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Abstract
In this study, we introduce a three step iteration process and prove a convergence
result for a countable family of pseudocontractive mappings. Our results improve and
generalize most of the results that have been proved for this important class of
nonlinear mappings.
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1 Introduction
Let H be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. Let K be nonempty, closed, and convex subset of H . We recall that a mapping
T : K → K is called strongly pseudocontractive, if for some β ∈ (, ),

〈Tx – Ty, x – y〉 ≤ β‖x – y‖, (.)

holds, for all x, y ∈ K , while T is called a pseudocontractive mapping if (.) holds for β = .
Equivalently T is called pseudocontractive if

‖Tx – Ty‖ ≤ ‖x – y‖ +
∥
∥(I – T)x – (I – T)y

∥
∥

, ∀x, y ∈ K . (.)

The mapping T is called Lipschitz if there exists a L ≥  such that ‖Tx – Ty‖ ≤ L‖x – y‖,
for all x, y ∈ K . The mapping T is called nonexpansive if L =  and is called contractive
if L < . Every nonexpansive mapping is pseudocontractive. The converse is not true. For
example Tx =  – x 

 ,  ≤ x ≤ , is a continuous pseudocontractive mapping which is not
a nonexpansive mapping.

Let T : K → K be a mapping and {αn} and {βn} be two sequences in [, ]. For arbitrary
chosen x ∈ K , construct a sequence {xn}, where xn is defined iteratively for each positive
integer n ≥  by

xn+ = Txn, (.)

xn+ = ( – αn)xn + αnTxn, (.)
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xn+ = ( – αn)xn + αnTyn,

yn = ( – βn)xn + βnTxn.

⎫

⎬

⎭
(.)

The sequences {xn} generated by (.), (.), and (.) are called Picard, Mann [], and
Ishikawa [] iteration sequences, respectively.

In , Krasnoselskii [] showed that the Picard iteration scheme (.) for a nonexpan-
sive mapping T may fail to converge to a fixed point of T even if T has a unique fixed point,
but the Mann sequence (.) for αn = 

 , ∀n ≥ , converges strongly to the fixed point of T .
In , Ishikawa [], introduced the iteration scheme (.) and proved the following

theorem.

Theorem . If K be a compact convex subset of a Hilbert space H , T : K → K is a Lips-
chitzian pseudocontractive mapping and x is any point of K , then the sequence {xn} defined
iteratively by (.) converges strongly to a fixed point of T , where {αn} and {βn} satisfy the
conditions:  ≤ αn ≤ βn < , limn→∞ βn = , and

∑

n≥ αnβn = ∞.

Since its publication, in , till , it was not known whether or not the Mann
iteration process with the simpler iteration (.) would converge under the setting of The-
orem . to a fixed point of T if the mapping T is pseudocontractive and continuous (or
even Lipschitzian with constant L > ).

Hicks and Kubicek [] gave an example of pseudocontractive mapping for which Mann
iteration process fails. Borwein and Borwein ([], Proposition ) gave an example of a
Lipschitzian mapping with a unique fixed point for which the Mann iteration fails to con-
verge. In the example of Borwein and Borwein the mapping was not pseudocontractive,
while in the example of Hicks and Kubicek the mapping was not continuous (and hence
not Lipschitzian).

The problem for a continuous pseudocontractive mapping still remained open. This
question was finally settled by Chidume and Mutangadura [], by constructing an exam-
ple of a Lipschitz pseudocontractive mapping with a unique fixed point for which every
nontrivial Mann sequence fails to converge.

Example . Let H be the real Hilbert space R under the usual Euclidean inner product.
If x = (a, b) ∈ H , define x⊥ ∈ H to be (b, –a). Let K := {x ∈ H : ‖x‖ ≤ } and set

K :=
{

x ∈ H : ‖x‖ ≤ 


}

, K :=
{

x ∈ H :



≤ ‖x‖ ≤ 
}

.

Define T : K → K as follows:

Tx =

⎧

⎨

⎩

x + x⊥, if x ∈ K,
x

‖x‖ – x + x⊥, if x ∈ K.
(.)

Then:
. T is Lipschitz and pseudocontractive.
. The origin is the unique fixed point of T .
. No Mann sequence converges to the fixed point zero.
. No Mann sequence converges to any x �= .
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The Ishikawa iterative method has been studied extensively by various authors. But it
was still an open question whether or not this method can be employed to approximate
fixed points of Lipschitz pseudocontractive mappings without the compactness assump-
tion on K or T (see, e.g., [–]).

In [], Schu introduced an iteration scheme and proved the following.

Theorem . Let H be a Hilbert space, K a nonempty, closed, bounded, and convex subset
of H , w ∈ K , T : K → K pseudocontractive and Lipschitzian with L > , {λn}n∈N ⊂ (, )
with limn→∞ λn = , {αn}n∈N ⊂ (, ) with limn→∞ αn = , such that ({αn}, {μn}) has certain
properties, (( – μn)( – λn)–) is bounded and limn→∞ α–

n ( – μn) = , where kn := ( +
α

n( + L))/ and μn := λnk–
n for all n ∈ N. For arbitrary z ∈ K , define for all n ∈N,

zn+ = ( – μn+)w + μn+yn,

yn = ( – αn)zn + αnTzn.

⎫

⎬

⎭
(.)

Then {zn} converges strongly to the unique fixed point of T closest to w.

Theorem . has some advantages over Theorem .. First, the recursion formula (.)
is slightly simpler than (.). More importantly, no compactness assumption is imposed
on K . However, the choices of αn and μn in Theorem . are not as simple as those of αn

and βn in Theorem . (where one can choose αn = βn = √
n+ for all positive integers n).

Zhou [] established the hybrid Ishikawa algorithm for Lipschitz pseudocontractive
mappings without the compactness assumption. In , Yao et al. [] introduced the
hybrid Mann algorithm for a L-Lipschitz pseudocontractive mapping, which was gener-
alized by Tang et al. [] to the hybrid Ishikawa iterative process. The schemes given by
Zhou [], Yao et al. [] and Tang et al. [] are not easy to compute, since for each n ≥ ,
it involves the computation of the intersection of Cn and Qn.

Finding a point in the intersection of fixed point sets of a family of nonexpansive map-
pings is a task that occurs frequently in various areas of mathematical sciences and en-
gineering. For example, the well-known convex feasibility problem reduces to finding a
point in the intersection of fixed point sets of a family of nonexpansive mappings; see, e.g.,
[, ].

In , Zegeye et al. [] extended the result of Tang et al. [] to the Ishikawa iterative
process (not hybrid) for a finite family of Lipschitz pseudocontractive mappings as follows:

yn = ( – βn)xn + βnTnxn,

xn+ = ( – αn)xn + αnTnyn,

⎫

⎬

⎭
(.)

and they proved a strong convergence theorem under some conditions.
Cheng et al. [] generalized algorithm (.) to a three step iterative process for a count-

able family of Lipschitz pseudocontractive mappings as follows:

zn = ( – γn)xn + γnTnxn,

yn = ( – βn)xn + βnTnzn,

xn+ = ( – αn)xn + αnTnyn.

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

(.)

The iteration (.) was initially introduced by Noor [] for a single mapping.
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Recently, Zegeye and Shahzad [] proved the strong convergence of a three step itera-
tion process for a common fixed point of two Lipschitz pseudocontractive mappings.

In this paper, our purpose is to introduce a new three step iteration process for a count-
able family of pseudocontractive mappings. The results obtained in this paper improve
and extend the results of Zhou [], Tang et al. [], Zegeye et al. [] and Cheng et al. []
and some other results in this direction.

2 Preliminaries
In the sequel, we also need the following definitions and lemma.

Let H be a real Hilbert space, and φ : H × H → R the function given by

φ(x, y) := ‖x – y‖ = ‖x‖ – 〈x, y〉 + ‖y‖, for x, y ∈ H .

It is obvious from the definition of the function φ that

(‖x‖ – ‖y‖) ≤ φ(x, y) ≤ (‖x‖ + ‖y‖), for x, y ∈ H .

The function φ also has the following property:

φ(y, x) = φ(y, z) + φ(z, x) + 〈z – y, x – z〉, for x, y, z ∈ H . (.)

A countable family of mappings {Tn}∞n= : K → H is called uniformly Lipschitz with
Lipschitz constant Ln > , n ≥ , if there exists  < L = supn≥ Ln such that

‖Tnx – Tny‖ ≤ L‖x – y‖, ∀x, y ∈ K , n ≥ .

A countable family of mappings {Tn}∞n= : K → H is called uniformly closed if xn → x∗

and ‖xn – Tnxn‖ →  imply x∗ ∈ ⋂∞
n= F(Tn).

Lemma . Let H be a real Hilbert space. Then, for all xi ∈ H and αi ∈ [, ] for i =
, , . . . , n such that α + α + · · · + αn = , the following inequality holds:

‖αx + αx + · · · + αnxn‖ =
n

∑

i=

αi‖xi‖ –
∑

≤i,j≤n

αiαj‖xi – xj‖.

Remark . We now give recall an example [] of a countable family of uniformly closed
and uniformly Lipschitz pseudocontractive mappings with the interior of the common
fixed points nonempty.

Suppose that X = R and K = [–, ] ⊂ R. Let {Tn}∞n= : K → K be given by

Tnx =

⎧

⎨

⎩

x, x ∈ [–, ),

( 
n + 

 ), x ∈ [, ].

Then we observe that F =
⋂∞

n= F(Tn) = [–, ], and hence the interior of the common
fixed points is nonempty. Also, it is clear that {Tn}∞n= is a countable family of uniformly
closed and uniformly Lipschitz pseudocontractive mappings with Lipschitz constant L =
supn≥ Ln = .
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3 Main results
Theorem . Let K be a nonempty, closed, and convex subset of a real Hilbert space H .
Let {Tn}∞n= : K → K be a countable family of uniformly closed and Lipschitz pseudocontrac-
tive mappings with Lipschitzian constants Ln. Assume that the interior of F =

⋂∞
n= F(Tn)

is nonempty. Let {xn} be a sequence generated from an arbitrary x ∈ K by the following
algorithm:

zn = γnxn + ( – γn)Tnxn,

yn = βnxn + ( – βn)Tnzn,

xn+ = αnxn + ( – αn)[θnxn + δnTnyn + σnTnzn],

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

(.)

where {αn}, {βn}, {γn}, {θn}, {δn}, and {σn} are in (, ) satisfying the following conditions:
(i) θn + δn + σn = ,

(ii) ( – αn) ≤ ( – θn) ≤ ( – βn) ≤ ( – γn), ∀n ≥ ,
(iii) lim infn→∞( – αn) = α > ,
(iv) supn≥( – γn) ≤ γ with γ L + γ L + γ L + γ L + γ < , where L = supn≥ Ln.
Then {xn} converges strongly to x∗ ∈F .

Proof Suppose that p ∈F . Using (.) and (.), we have

‖zn – p‖ = γn‖xn – p‖ + ( – γn)‖Tnxn – p‖ – γn( – γn)‖Tnxn – xn‖

≤ γn‖xn – p‖ + ( – γn)‖xn – p‖ + ( – γn)‖Tnxn – xn‖

– γn( – γn)‖Tnxn – xn‖

= ‖xn – p‖ + ( – γn)‖Tnxn – xn‖, (.)

‖yn – p‖ = βn‖xn – p‖ + ( – βn)‖Tnzn – p‖ – βn( – βn)‖Tnzn – xn‖

≤ βn‖xn – p‖ + ( – βn)‖zn – p‖ + ( – βn)‖Tnzn – zn‖

– βn( – βn)‖Tnzn – xn‖. (.)

Using Lemma . and (.), we have

‖xn+ – p‖ ≤ αn‖xn – p‖ + ( – αn)
[

θn‖xn – p‖ + δn‖Tnyn – p‖

+ σn‖Tnzn – p‖ – θnδn‖Tnyn – xn‖ – θnσn‖Tnzn – xn‖]

≤ αn‖xn – p‖ + ( – αn)θn‖xn – p‖ + ( – αn)
[

δn‖yn – p‖

+ δn‖Tnyn – yn‖] + ( – αn)
[

σn‖zn – p‖ + σn‖Tnzn – zn‖]

– θnδn( – αn)‖Tnyn – xn‖ – θnσn( – αn)‖Tnzn – xn‖, (.)

‖Tnzn – zn‖ = γn‖Tnzn – xn‖ + ( – γn)‖Tnzn – Tnxn‖

– γn( – γn)‖Tnxn – xn‖

≤ γn‖Tnzn – xn‖ + ( – γn)L‖Tnxn – xn‖

– γn( – γn)‖Tnxn – xn‖
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= γn‖Tnzn – xn‖

+ ( – γn)
[

( – γn)L + ( – γn) – 
]‖Tnxn – xn‖, (.)

‖Tnyn – yn‖ = βn‖Tnyn – xn‖ + ( – βn)‖Tnyn – Tnzn‖

– βn( – βn)‖Tnzn – xn‖

≤ βn‖Tnyn – xn‖ + ( – βn)L‖yn – zn‖

– βn( – βn)‖Tnzn – xn‖

≤ βn‖Tnyn – xn‖ + ( – βn)L‖yn – zn‖, (.)

‖yn – zn‖ =
∥
∥βnxn + ( – βn)Tnzn – γnxn – ( – γn)Tnxn

∥
∥

=
∥
∥( – γn)xn – ( – βn)xn –

{

( – γn) – ( – βn)
}

Tnxn

+ ( – βn)(Tnzn – Tnxn)
∥
∥

≤ {

( – γn) – ( – βn)
}‖Tnxn – xn‖ + ( – βn)L‖zn – xn‖

=
{

( – γn) – ( – βn) + ( – βn)( – γn)L
}‖Tnxn – xn‖. (.)

Substituting (.) and (.) in (.), we obtain

‖yn – p‖ ≤ ‖xn – p‖ + ( – βn)( – γn)‖Tnxn – xn‖ + ( – βn)
[

γn‖Tnzn – xn‖

+ ( – γn)
[

( – γn)L + ( – γn) – 
]‖Tnxn – xn‖]

– βn( – βn)‖Tnzn – xn‖

≤ ‖xn – p‖ – ( – βn)
[

( – γn) – ( – βn)
]‖Tnzn – xn‖

+ ( – βn)( – γn)
[

( – γn)L + ( – γn) – 
]‖Tnxn – xn‖. (.)

From (.) and (.), we have

‖Tnyn – yn‖ ≤ βn‖Tnyn – xn‖ + ( – βn)L{( – γn) – ( – βn)

+ ( – βn)( – γn)L
}‖Tnxn – xn‖. (.)

Substituting (.), (.), (.), and (.) in (.), we get

‖xn+ – p‖

≤ ‖xn – p‖ – ( – αn)
[

( – γn)
{

δn( – βn) + σn
}{

 – ( – γn) – ( – γn)L}

– δn( – βn)L{( – γn) – ( – βn) + ( – βn)( – γn)L
}]‖Tnxn – xn‖

+ ( – αn)σn
[

( – θn) – ( – γn)
]‖Tnzn – xn‖

+ ( – αn)δn
[

( – θn) – ( – βn)
]‖Tnyn – xn‖.

From condition (ii), we have

‖xn+ – p‖

≤ ‖xn – p‖ – ( – αn)
[

( – γn)
{

δn( – βn) + σn
}{

 – ( – γn) – ( – γn)L}
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– δn( – βn)L{( – γn) – ( – βn) + ( – βn)( – γn)L
}]‖Tnxn – xn‖

≤ ‖xn – p‖ – ( – αn)
[

( – γn)
{

δn( – βn) + σn( – βn)
}{

 – ( – γn)

– ( – γn)L} – δn( – βn)L{( – γn) – ( – βn)

+ ( – βn)( – γn)L
}]‖Tnxn – xn‖

≤ ‖xn – p‖ – ( – αn)
[

( – γn)( – βn)( – θn)
{

 – ( – γn) – ( – γn)L}

– δn( – βn)L{( – γn) – ( – βn) + ( – βn)( – γn)L
}]‖Tnxn – xn‖

≤ ‖xn – p‖ – ( – αn)
[

( – γn)( – βn)( – θn)
{

 – ( – γn) – ( – γn)L}

– ( – θn)( – βn)L{( – γn) – ( – βn) + ( – βn)( – γn)L
}]‖Tnxn – xn‖

≤ ‖xn – p‖ – ( – αn)( – βn)( – θn)
[

( – γn)
{

 – ( – γn) – ( – γn)L}

– L{( – γn) – ( – βn) + ( – βn)( – γn)L
}]‖Tnxn – xn‖. (.)

From condition (iv), we have

γ L + γ L + γ L + γ L + γ < ,

( – γn)L + ( – γn)L + ( – γn)L + ( – γn)L + ( – γn) < ,

( – γn)L + ( – γn) –  + ( – γn)L + ( – γn)L + ( – γn)L < ,
[

( – γn)L + ( – γn) – 
]

+ ( – γn)L[( – γn)L + ( – γn)L + 
]

< ,
[

( – γn)L + ( – γn) – 
]

+ ( – γn)L[ + ( – γn)L
] < ,

( – γn)
[

( – γn)L + ( – γn) – 
]

+ ( – γn)L[ + ( – γn)L
] < ,

( – γn)
[

( – γn)L + ( – γn) – 
]

+ L[( – γn) + ( – γn)L
] < ,

( – γn)
[

( – γn)L + ( – γn) – 
]

+ L[( – γn) – ( – βn) + ( – βn)( – γn)L
] < ,

( – γn)
[

 – ( – γn) – ( – γn)L] – L[( – γn) – ( – βn) + ( – βn)( – γn)L
] > .

Then

‖xn+ – p‖ ≤ ‖xn – p‖. (.)

It is obvious that if limn→∞ ‖xn – p‖ exists, then {‖xn – p‖} is bounded. This implies that
{xn}, {Tnxn}, {zn}, {Tnzn}, {yn}, and {Tnyn} are also bounded.

Furthermore, from (.), we have

φ(p, xn) = φ(p, xn+) + φ(xn+, xn) + 〈xn+ – p, xn – xn+〉.

This implies that

〈xn+ – p, xn – xn+〉 +


φ(xn+, xn) =



(

φ(p, xn) – φ(p, xn+)
)

. (.)

Moreover, since the interior of F is nonempty, there exist p∗ ∈ F and r >  such that
p∗ + rh ∈ F whenever ‖h‖ ≤ . Thus, from the fact that φ(x, y) = ‖x – y‖, and (.) and
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(.), we get

 ≤ 〈

xn+ –
(

p∗ + rh
)

, xn – xn+
〉

+


φ(xn+, xn)

=


(

φ
((

p∗ + rh
)

, xn
)

– φ
((

p∗ + rh
)

, xn+
))

. (.)

Then from (.) and (.), we obtain

r〈h, xn – xn+〉 ≤ 〈

xn+ – p∗, xn – xn+
〉

+


φ(xn+, xn)

=


(

φ
(

p∗, xn
)

– φ
(

p∗, xn+
))

,

and hence

〈h, xn – xn+〉 ≤ 
r

(

φ
(

p∗, xn
)

– φ
(

p∗, xn+
))

.

Since h with ‖h‖ ≤  is arbitrary, we have

‖xn – xn+‖ ≤ 
r

(

φ
(

p∗, xn
)

– φ
(

p∗, xn+
))

.

So, if n > m, then we get

‖xm – xn‖ = ‖xm – xm+ + xm+ – · · · – xn– + xn– – xn‖

≤
n–
∑

i=m

‖xi – xi+‖

≤ 
r

n–
∑

i=m

(

φ
(

p∗, xi
)

– φ
(

p∗, xi+
))

≤ 
r

(

φ
(

p∗, xm
)

– φ
(

p∗, xn
))

.

But we know that {φ(p∗, xn)} converges. Therefore, we see that {xn} is a Cauchy sequence.
Since K is closed subset of H , there exists x∗ ∈ K such that

xn → x∗. (.)

Furthermore, (.) and conditions (ii), (iii), and (iv), we get

α[{ – γ L – γ
}

– γ L{γ L + }]
∑

‖Tnxn – xn‖

≤
∑

( – αn)( – βn)( – θn)( – γn)
[{

 – ( – γn)L – ( – γn)
}

– ( – γn)L{( – γn)L + 
}]‖Tnxn – xn‖

=
∑

( – αn)( – βn)( – θn)
[

( – γn)
{

 – ( – γn)L – ( – γn)
}

– L{( – γn) + ( – γn)L
}]‖Tnxn – xn‖
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≤
∑

( – αn)( – βn)( – θn)
[

( – γn)
{

 – ( – γn)L – ( – γn)
}

– L{( – γn) – ( – βn) + ( – γn)L
}]‖Tnxn – xn‖

≤ ‖xn – p‖ – ‖xn+ – p‖ < ∞,

from which it follows that

lim
n→∞‖Tnxn – xn‖ = . (.)

Since {Tn}∞n= is uniformly closed, from (.) and (.), we obtain x∗ ∈ F =
⋂∞

n= F(Tn).
This completes the proof. �

We get the following result from Theorem ..

Theorem . Let K and H be as in Theorem .. Let T : K → K be a uniformly closed
and Lipschitz pseudocontractive mapping with Lipschitzian constant L. Assume that the
interior of F(T) is nonempty. Let {xn} be a sequence generated from an arbitrary x ∈ K by
the following algorithm:

zn = γnxn + ( – γn)Txn,

yn = βnxn + ( – βn)Tzn,

xn+ = αnxn + ( – αn)[θnxn + δnTyn + σnTzn],

⎫

⎪⎪⎪⎬

⎪⎪⎪⎭

(.)

where {αn}, {βn}, {γn}, {θn}, {δn}, and {σn} are in (, ) satisfying the conditions (i)-(iv) of
Theorem .. Then {xn} converges strongly to x∗ ∈F .

Remark . Our results improve and generalize the corresponding results of Zhou [],
Yao et al. [], Tang et al. [], Zegeye et al. [] and Cheng et al. [] and many others.

4 Numerical examples
In this section, using Example ., we numerically demonstrate the convergence of the
algorithm defined in this paper and compare its behavior with the Ishikawa and Noor
iterations.

Consider Tn = T for all n ∈N, where T is given by (.). Set the control conditions

αn =  –
√

n + 
, βn =

√
n + 

–


(n + ) , γn =
√

n + 
,

θn =  –
√

n + 
, σn =




( – θn), δn =  – θn – σn,

for all n ∈N.
We examine the behavior of the above iterations for the different initial points (see Ta-

ble ).
The details for different cases are as below:
Case I. Using the initial point x = (., .), a Matlab program leads to the evaluation

illustrated in Table  and Figure .
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Table 1 Initial point and its norm

Case Initial point ‖x‖
Case I (0.6, 0.8) 1.0000000000
Case II (0.5, 0.7) 0.8602325267
Case III (0.2, 0.7) 0.7280109889
Case IV (0.4, 0.3) 0.5000000000
Case V (0.2, 0.3) 0.3605551275

Table 2 Comparative results, case I

Iterate Ishikawa Noor New iter.

x1 (0.6000000000, 0.8000000000) (0.6000000000, 0.8000000000) (0.6000000000, 0.8000000000)
x2 (0.5539771951, 0.3823475759) (0.5845576135, 0.4251282975) (0.4179365588, 0.2127647459)
x50 (–0.4450369330, –0.4976206090) (–0.3239420295, –0.5825226873) (0.0018082804, 0.0014649100)
x100 (0.6964587601, 0.0133562179) (0.5821514537, 0.3809434572) (0.0003286008, –0.0002556144)
x500 (–0.6777455360, –0.3368753388) (0.3971613402, –0.6438475994) (–0.0000043324, 0.0000033756)
x1,000 (0.5456751982, –0.5586691004) (0.0954007431, 0.7748693478) (0.0000003429, 0.0000006995)
x2,000 (–0.1037052181, –0.7971860220) (0.3048527823, 0.7437145034) (0.0000001035, –0.0000000270)
x3,000 (0.7752046594, –0.2571690139) (–0.8026212027, 0.1507284165) (0.0000000162, –0.0000000289)
x4,000 (–0.6052498145, 0.5614732843) (0.7824477126, –0.2631121035) (–0.0000000008, –0.0000000143)
x5,000 (0.4877239037, –0.6743717613) (–0.7969068795, 0.2397588381) (–0.0000000036, –0.0000000066)
x10,000 (–0.7837825951, 0.3340666307) (0.4705344309, 0.7102474078) (–0.0000000009, 0.0000000003)
x15,000 (0.0995508262, –0.8570695454) (–0.8011620666, –0.3202712792) (–0.0000000001, 0.0000000003)
x20,000 (0.5437374559, –0.6793797373) (–0.2633715133, –0.8293418385) (0.0000000000, 0.0000000001)
x25,000 (0.1948437754, –0.8537277083) (–0.4224421378, –0.7670260001) (0.0000000000, 0.0000000001)
x25,662 (–0.1202342253, –0.8680256967) (–0.6498446973, –0.5878762853) (0.0000000000, 0.0000000001)
x25,663 (–0.8762826038, –0.0074383873) (–0.6762590030, 0.5572899348) (0.0000000000, 0.0000000000)
x30,000 (–0.1288396162, 0.8705678507) (0.3187366255, 0.8202867023) (0.0000000000, 0.0000000000)

Figure 1 Convergence behavior of first 100 iterates for Case I.

Case II. For the initial point x = (., .), we make the observations as in Table  and
Figure .

Case III. Using the initial point x = (., .), we make the observations as in Table 
and Figure .

Case IV. Using the initial point x = (., .), we make the observations as in Table 
and Figure .
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Table 3 Comparative results, case II

Iterate Ishikawa Noor New iter.

x1 (0.5000000000, 0.7000000000) (0.5000000000, 0.7000000000) (0.5000000000, 0.7000000000)
x2 (0.5077039037, 0.3414830422) (0.5222783000, 0.3691361889) (0.3936091367, 0.1328495346)
x50 (–0.4522218355, –0.4911003500) (–0.3578594849, –0.5623234911) (0.0019722548, 0.0010101314)
x100 (0.6965793132, 0.0032331971) (0.6036824557, 0.3458116905) (0.0002560188, –0.0003026363)
x500 (–0.6825697572, –0.3269901101) (0.3583486889, –0.6662304996) (–0.0000033744, 0.0000039952)
x1,000 (0.5374984520, –0.5665403780) (0.1411060451, 0.7678625476) (0.0000004568, 0.0000005844)
x2,000 (–0.1152797418, –0.7955946876) (0.3483463482, 0.7243626875) (0.0000000911, –0.0000000455)
x3,000 (0.7713853627, –0.2684078761) (–0.7922903051, 0.1979796028) (0.0000000095, –0.0000000301)
x4,000 (–0.5970260234, 0.5702100615) (0.7654990306, –0.3089719017) (–0.0000000036, –0.0000000132)
x5,000 (0.4778717750, –0.6813886155) (–0.7813153619, 0.2865155847) (–0.0000000046, –0.0000000054)
x10,000 (–0.7788448421, 0.3454220346) (0.5117561426, 0.6811458591) (–0.0000000008, 0.0000000005)
x15,000 (0.0870845517, –0.8584257997) (–0.8187171280, –0.2722803949) (–0.0000000001, 0.0000000003)
x20,000 (0.5338066309, –0.6872101056) (–0.3120070105, –0.8122955525) (0.0000000000, 0.0000000001)
x24,000 (–0.1437915180, 0.8627856757) (0.5322398911, 0.6940936228) (0.0000000000, 0.0000000001)
x24,478 (0.8473016080, 0.2190814433) (0.7489567757, –0.4527152205) (0.0000000000, 0.0000000001)
x24,479 (0.3414098540, –0.8058273678) (–0.3375080849, –0.8074511489) (0.0000000000, 0.0000000000)
x25,000 (0.1824160039, –0.8564692045) (–0.4671095169, –0.7406719542) (0.0000000000, 0.0000000000)

Figure 2 Convergence behavior of first 100 iterates for Case II.

Table 4 Comparative results, case III

Iterate Ishikawa Noor New iter.

x1 (0.2000000000, 0.7000000000) (0.2000000000, 0.7000000000) (0.2000000000, 0.7000000000)
x2 (0.3450926068, 0.4336578892) (0.3440379880, 0.4453754852) (0.3353767960, 0.1812746972)
x50 (–0.2825203374, –0.6048689124) (–0.1985930762, –0.6362640252) (0.0016680265, 0.0012183686)
x100 (0.6629813795, 0.2137495813) (0.4924269913, 0.4914609759) (0.0002799554, –0.0002411817)
x500 (–0.5517134650, –0.5181083458) (0.5198970951, –0.5495305923) (–0.0000036908, 0.0000031847)
x1,000 (0.6836678095, –0.3774531919) (–0.0643145529, 0.7780664793) (0.0000003350, 0.0000006048)
x2,000 (0.1307318905, –0.7932020541) (0.1470941858, 0.7901960402) (0.0000000905, –0.0000000285)
x3,000 (0.8164372572, –0.0225470783) (–0.8164988720, –0.0157937523) (0.0000000131, –0.0000000263)
x4,000 (–0.7415175937, 0.3629479923) (0.8196224517, –0.0983434723) (–0.0000000014, –0.0000000127)
x5,000 (0.6615671585, –0.5049562094) (–0.8290255718, 0.0725360346) (–0.0000000035, –0.0000000057)
x10,000 (–0.8468389535, 0.0936987565) (0.3161194504, 0.7911526553) (–0.0000000008, 0.0000000003)
x15,000 (0.3426217981, –0.7918894343) (–0.7192022147, –0.4766366788) (–0.0000000001, 0.0000000002)
x20,000 (0.7166432454, –0.4935886013) (–0.0890525429, –0.8655877100) (0.0000000000, 0.0000000001)
x24,767 (–0.6197996742, –0.6182758717) (–0.8746592516, 0.0368619317) (0.0000000000, 0.0000000001)
x24,768 (–0.7025624816, 0.5223259212) (–0.0919736849, 0.8705918501) (0.0000000000, 0.0000000000)
x25,000 (0.4328972371, –0.7611931941) (–0.2574770981, –0.8369538748) (0.0000000000, 0.0000000000)
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Figure 3 Convergence behavior of first 100 iterates for Case III.

Table 5 Comparative results, case IV

Iterate Ishikawa Noor New iter.

x1 (0.4000000000, 0.3000000000) (0.4000000000, 0.3000000000) (0.4000000000, 0.3000000000)
x2 (0.4460001486, 0.0829124405) (0.4319456624, 0.0683790444) (0.3104879326, –0.1461827853)
x50 (–0.6024706350, –0.2875991590) (–0.5884980583, –0.3129555160) (0.0017737757, –0.0005578461)
x100 (0.6477778238, –0.2561583185) (0.6957057872, 0.0034190954) (–0.0000252209, –0.0003316770)
x500 (–0.7552263573, –0.0495696962) (–0.0164948791, –0.7563099763) (0.0000003362, 0.0000043754)
x1,000 (0.2881348085, –0.7258449682) (0.5011778842, 0.5986188573) (0.0000006172, 0.0000000803)
x2,000 (–0.4030019869, –0.6955930739) (0.6600714458, 0.4586416551) (0.0000000277, –0.0000000808)
x3,000 (0.6161509491, –0.5361307431) (–0.5918479368, 0.5627040699) (–0.0000000121, –0.0000000235)
x4,000 (–0.3420238652, 0.7513982050) (0.5138396999, –0.6460813917) (–0.0000000099, –0.0000000058)
x5,000 (0.1900596641, –0.8102648966) (–0.5386684962, 0.6343351844) (–0.0000000060, –0.0000000005)
x10,000 (–0.5944221496, 0.6103916596) (0.7809654309, 0.3405099509) (–0.0000000002, 0.0000000008)
x15,000 (–0.2385405946, –0.8292026034) (–0.8465824288, 0.1665308994) (0.0000000001, 0.0000000002)
x20,000 (0.2398133400, –0.8364788165) (–0.6717832259, –0.5530639534) (0.0000000001, 0.0000000000)
x25,481 (–0.2593778379, –0.8368678394) (–0.8118123305, –0.3294798816) (0.0000000001, 0.0000000000)
x25,482 (–0.8657493245, 0.1345526508) (–0.4443892718, 0.7550603245) (0.0000000000, 0.0000000000)
x30,000 (0.2167190982, 0.8529483348) (0.7133385040, 0.5153750955) (0.0000000000, 0.0000000000)

Figure 4 Comparison of first 100 iterates for Case IV.
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Table 6 Comparative results, case V

Iterate Ishikawa Noor New iter.

x1 (0.2000000000, 0.3000000000) (0.2000000000, 0.3000000000) (0.2000000000, 0.3000000000)
x2 (0.3012563133, 0.1744796180) (0.2851093585, 0.1502591858) (0.3021399173, –0.0487361054)
x50 (–0.4169844503, –0.5213521942) (–0.4295257007, –0.5096849930) (0.0016577246, –0.0000407865)
x100 (0.6946690134, 0.0516541858) (0.6443413556, 0.2623784481) (0.0000601568, –0.0002904776)
x500 (–0.6581845589, –0.3736537059) (0.2664781341, –0.7080015998) (–0.0000007906, 0.0000038327)
x1,000 (0.5755858813, –0.5278006053) (0.2420603177, 0.7422470011) (0.0000005092, 0.0000002210)
x2,000 (–0.0596880659, –0.8016842650) (0.4416662024, 0.6715485441) (0.0000000437, –0.0000000625)
x3,000 (0.7881795628, –0.2141287987) (–0.7588869631, 0.3016793462) (–0.0000000045, –0.0000000231)
x4,000 (–0.6352245439, 0.5273228287) (0.7175599474, –0.4081177818) (–0.0000000071, –0.0000000074)
x5,000 (0.5240881644, –0.6465164148) (–0.7362246871, 0.3879666032) (–0.0000000050, –0.0000000019)
x10,000 (–0.8009753063, 0.2904379947) (0.5978692867, 0.6069648647) (–0.0000000004, 0.0000000006)
x15,000 (0.1465548210, –0.8502942180) (–0.8476747755, –0.1608782900) (0.0000000001, 0.0000000002)
x20,000 (0.5802924064, –0.6484350172) (–0.4173549517, –0.7635360394) (0.0000000001, 0.0000000001)
x23,860 (0.8666005213, –0.1175952413) (0.3460420046, –0.8031500630) (0.0000000001, 0.0000000000)
x23,861 (0.0120033293, –0.8744614434) (–0.7430451870, –0.4611732164) (0.0000000000, 0.0000000000)
x25,000 (0.2415195695, –0.8417145563) (–0.5615434561, –0.6719041535) (0.0000000000, 0.0000000000)

Figure 5 Convergence behavior of first 100 iterates for Case V.

Case V. We use the initial point x = (., .) and obtain Table  and Figure .
As discussed in Example ., x = (, ) with ‖x‖ =  is the only fixed point of T . From the

tables and the graphs it can be seen that the sequence {xn} generated by the new iteration
converging toward , while for the Ishikawa and Noor iteration ‖xn‖ tends toward  in all
the above cases.
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