, d) is a complete partial ordering cone metric
space over A with the partial ordering ‘≤’ induced by ϕ, where ϕ : X → A is continuous.
Let P be a normal solid cone of A which gives the partial ordering ‘�’ in A.
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Theorem . If a continuous mapping A : X → X is ϕ-ordered contractive and there exists
x ∈ X such that x and Ax are comparable, then A has a fixed point x∗ in X, that is,
Ax∗ = x∗. Furthermore, the iterative sequence xn = Axn– (n = , , . . .) converges to x∗ and

d
(
x∗, x

) � (e – k)–[(ϕ(Ax) – ϕ(x)
) ∨ (

ϕ(x) – ϕ(Ax)
)]

,

where k is the element in P satisfying (.).

Proof Put

x = Ax, . . . , xn = Axn–, . . . , n = , , . . . . (.)

Since x and Ax are comparable and A is ϕ-ordered contractive, x = Ax and x = Ax

are comparable. By induction, it is not difficult to prove that for any natural number n, xn

and xn+ are comparable. As A is ϕ-ordered contractive, there exists k ∈ P with  ≤ r(k) < 
such that for any natural number n,

(
ϕ(xn+) – ϕ(xn)

) ∨ (
ϕ(xn) – ϕ(xn+)

)
=

(
ϕ(Axn) – ϕ(Axn–)

) ∨ (
ϕ(Axn–) – ϕ(Axn)

)

� k
[(

ϕ(xn) – ϕ(xn–)
) ∨ (

ϕ(xn–) – ϕ(xn)
)]

� · · ·
� kn[(ϕ(Ax) – ϕ(x)

) ∨ (
ϕ(x) – ϕ(Ax)

)]
.

By the definition of ‘�’ and the ordered contractive property of A, we get that

d(xn+, xn) � (
ϕ(xn+) – ϕ(xn)

) ∨ (
ϕ(xn) – ϕ(xn+)

)

� · · ·
� kn[(ϕ(Ax) – ϕ(x)

) ∨ (
ϕ(x) – ϕ(Ax)

)]
.

For any pair of natural numbers n, m with m > n, we have

d(xn, xm) � d(xn, xn+) + d(xn+, xn+) + · · · + d(xm–, xm)

� (
kn + kn+ + · · · + km–)[(ϕ(Ax) – ϕ(x)

) ∨ (
ϕ(x) – ϕ(Ax)

)]

�
( ∞∑

i=

ki

)

kn[(ϕ(Ax) – ϕ(x)
) ∨ (

ϕ(x) – ϕ(Ax)
)]

= (e – k)–kn[(ϕ(Ax) – ϕ(x)
) ∨ (

ϕ(x) – ϕ(Ax)
)]

.

Then by the same argument as that used in Theorem . of [], we can prove that {xn} is
a Cauchy sequence. Since X is complete, there exists x∗ ∈ X such that xn → x∗ (n → ∞).
The continuity of A implies that xn+ = Axn → Ax∗ (n → ∞). So Ax∗ = x∗, that is, x∗ is a
fixed point of A. Furthermore, by Lemma ., we have

d
(
x∗, x

)
= lim

n→∞ d(xn, x)

� lim
n→∞

n∑

i=

d(xi, xi–)
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�
∞∑

i=

ki–[(ϕ(Ax) – ϕ(x)
) ∨ (

ϕ(x) – ϕ(Ax)
)]

= (e – k)–[(ϕ(Ax) – ϕ(x)
) ∨ (

ϕ(x) – ϕ(Ax)
)]

. �

Theorem . If A : X → X is ϕ-ordered contractive and there exists x ∈ X such that for
any natural number n, x and Anx are comparable, then the same conclusions as those of
Theorem . hold.

Proof Define {xn} by xn = Axn– (n = , , . . .). By a proof similar to that of Theorem .,
one can prove easily that {xn} is a Cauchy sequence. The completeness of X implies that
there is x∗ ∈ X such that xn → x∗ (n → ∞). Next, we show that x∗ is a fixed point of A.

For any pair of natural numbers n, m with n < m, x and xm–n = Am–nx are compara-
ble according to the given conditions. As A is ϕ-ordered contractive, Ax and Axm–n are
comparable. Continue this progress, we get that xn = Anx and xm = Anxm–n = Amx are
comparable. Let m → ∞, Lemma . shows that for any natural number n, xn and x∗ are
comparable. Because A is ϕ-ordered contractive, Axn and Ax∗ are comparable and there
exists k ∈ P with  ≤ r(k) <  such that

(
ϕ(Axn) – ϕ

(
Ax∗)) ∨ (

ϕ
(
Ax∗) – ϕ(Axn)

)

� k
[(

ϕ(xn) – ϕ
(
x∗)) ∨ (

ϕ
(
x∗) – ϕ(xn)

)]
. (.)

Noting the ordered contractive property of A, we have

d
(
xn+, Ax∗) = d

(
Axn, Ax∗) � (

ϕ(Axn) – ϕ
(
Ax∗)) ∨ (

ϕ
(
Ax∗) – ϕ(Axn)

)

� k
[(

ϕ(xn) – ϕ
(
x∗)) ∨ (

ϕ
(
x∗) – ϕ(xn)

)]
.

Let un = d(xn+, Ax∗), vn = k[(ϕ(xn) – ϕ(x∗)) ∨ (ϕ(x∗) – ϕ(xn))], n = , , , . . . . Then, for any
natural number n, un ≤ vn. Notice that un = d(xn+, Ax∗) → d(x∗, Ax∗) and the continuity
of ϕ, by Lemma ., we have d(x∗, Ax∗) � k[ϕ(x∗) – ϕ(x∗)] = θ , so Ax∗ = x∗.

Moreover, we get that

d(xn+, xn) � (
ϕ(xn+) – ϕ(xn)

) ∨ (
ϕ(xn) – ϕ(xn+)

)

=
(
ϕ(Axn) – ϕ(Axn–)

) ∨ (
ϕ(Axn–) – ϕ(Axn)

)

� k
[(

ϕ(xn) – ϕ(xn–)
) ∨ (

ϕ(xn–) – ϕ(xn)
)]

� · · ·
� kn[(ϕ(Ax) – ϕ(x)

) ∨ (
ϕ(x) – ϕ(Ax)

)]
.

Hence Lemma . gives that

d
(
x∗, x

)
= lim

n→∞ d(xn, x)

� lim
n→∞

n∑

i=

d(xi, xi–)
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� lim
n→∞

n∑

i=

ki–[(ϕ(Ax) – ϕ(x)
) ∨ (

ϕ(x) – ϕ(Ax)
)]

= (e – k)–[(ϕ(Ax) – ϕ(x)
) ∨ (

ϕ(x) – ϕ(Ax)
)]

. �

Theorem . Let A : X → X be a continuous mapping satisfying the following conditions:
(i) There exist λ,λ ∈ P with  ≤ r(λ) + r(λ) <  such that for any comparable pair

x, y ∈ X , Ax and Ay are comparable. Moreover, if x and Ax, y and Ay are comparable,
then

(
ϕ(Ax) – ϕ(Ay)

) ∨ (
ϕ(Ay) – ϕ(Ax)

)

� λ
[(

ϕ(Ax) – ϕ(x)
) ∨ (

ϕ(x) – ϕ(Ax)
)]

+ λ
[(

ϕ(Ay) – ϕ(y)
) ∨ (

ϕ(y) – ϕ(Ay)
)]

.

(ii) There exists x ∈ X such that x and Ax are comparable.
Then A has a fixed point x∗ in X. Furthermore, the iterative sequence xn = Axn– (n =
, , . . .) converges to x∗ and

d
(
x∗, x

) � [
e – (e – λ)–λ

]–[(
ϕ(Ax) – ϕ(x)

) ∨ (
ϕ(x) – ϕ(Ax)

)]
.

Proof Let xn = Axn– (n = , , . . .). Since x and Ax are comparable, according to the given
condition (i) and by induction, it is easy to verify that for any natural number n, xn and
xn+ = Axn are comparable. Therefore

d(xn, xn+) � (
ϕ(xn) – ϕ(xn+)

) ∨ (
ϕ(xn+) – ϕ(xn)

)

=
(
ϕ(Axn–) – ϕ(Axn)

) ∨ (
ϕ(Axn) – ϕ(Axn–)

)

� λ
[(

ϕ(Axn–) – ϕ(xn–)
) ∨ (

ϕ(xn–) – ϕ(Axn–)
)]

+ λ
[(

ϕ(Axn) – ϕ(xn)
) ∨ (

ϕ(xn) – ϕ(Axn)
)]

= λ
[(

ϕ(xn) – ϕ(xn–)
) ∨ (

ϕ(xn–) – ϕ(xn)
)]

+ λ
[(

ϕ(xn+) – ϕ(xn)
) ∨ (

ϕ(xn) – ϕ(xn+)
)]

,

which yields that

d(xn, xn+) � (
ϕ(xn) – ϕ(xn+)

) ∨ (
ϕ(xn+) – ϕ(xn)

)

� (e – λ)–λ
[(

ϕ(xn–) – ϕ(xn)
) ∨ (

ϕ(xn) – ϕ(xn–)
)]

� · · ·
� [

(e – λ)–λ
]n[(

ϕ(x) – ϕ(x)
) ∨ (

ϕ(x) – ϕ(x)
)]

.

Lemma . together with Lemma . shows that r((e – λ)–λ) ≤ r((e – λ)–)r(λ) ≤ ( –
r(λ))–r(λ). As r(λ) + r(λ) < , r((e – λ)–λ) ≤ ( – r(λ))–r(λ) < . Thus by the same
proof as used in Theorem ., we obtain that {xn} is a Cauchy sequence. As X is complete,
there exists x∗ ∈ X such that xn → x∗ (n → ∞). The continuity of A implies xn+ = Axn →
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Ax∗ (n → ∞). So Ax∗ = x∗. Furthermore, by Lemma ., we have

d
(
x∗, x

)
= lim

n→∞ d(xn, x)

� lim
n→∞

n∑

i=

d(xi, xi–)

� lim
n→∞

n∑

i=

[
(e – λ)–λ

]i–[(
ϕ(Ax) – ϕ(x)

) ∨ (
ϕ(x) – ϕ(Ax)

)]

=
[
e – (e – λ)–λ

]–[(
ϕ(Ax) – ϕ(x)

) ∨ (
ϕ(x) – ϕ(Ax)

)]
. �

Theorem . Suppose that A : X → X is a mapping satisfying the following conditions:
(i) There exist λ,λ ∈ P with  ≤ r(λ) + r(λ) <  such that for any comparable pair

x, y ∈ X , Ax and Ay are comparable. Moreover, if x and Ax, y and Ay are comparable,
then

(
ϕ(Ax) – ϕ(Ay)

) ∨ (
ϕ(Ay) – ϕ(Ax)

)

� λ
[(

ϕ(Ax) – ϕ(x)
) ∨ (

ϕ(x) – ϕ(Ax)
)]

+ λ
[(

ϕ(Ay) – ϕ(y)
) ∨ (

ϕ(y) – ϕ(Ay)
)]

.

(ii) There exists x ∈ X such that for any natural number n, x and Anx are comparable.
Then the same conclusions as those in Theorem . hold.

Proof Set xn = Axn– (n = , , . . .). It follows by the same method as in Theorem . that
{xn} is a Cauchy sequence and there exists x∗ in X such that xn → x∗ (n → ∞). Next we
show that x∗ is a fixed point of A.

Also, by a proof similar to that of Theorem . and by Lemma ., we get that for any
natural number n, xn and xn+ = Axn are comparable, xn and x∗ are also comparable. Ac-
cording to the given condition (i), for any natural number n, Axn and Ax∗ are comparable.
Let n → ∞, by Lemma ., x∗ and Ax∗ are comparable. So

(
ϕ(Axn) – ϕ

(
Ax∗)) ∨ (

ϕ
(
Ax∗) – ϕ(Axn)

)

� λ
[(

ϕ(Axn) – ϕ(xn)
) ∨ (

ϕ(xn) – ϕ(Axn)
)]

+ λ
[(

ϕ
(
Ax∗) – ϕ

(
x∗)) ∨ (

ϕ
(
x∗) – ϕ

(
Ax∗))].

Let n → ∞, the continuity of ϕ together with Lemma . implies that

θ � (
ϕ
(
x∗) – ϕ

(
Ax∗)) ∨ (

ϕ
(
Ax∗) – ϕ

(
x∗))

� λ
[(

ϕ
(
Ax∗) – ϕ

(
x∗)) ∨ (

ϕ
(
x∗) – ϕ

(
Ax∗))]. (.)

Note that  ≤ r(λ) < , by Proposition .(ii) of [], we have

ϕ
(
x∗) = ϕ

(
Ax∗). (.)
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The partial ordering in X gives that

d
(
x∗, Ax∗) � (

ϕ
(
x∗) – ϕ

(
Ax∗)) ∨ (

ϕ
(
Ax∗) – ϕ

(
x∗)). (.)

It is evident from (.) and (.) that Ax∗ = x∗, so x∗ is a fixed point of A.
By the same argument as in Theorem . and the partial ordering in X, we have

d(xn, xn+) � (
ϕ(xn) – ϕ(xn+)

) ∨ (
ϕ(xn+) – ϕ(xn)

)

� (e – λ)–λ
[(

ϕ(xn) – ϕ(xn–)
) ∨ (

ϕ(xn–) – ϕ(xn)
)]

� · · ·
� [

(e – λ)–λ
]n[(

ϕ(x) – ϕ(x)
) ∨ (

ϕ(x) – ϕ(x)
)]

.

From Lemma ., we have

d
(
x∗, x

)
= lim

n→∞ d(xn, x)

� lim
n→∞

n∑

i=

d(xi, xi–)

� lim
n→∞

n∑

i=

[
(e – λ)–λ

]i–[(
ϕ(Ax) – ϕ(x)

) ∨ (
ϕ(x) – ϕ(Ax)

)]

=
[
e – (e – λ)–λ

]–[(
ϕ(Ax) – ϕ(x)

) ∨ (
ϕ(x) – ϕ(Ax)

)]
. �

Theorem . Assume that A : X → X is continuous and satisfies the following:
(i) There exist λ,λ ∈ P with  ≤ r(λ) < 

 such that for any comparable pair x, y ∈ X ,
Ax and Ay are comparable. Moreover, if x and Ax, y and Ay are comparable, then

(
ϕ(Ax) – ϕ(Ay)

) ∨ (
ϕ(Ay) – ϕ(Ax)

)

� λ
[(

ϕ(Ax) – ϕ(y)
) ∨ (

ϕ(y) – ϕ(Ax)
)]

+ λ
[(

ϕ(Ay) – ϕ(x)
) ∨ (

ϕ(x) – ϕ(Ay)
)]

.

(ii) There exists x ∈ X such that x and Ax, x and Ax are comparable.
Then A has a fixed point x∗ in X. Furthermore, the iterative sequence xn = Axn– (n =
, , . . .) converges to x∗ and

d
(
x∗, x

) � [
e – λ(e – λ)–]–[(

ϕ(Ax) – ϕ(x)
) ∨ (

ϕ(x) – ϕ(Ax)
)]

.

Proof Pick xn = Axn– (n = , , . . .). Since x and Ax, x and Ax are comparable, for any
natural number n, xn and xn+ as well as xn and xn+ are comparable. Therefore ϕ(xn) and
ϕ(xn+), ϕ(xn) and ϕ(xn+) are comparable. It follows from Remark . that

θ � (
ϕ(xn) – ϕ(xn+)

) ∨ (
ϕ(xn+) – ϕ(xn)

)

=
(
ϕ(Axn–) – ϕ(Axn)

) ∨ (
ϕ(Axn) – ϕ(Axn–)

)

� λ
[(

ϕ(Axn–) – ϕ(xn)
) ∨ (

ϕ(xn) – ϕ(Axn–)
)]
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+ λ
[(

ϕ(Axn) – ϕ(xn–)
) ∨ (

ϕ(xn–) – ϕ(Axn)
)]

= λ
[(

ϕ(xn+) – ϕ(xn–)
) ∨ (

ϕ(xn–) – ϕ(xn+)
)]

� λ
[(

ϕ(xn+) – ϕ(xn)
) ∨ (

ϕ(xn) – ϕ(xn+)
)

+
(
ϕ(xn) – ϕ(xn–)

) ∨ (
ϕ(xn–) – ϕ(xn)

)]
.

Therefore

θ � (
ϕ(xn) – ϕ(xn+)

) ∨ (
ϕ(xn+) – ϕ(xn)

)

� (e – λ)–λ
[(

ϕ(xn) – ϕ(xn–)
) ∨ (

ϕ(xn–) – ϕ(xn)
)]

� · · ·
� [

(e – λ)–λ
]n[(

ϕ(x) – ϕ(x)
) ∨ (

ϕ(x) – ϕ(x)
)]

.

The definition of the partial ordering in X gives that

d(xn, xn+) � (
ϕ(xn) – ϕ(xn+)

) ∨ (
ϕ(xn+) – ϕ(xn)

)

� (e – λ)–λ
[(

ϕ(xn) – ϕ(xn–)
) ∨ (

ϕ(xn–) – ϕ(xn)
)]

� [
(e – λ)–λ

]n[(
ϕ(x) – ϕ(x)

) ∨ (
ϕ(x) – ϕ(x)

)]
.

Since  ≤ r(λ) < 
 , {xn} is a Cauchy sequence. Hence there exists x∗ ∈ X such that xn → x∗

(n → ∞). The continuity of A shows that

Ax∗ = lim
n→∞ Axn = lim

n→∞ xn+ = x∗, (.)

that is, x∗ is a fixed point of A. From Lemma ., we have

d
(
x∗, x

)
= lim

n→∞ d(xn, x)

� lim
n→∞

n∑

i=

d(xi, xi–)

� lim
n→∞

n∑

i=

[
(e – λ)–λ

]i–[(
ϕ(Ax) – ϕ(x)

) ∨ (
ϕ(x) – ϕ(Ax)

)]

=
[
e – (e – λ)–λ

]–[(
ϕ(Ax) – ϕ(x)

) ∨ (
ϕ(x) – ϕ(Ax)

)]
. �

Theorem . Let A : X → X be a mapping and satisfy the following conditions:
(i) There exist λ,λ ∈ P with  ≤ r(λ) <  such that for any comparable pair x, y ∈ X ,

Ax and Ay are comparable. Moreover, if x and Ax, y and Ay are also comparable,
then

(
ϕ(Ax) – ϕ(Ay)

) ∨ (
ϕ(Ay) – ϕ(Ax)

)

� λ
[(

ϕ(Ax) – ϕ(y)
) ∨ (

ϕ(y) – ϕ(Ax)
)]

+ λ
[(

ϕ(Ay) – ϕ(x)
) ∨ (

ϕ(x) – ϕ(Ay)
)]

.
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(ii) There exists x ∈ X such that for any natural number n, x and Anx are comparable.
Then the same conclusions as those in Theorem . hold.

Proof Define {xn} by xn = Axn– (n = , , . . .). As in the proof of Theorem ., there exists
x∗ ∈ X such that xn → x∗ (n → ∞) and

(
ϕ(Axn) – ϕ

(
Ax∗)) ∨ (

ϕ
(
Ax∗) – ϕ(Axn)

)

� λ
[(

ϕ(Axn) – ϕ
(
x∗)) ∨ (

ϕ
(
x∗) – ϕ(Axn)

)]

+ λ
[(

ϕ
(
Ax∗) – ϕ(xn)

) ∨ (
ϕ(xn) – ϕ

(
Ax∗))].

Let n → ∞, the continuity of ϕ implies that

θ � (
ϕ
(
x∗) – ϕ

(
Ax∗)) ∨ (

ϕ
(
Ax∗) – ϕ

(
x∗))

� λ
[(

ϕ
(
Ax∗) – ϕ

(
x∗)) ∨ (

ϕ
(
x∗) – ϕ

(
Ax∗))].

Note that  ≤ r(λ) < , by Proposition .(ii) of [], we have

ϕ
(
x∗) = ϕ

(
Ax∗). (.)

Since x∗ and Ax∗ are comparable,

d
(
x∗, Ax∗) � (

ϕ
(
x∗) – ϕ

(
Ax∗)) ∨ (

ϕ
(
Ax∗) – ϕ

(
x∗)). (.)

From (.) and (.), we have Ax∗ = x∗, so x∗ is a fixed point of A.
By the same method as in Theorem ., we have

d(xn, xn+) � (
ϕ(xn) – ϕ(xn+)

) ∨ (
ϕ(xn+) – ϕ(xn)

)

� (e – λ)–λ
[(

ϕ(xn) – ϕ(xn–)
) ∨ (

ϕ(xn–) – ϕ(xn)
)]

� [
(e – λ)–λ

]n[(
ϕ(x) – ϕ(x)

) ∨ (
ϕ(x) – ϕ(x)

)]
.

Lemma . shows that

d
(
x∗, x

)
= lim

n→∞ d(xn, x)

� lim
n→∞

n∑

i=

d(xi, xi–)

� lim
n→∞

n∑

i=

[
(e – λ)–λ

]i–[(
ϕ(Ax) – ϕ(x)

) ∨ (
ϕ(x) – ϕ(Ax)

)]

=
[
e – (e – λ)–λ

]–[(
ϕ(Ax) – ϕ(x)

) ∨ (
ϕ(x) – ϕ(Ax)

)]
. �

Example . Let A = R
. For each x = (x, x) ∈A, let ‖x‖ = |x| + |x|. The multiplication

is defined by

xy = (x, x)(y, y) = (xy, xy).
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Then A is a Banach algebra with unit e = (, ). Let P = {(x, x) ∈ R
|x ≥ , x ≥ } and

X = R
. A metric d on X is defined by

d(x, y) = d
(
(x, x), (y, y)

)
=

(|x – y|, |x – y|
) ∈ P.

Then (X, d) is a complete cone metric space over the Banach algebra A.
Now define mapping T : X → X by

T(x, y) =
(

ln
(
ex– + 

)
, tan

(

π

arctan(y + )
))

.

Then T has a fixed point in X.
In fact, let k = ( 

e , 
π

) ∈ P and define ϕ : X → A by ϕ(x, y) = (–ex – x, – arctan(y + ) – y).
Then k ∈ P with  < r(k) <  and it is not difficult to verify that ϕ is continuous on X and
the partial ordering in X can be induced by ϕ. Clearly, T is continuous and for any com-
parable pair x = (x, x), y = (y, y) ∈ X, Tx and Ty are comparable. Moreover, by simple
calculations, we can obtain that

(
ϕ(Tx) – ϕ(Ty)

) ∨ (
ϕ(Ty) – ϕ(Tx)

) ≤ k
[(

ϕ(x) – ϕ(y)
) ∨ (

ϕ(y) – ϕ(x)
)]

.

Thus T is ϕ-ordered contractive. Take x = (–, ), then x = (–, ) ≤ Tx = (ln(e– +
), tan( 

 )), that is, x and Tx are comparable. Hence by Theorem ., T has a fixed point
in X.
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