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1 Introduction
The Banach contraction principle is a very forceful tool in nonlinear analysis.

Theorem  (Banach [] and Caccioppoli []) Let (X, d) be a complete metric space and let
T be a contraction on X, that is, there exists r ∈ [, ) such that d(Tx, Ty) ≤ rd(x, y) for all
x, y ∈ X. Then the following holds:

(A) T has a unique fixed point z and {Tnx} converges to z for any x ∈ X .

In [, ] we studied (A) and obtained the following. See also [, ].

Theorem  ([, ]) Let T be a mapping on a complete metric space (X, d). Then (A), (B),
and (C) are equivalent:

(B) T is a strong Leader mapping, that is, the following hold:
- For x, y ∈ X and ε > , there exist δ >  and ν ∈N such that

d
(
Tix, Tjy

)
< ε + δ �⇒ d

(
Ti+νx, Tj+νy

)
< ε

for all i, j ∈N∪ {}, where T is the identity mapping on X .
- For x, y ∈ X , there exist ν ∈N and a sequence {αn} in (,∞) such that

d
(
Tix, Tjy

)
< αn �⇒ d

(
Ti+νx, Tj+νy

)
< /n

for all i, j ∈N∪ {} and n ∈N.
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(C) There exist a τ -distance p and r ∈ (, ) such that p(Tx, Tx) ≤ rp(x, Tx) and
p(Tx, Ty) < p(x, y) for all x, y ∈ X with x �= y.

We cannot tell that Theorem  is simple. Motivated by this fact, in this paper, we obtain
a simpler condition equivalent to (A).

In , Boyd and Wong proved a very interesting fixed point theorem. See []. The
concept of a Boyd-Wong contraction plays an important role in this paper. Indeed, using
this concept, we give a condition equivalent to (A); see Theorem  below. We will find that
Theorem  is an essential generalization of Theorem  in some sense; see Theorem  and
Example  below.

Theorem  (Boyd and Wong []) Let (X, d) be a complete metric space and let T be a Boyd-
Wong contraction on X, that is, there exists a function ϕ from [,∞) into itself satisfying
the following:

(i) ϕ is upper semicontinuous.
(ii) ϕ(t) < t for every t ∈ (,∞).

(iii) d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X .
Then (A) holds.

Later, in , Matkowski proved the following generalization of Theorem . Interest-
ingly, while Theorem  and Theorem  look similar, we will find that Theorem  is similar
to Theorem , not Theorem , in some sense; see Theorem  below.

Theorem  (Matkowski []) Let (X, d) be a complete metric space and let T be a
Matkowski contraction on X, that is, there exists a function ψ from [,∞) into itself satis-
fying the following:

(i) ψ is nondecreasing.
(ii) limn ψn(t) =  for every t ∈ (,∞).
(iii) d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X .

Then (A) holds.

We introduce two more interesting theorems. Theorem  is a generalization of Theo-
rem  and Theorem  is a generalization of Theorems  and .

Theorem  (Meir and Keeler []) Let (X, d) be a complete metric space and let T be a
Meir-Keeler contraction on X, that is, for every ε > , there exists δ >  such that

d(x, y) < ε + δ �⇒ d(Tx, Ty) < ε

for all x, y ∈ X. Then (A) holds.

Theorem  (Ćirić [], Jachymski [] and Matkowski [, ]) Let (X, d) be a complete
metric space and let T be a CJM contraction on X, that is, the following hold:

(i) For every ε > , there exists δ >  such that d(x, y) < ε + δ implies d(Tx, Ty) ≤ ε.
(ii) x �= y implies d(Tx, Ty) < d(x, y).

Then (A) holds.
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2 Preliminaries
Throughout this paper, we denote by N, Z, and R the sets of positive integers, integers,
and real numbers, respectively. For t ∈ R, we denote by [t] the maximum integer not ex-
ceeding t. For an arbitrary set A, we denote by 	A the cardinal number of A.

Let (X, d) be a metric space. We denote by Cont(X, d), BWC(X, d), MC(X, d), MKC(X, d),
and CJMC(X, d) the sets of all contractions, all Boyd-Wong contractions, all Matkowski
contractions, all Meir-Keeler contractions, and all CJM contractions on (X, d), respec-
tively. We know

Cont(X, d) ⊂ BWC(X, d) ⊂ MKC(X, d) ⊂ CJMC(X, d)

and

Cont(X, d) ⊂ MC(X, d) ⊂ CJMC(X, d).

In the proof of our main result, we use the following.

Lemma  Let X be a set, let z be an element of X and let f be a function from X \ {z} into
(,∞). Define a function ρ from X × X into [,∞) by

ρ(x, y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

 if x = y,

f (x) if x �= y, y = z,

f (y) if x �= y, x = z,

max{f (x), f (y)} if x �= y, x �= z, y �= z.

()

Then (X,ρ) is a complete metric space.

Proof It is obvious that ρ(x, y) =  ⇔ x = y, and ρ(x, y) = ρ(y, x). We also note that

ρ(x, y) = max
{
ρ(x, z),ρ(y, z)

}
for all x, y ∈ X with x �= y.

Let x, y, w be three distinct elements of X \ {z}. We have

ρ(x, z) ≤ max
{
ρ(x, z),ρ(y, z)

}
= ρ(x, y) ≤ ρ(x, y) + ρ(z, y),

ρ(x, y) = max
{
ρ(x, z),ρ(y, z)

} ≤ ρ(x, z) + ρ(y, z),

ρ(x, y) = max
{
ρ(x, z),ρ(y, z)

}

≤ max
{
max

{
ρ(x, z),ρ(w, z)

}
, max

{
ρ(y, z),ρ(w, z)

}}

= max
{
ρ(x, w),ρ(y, w)

} ≤ ρ(x, w) + ρ(y, w).

So ρ satisfies the triangle inequality. Therefore (X,ρ) is a metric space. Finally, in order
to show the completeness of (X,ρ), let {xn} be a Cauchy sequence in X. In the case where
	{n : xn = y} = ∞ for some y ∈ X, {xn} obviously converges to y. In the case where 	{n : xn =
y} < ∞ for any y ∈ X, we can choose a subsequence {xg(n)} of {xn} such that xg(n) are all
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different. Then we have

 = lim
m�=n

m,n→∞
ρ(xg(m), xg(n)) = lim

m�=n
m,n→∞

max
{
ρ(xg(m), z),ρ(xg(n), z)

}
.

Thus, {xg(n)} converges to z. Hence {xn} converges to z. Therefore (X,ρ) is complete. �

We denote by � the set of all functions ψ satisfying (i) and (ii) of Theorem .

Lemma  Let ϕ and ψ belong to � . Then a function η from [,∞) defined by η(t) =
max{ϕ(t),ψ(t)} also belongs to � .

Proof It is obvious that η is nondecreasing. Since ϕ(t) < t and ψ(t) < t for t ∈ (,∞), we
have η(t) < t for t ∈ (,∞). Fix t ∈ (,∞). Define a mapping ν from N into N∪ {} by

ν(n) = 	
{

k ∈ Z :  ≤ k < n,ψ
(
ηk(t)

)
= ηk+(t)

}
,

where η(t) = t. Without loss of generality, we may assume limn ν(n) = ∞. Since ηn(t) ≤
ψν(n)(t), we obtain limn ηn(t) = . Therefore η ∈ � . �

3 Main results
We prove our main results.

Theorem  Let (X, d) be a complete metric space and let T be a mapping on X. Then (A)
and (D) are equivalent.

(D) There exists a complete metric ρ on X such that ρ ≥ d and T ∈ BWC(X,ρ).

Proof (D) ⇒ (A): We assume (D). Then Theorem  shows that there exists a unique fixed
point z of T and that for every x ∈ X, {Tnx} converges to z in (X,ρ). Since the topology of
(X,ρ) is stronger than that of (X, d), {Tnx} converges to z in (X, d). Hence (A) holds.

(A) ⇒ (D): We assume (A). Define functions α from X \ {z} into (,∞),  from X \ {z}
into Z, k from X \ {z} into N∪ {} and f from X \ {z} into (,∞) by

α(x) = max
{

d
(
Tnx, z

)
: n ∈N∪ {}},

(x) =
[
log α(x)

]
,

k(x) = max
{

n ∈N∪ {} : Tnx �= z,
(
Tnx

)
= (x)

}
,

f (x) = (x)+ – (x)+–k(x).

We note

d(x, z) ≤ α(x), α(Tx) ≤ α(x), lim
n→∞α

(
Tnx

)
= 

and

(Tx) ≤ (x), lim
n→∞ 

(
Tnx

)
= –∞
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for x ∈ X \{z}. Define a metric ρ on X by (). Then by Lemma , (X,ρ) is a complete metric
space. We shall show ρ ≥ d. In the case where x �= z, we have

ρ(x, z) = (x)+ – (x)+–k(x) ≥ (x)+ – (x)+ =  × (x)+

>  × log α(x) = α(x) ≥ d(x, z) > d(x, z).

In the case where x �= y, x �= z, and y �= z, we have

ρ(x, y) = max
{
ρ(x, z),ρ(y, z)

}
> max

{
d(x, z), d(y, z)

}

≥ d(x, z) + d(y, z) ≥ d(x, y).

In both cases, we obtain ρ ≥ d.
Next, we shall show that T ∈ BWC(X,ρ). Define a function ϕ from [,∞) into itself by

ϕ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 if t = ,

 if + ≤ t < + for some  ∈ Z,

+ if + – + ≤ t < + – +

for some  ∈ Z,

+ – +–k if + – +–k ≤ t < + – +–k

for some  ∈ Z, k ∈N.

We note that ϕ is well defined because

[,∞) = {}  (,∞) = {} 
⊔

∈Z

[
+, +)

= {} 
⊔

∈Z

([
+, +)  [

+, +))

= {} 
⊔

∈Z

(
[
+, +) 

⊔

k∈N∪{}

[
+ – +–k , + – +–k)

)
,

where ‘’ represents ‘disjoint union’. It is obvious that ϕ(t) < t for t ∈ (,∞) and ϕ is right
continuous. We note that ϕ is strictly increasing on the range of ρ because the range of ρ

is a subset of

{} ∪ {
– – ––k :  ∈ Z, k ∈N∪ {}}

and

– – ––k < ′– – ′––k′

for ,′ ∈ Z and k, k′ ∈ N ∪ {,∞} with  < ′ ∨ ( = ′ ∧ k < k′), where –∞ = , ‘∨’ repre-
sents ‘logical or’ and ‘∧’ represents ‘logical and’. Let x and y be two distinct elements of
X \ {z}. We consider the following three cases:

• Tx = z;
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• Tx �= z and k(x) = ;
• Tx �= z and k(x) ∈N.

In the first case, we have

ρ(Tx, z) =  ≤ ϕ
(
ρ(x, z)

)
.

In the second case, noting (Tx) < (x), we have

ρ(Tx, z) = (Tx)+ – (Tx)+–k(Tx) < (Tx)+ ≤ (x)+

= ϕ
(
(x)+ – (x)+) = ϕ

(
ρ(x, z)

)
.

In the third case, noting (Tx) = (x) and k(Tx) = k(x) – , we have

ρ(Tx, z) = (Tx)+ – (Tx)+–k(Tx) = (x)+ – (x)+–k(x)

= ϕ
(
(x)+ – (x)+–k(x)) = ϕ

(
ρ(x, z)

)
.

We have shown ρ(Tx, Tz) = ρ(Tx, z) ≤ ϕ(ρ(x, z)) for all x ∈ X \ {z}. Using this and the strict
monotony of ϕ on the range of ρ , we obtain

ρ(Tx, Ty) ≤ max
{
ρ(Tx, z),ρ(Ty, z)

} ≤ max
{
ϕ
(
ρ(x, z)

)
,ϕ

(
ρ(y, z)

)}

= ϕ
(
max

{
ρ(x, z),ρ(y, z)

})
= ϕ

(
ρ(x, y)

)
.

Therefore T ∈ BWC(X,ρ). �

From Theorem , we obtain the following.

Corollary  Let (X, d) be a complete metric space and let T be a mapping on X. Then
(A), (E), (F), and (G) are equivalent.

(E) There exists a complete metric ρ on X such that the topology of (X,ρ) is stronger
than that of (X, d) and T ∈ BWC(X,ρ).

(F) There exists a complete metric ρ on X such that the topology of (X,ρ) is stronger
than that of (X, d) and T ∈ MKC(X,ρ).

(G) There exists a complete metric ρ on X such that the topology of (X,ρ) is stronger
than that of (X, d) and T ∈ CJMC(X,ρ).

Proof It is obvious that (E) ⇒ (F) ⇒ (G). The proof of (G) ⇒ (A) is almost the same as
that of (D) ⇒ (A). Since (E) is weaker than (D), we have (A) ⇒ (E) by Theorem . �

We note that (E) is much simpler than (B) and (C).

4 Additional results
In the previous section, we have showed that (D) is equivalent to (A). In this section, we
will show that the condition (H) on contractions is not equivalent to (A).

Theorem  Let (X, d) be a complete metric space and let T be a mapping on X. Then
(H) ⇒ (A) holds.
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(H) There exists a complete metric ρ on X such that the topology of (X,ρ) is stronger
than that of (X, d) and T ∈ Cont(X,ρ).

Proof The proof of (D) ⇒ (A) works. �

The following example tells that (A) ⇒ (H) does not hold.

Example  ([]) Let A be the set of all real sequences {an} such that an ∈ (,∞) for n ∈N,
{an} is strictly decreasing, and {an} converges to . Let H be a Hilbert space consisting of
all the functions x from A into R satisfying

∑
a∈A |x(a)| < ∞ with inner product 〈x, y〉 =

∑
a∈A x(a)y(a) for all x, y ∈ H . Put d(x, y) = 〈x – y, x – y〉/. Define a complete subset X of

H by

X = {} ∪
(⋃

a∈A

{anea : n ∈N}
)

,

where ea ∈ H is defined by ea(a) =  and ea(b) =  for b ∈ A \ {a}. Define a mapping T on
X by

T =  and T(anea) = an+ea.

Then (A) holds. However, (H) does not hold.

Proof It is obvious that (A) holds. Arguing by contradiction, we assume (H). That is, there
exist a metric ρ on X and r ∈ [, ) such that the topology of (X,ρ) is stronger than that
of (X, d), (X,ρ) is complete and ρ(Tx, Ty) ≤ rρ(x, y) for all x, y ∈ X. Since the topology of
(X,ρ) is stronger than that of (X, d),

inf
{
ρ(, y) : d(, y) > t

}
> 

for every t > . So, there exists a strictly increasing sequence {κn} in N such that

rκn < inf
{
ρ(, y) : d(, y) > /n

}
.

Then

ρ(, x) ≤ rκn �⇒ d(, x) ≤ /n

holds. We choose α ∈ A such that ακn+ > /n. Fix ν ∈ N with rκν ρ(,αeα) ≤ . Then we
have

ρ(,ακν+eα) = ρ
(
Tκν , Tκν (αeα)

) ≤ rκν ρ(,αeα) ≤ rκν

and hence

/ν < ακν+ = d(,ακν+eα) ≤ /ν.

This is a contradiction. �
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The Matkowski contraction version of (H) is equivalent to (H) itself.

Theorem  Let (X, d) be a complete metric space and let T be a mapping on X. Then
(H) ⇔ (I) holds.

(I) There exists a complete metric ρ on X such that the topology of (X,ρ) is stronger than
that of (X, d) and T ∈ MC(X,ρ).

Proof (H) ⇒ (I): Obvious.
(I) ⇒ (H): Assume (I). Then there exists a function ψ satisfying (i)-(iii) of Theorem 

with replacing d := ρ . Define a function ϕ from [,∞) into itself by

ϕ(t) = max
{
ψ(t), t/, –[–t] – 

}
.

Then from Lemma , ϕ satisfies (i)-(iii) of Theorem  with replacing d := ρ and ϕ := ψ .
We note  < ϕ(t) for t ∈ (,∞). Also we note k ≤ ϕ(t) if t satisfies k < t ≤ k +  for some
k ∈N. We define a sequence {tn}n∈Z. Put t =  and tn = ϕn() for n ∈N. For k ∈ N, we can
choose ν(k) ∈ N satisfying ϕν(k)(k + ) = k. So for n ∈ N, there exists κ(n) ∈ N such that
∑κ(n)–

j= ν(j) < n ≤ ∑κ(n)
j= ν(j), where

∑
j= ν(j) = . We put t–n = ϕ

∑κ(n)
j= ν(j)–n(κ(n) + ). Then

the following are obvious:
• tn+ = ϕ(tn) for every n ∈ Z,
• {tn}n∈Z is a strictly decreasing sequence,
• {tn}n∈Z converges to  as n tends to ∞,
• {tn}n∈Z converges to ∞ as n tends to –∞.

Let z ∈ X be a unique fixed point of T and fix r ∈ (, ). Define a function f from X \ {z}
into (,∞) by

f (x) = rn if tn+ < ρ(z, x) ≤ tn for some n ∈ Z.

Then we have

f (Tx) ≤ rf (x) provided Tx �= z.

Indeed tn+ < ρ(z, x) ≤ tn implies f (x) = rn and

ρ(z, Tx) ≤ ψ
(
ρ(z, x)

) ≤ ϕ
(
ρ(z, x)

) ≤ ϕ(tn) = tn+

and hence f (Tx) ≤ rn+ = rf (x). We denote by q a complete metric defined by () with
replacing q := ρ . Let {xn} be a sequence in X such that xn are all different and {xn} converges
to some x ∈ X in (X, q). From the definition of q, x = z holds. Without loss of generality,
we may assume xn �= z. Since limn f (xn) = limn q(z, xn) = , we have limn ρ(z, xn) = . Thus,
{xn} converges to z in (X,ρ). Therefore the topology of (X, q) is stronger than that of (X,ρ),
which is stronger than that of (X, d). Let x and y be two distinct elements of X \ {z}. In the
case where Tx = z, we have

q(Tx, Tz) = q(Tx, z) =  ≤ rq(x, z).
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In the other case, where Tx �= z, we have

q(Tx, Tz) = q(Tx, z) = f (Tx) ≤ rf (x) = q(x, z).

We obtain

q(Tx, Ty) ≤ max
{

q(Tx, z), q(Ty, z)
} ≤ max

{
rq(x, z), rq(y, z)

}

= r max
{

q(x, z), q(y, z)
}

= rq(x, y).

Therefore T ∈ Cont(X, q). �

The following result due to Bessaga [] (see also []) shows that the topological con-
dition appearing in condition (H) cannot be removed, because otherwise the convergence
of iterates in the metric space (X, d) cannot be ensured.

Theorem  (Bessaga []) Let X be a set and let T be a mapping on X. Then (J) and (K)
are equivalent.

(J) There exists a complete metric ρ on X such that T ∈ Cont(X,ρ).
(K) There exists a unique fixed point z of T and the set of periodic points of T is {z}.

If X is a metric space, then (J) is strictly weaker than (A) because (K) is strictly weaker
than (A).

In conclusion, we obtain

(H) ⇔ (I) �⇒ (A) ⇔ (E) ⇔ (F) ⇔ (G) �⇒ (J)

under the assumption that (X, d) is a complete metric space. We can tell that, from this
point of view, the difference between contractions and Matkowski contractions is small
and the difference between contractions and Boyd-Wong contractions is very large. There-
fore Matkowski contractions and Boyd-Wong contractions are essentially different. Con-
sidering the appearance of the statements, we might have considered that the difference
between Boyd-Wong contractions and Matkowski contractions was small and the differ-
ence between Boyd-Wong and Meir-Keeler contractions was large.
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