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Abstract

Sedghi et al. (Mat. Vesn. 64(3):258-266, 2012) introduced the notion of a S-metric as a
generalized metric in 3-tuples S X3 = [0, 00), where X is a nonempty set. The aim of
this paper is to introduce the concept of an n-tuple metric A: X" — [0,00) and to
study its basic topological properties. We also prove some generalized coupled
common fixed point theorems for mixed weakly monotone maps in partially ordered
A-metric spaces. Some examples are presented to support the results proved herein.
Our results generalize and extend various results in the existing literature.
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1 Introduction and preliminaries
Many mathematical problems require one to find a distance between two or more ob-
jects which is not easy to measure precisely in general. There exist different approaches to
obtaining the appropriate concept of a metric structure. Due to the need to construct
a suitable framework to model several distinguished problems of practical nature, the
study of generalized metric has attracted, and continues to attract the interest of many
authors. Over the last few decades, a number of generalizations of metric space have thus
appeared in many papers. These generalizations were then also used to extend the scope
of the study of fixed point theory. For more discussions of such generalizations, we refer
to [1-4], and [5].

In the sequel, the letters R, R*, and N will denote the set of all real numbers, the set of
all nonnegative real numbers, and the set of all positive integers, respectively.

In 1963, Géahler [2] introduced the notion of a 2-metric space as follows.

Definition 1.1 Let X be a nonempty set. A function 4 : X> — R is said to be a 2-metric
on X if the following conditions hold:

(d1) For any distinct points x,y € X there is z € X such that d(x,y,z) #0,

(d2) d(x,9,2) = 0 if any two elements of the set {x,y,z} in X are equal,

(d3) d(x,y,2) =d(x,2,y) =d(y,x,2) = d(z,x,y) = d(y,z,x) = d(z,y,%),

(d4) d(x,y,2) <d(x,y,a) + dx,a,z) + d(a,y,z) for all x,y,z,a € X.
The pair (X, d) is called a 2-metric space.
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Gébhler [2] claimed that 2-metric space is a generalization of an ordinary metric space.
He mentioned in [6] that d(x, y,z) geometrically represents the area of a triangle formed
by the points x,y,z € X as its vertices.

On the other hand, Ha et al. [7] and Sharma [8] found some mathematical flaws in these
claims. It was demonstrated in [8] that d(x,y,z) does not always represent the area of a
triangle formed by the points x,y,z € X. Ha et al. [7] proved that the 2-metric is not se-
quentially continuous in each of its arguments whereas an ordinary metric satisfies this
property.

In order to carry out meaningful studies of fixed point results, Dhage [1] suggested an
improvement in the basic structure of 2-metric space.

In 1984, Dhage in his Ph.D. thesis [9] identified condition (d2) as a weakness in Géhler’s
theory of a 2-metric space. To overcome these problems, he then introduced the concept
of a D-metric space.

Definition 1.2 Let X be a nonempty set. A function D : X> — R is called a D-metric on
X if it satisfies the following conditions:

(D1) D(x,y,z) > 0 for all x,y,z € X and equality holds if and only if x = y = 2,

(D2) D(x,y,z) = D(x,2,9) = D(y,x,2) = D(z,x,9) = D(y,z,x) = D(z,y,%),

(D3) D(x,y,z) < D(x,y,a) + D(x,a,z) + D(a,y,z) for all x,y,z,a € X.
The pair (X, D) is called a D-metric space.

It is important to note that condition (d3) and (D2) are equivalent. Condition (d4) and
(D3) are also equivalent, whereas (d1) and (d2) have been replaced by (D1). Dhage [1]
modified condition (d2) to obtain the natural nonnegativity condition of ordinary metric.

Dhage [10] then studied topological properties of D-metric space in a series of papers.
The notions of open balls and sequential continuity in D-metric space were introduced in
[11]. It was claimed that the D-metric induces a Hausdorft topology, and that the family
of all open balls in a D-metric space forms a base for such a topology. Naidu et al. [12]
proved that the concepts of convergent sequences and sequential continuity are not well
defined in D-metric spaces. Naidu et al. [13] pointed out some drawbacks in the idea of
open balls in D-metric space. In 2003, Mustafa and Sims [14] identified condition (D3) as
a weakness in Dhage’s theory of D-metric space.

In 2006, Mustafa and Sims [5] introduced the notion of G-metric space and suggested

an important generalization of metric space as follows.

Definition 1.3 Let X be a nonempty set. A function G: X> — R* is called a G-metric on
X if it satisfies the following conditions: For all %, y,z,a € X,

(Gl) G(x,9,2) =0ifx=y=¢,

(G2) 0 <G(x,y,y) forallx,y € X withx #y,

(G3) Gx,x,y) <G(x,9,2) forall x,y,z € X with z #y,

(G4) G(x,9,2) = G(x,2,9) = G(y,x,2) = G(z,x,9) = G(y,2,%) = G(z,y,%),

(G5) G(x,9,2) < G(x,a,a) + G(a,y,2).
The pair (X, G) is called a G-metric space.

Note that condition (D1) has been replaced with (G1), (G2), and (G3). Condition (D2)
is equivalent to (G4) and condition (D3) has been replaced by (G5). The deficiency of
Dhage’s theory of D-metric is thus corrected. Subsequently, Mustafa and Sims [5] studied
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some topological properties of G-metric space and afterwards some authors have obtained
generalized fixed point theorems in the setup of G-metric space; see for example [15].
Unlike in the theory of G-metric space, where condition (D1) was replaced with the
three separate axioms (G1), (G2), and (G3), Sedghi et al. [3] observed that condition (D1)
can be replaced with two axioms and thus introduced the notion of a D*-metric space as

follows.

Definition 1.4 Let X be a nonempty set. A function D* : X*> — R* is called a D*-metric

on X if it satisfies the following conditions: For all x,y,z,a € X,

(D*1) D*(x,9,2) >0,

(D*2) D*(x,5,2) =0ifand onlyifx =y =z,

(D*3) D*(x,y,2) = D*(%,2,y) = D*(y,%,2) = D*(z,%,y) = D*(y,2,%) = D*(z,9,%),
(D*4) D*(x,y,z) < D*(x,y,a) + D*(a,z,z).

The pair (X, D*) is called a D*-metric space.

Note that condition (D1) has been replaced with (D*1) and (D*2). Condition (D2)
and (D*3) are equivalent. Condition (D3) has been replaced with (D*4). The tetrahe-
dral inequality in D-metric has been replaced with the prototypical rectangular inequality
adopted by Mustafa and Sims [5]. Therefore D*-metric space theory can be viewed as an
improved version of Dhage’s theory of D-metric space. To the best of our knowledge, little
or no work has appeared on the topological properties of D*-metric space. Some interest-
ing fixed point results in D*-metric space have been obtained in [16].

Every G-metric space is a D*-metric space. Indeed conditions (G1), (G2), and (G3) imply
(D*1). Axioms (G1) and (D*2) are equivalent. (G4) and (D*3) are also equivalent, whereas
(G4) and (G5) imply (D*4). The converse, however, is false in general; a D*-metric space
is not necessarily a G-metric space. To see this let X = R and D* : X*> — R* be a function
defined by

D*(x,y,2) =2z—x—y| + 26—y —z| + |2y —x — 2|.

Clearly (D*1) holds, that is, D*(x,y,z) > 0 for all x,7,z € X.

Note that D*(x,y,2) =04 [2z—x—y| =0, |2x —y—z| =0,and |2y —x —z| = 0 & 2z —
x=9,2x—-y=2z and 2y —x =z < x = y = z. Thus condition (D*2) holds. As D*(x,y,z) =
D*(x,z,y) = D*(y,%,2) = D*(z,x,5) = D*(y,z,%x) = D*(z,5,%), (D*3) is valid for all x,y,z € X.
If x,7,2z,a € X, then we have

D*(x,9,2) = 2z—x—y| + |2x -y —z| + |2y —x — 2]
<|2a-x-y|+2|z—a|l+|2x-y—al|+|z—a|+|2y—x—a| + |z —al

=2a-x-y|+12x—y—al+|2y-x—al +4|z—al.

This implies D*(x, y,z) < D*(x,y,a) + D*(a, z,z). Hence (X, D*) is a D*-metric space. Now,
ifx=4,y=-6,and z = 2, then G(4,4,-6) = 40 and G(4, —6,2) = 36. Thus condition (G3)

fails. So not every D*-metric space needs to be a G-metric space.
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Sedghi et al. [4] identified condition (G3) as a peculiar limitation of the G-metric space
but classified the symmetry condition as a common weakness of both G- and D*-metric
spaces.

To overcome these difficulties, Sedghi et al. [4] introduced a new generalized metric
space called an S-metric space.

Definition 1.5 Let X be a nonempty set. Suppose a function S : X3 — [0, 0o) satisfies the
following conditions:

(S1) Sx,y,2) = 0,

(S2) S(x,y,z)=0ifand onlyifx =y =z,

(S3) S(x,y,2) <S(x,x,a) +S(v,y,a) + S(z,z,a) for any x,,z,a € X.
Then the ordered pair (X, S) is called an S-metric space.

It is observed that the shortfalls of the G-metric are corrected and conditions (D*3) and
(D*4) are replaced with (S3).

Proposition 1.6 Every D*-metric space is an S-metric space.

Proof Let (X, D*) be a D*-metric space. From Definitions 1.4 and 1.5, we see that:
(1) (D*1) and (S1) are equivalent,
(2) (D*2) is equivalent to (S2), and
(3) (D*3) and (D*4) imply (S3). Indeed, for all x,y,z,a € X, we have
D*(x,y,2z) < D*(x,y,a) + D*(a,z,z)
= D*(a,x,y) + D*(a,z,2)
< D*(a,x,a) + D*(a,a,y) + D*(a,z,2)

= D*(x,x,a) + D*(y,y,a) + D*(z,z, a).
Thus, every D*-metric space is an S-metric space. g

But the converse of Proposition 1.6 does not hold in general. To prove this, let X = R.
Define the mapping S: X x X x X — [0,00) by

S, y,2)=12x—y—z| +|z-y|

for all x,y,z € X. Obviously, conditions (S1) and (S2) are satisfied. We shall show that, for
allx,y,z € X, (S3) is valid.

Sxy2) = 26—y -zl + |z~
<2x—al|l+2|y—al+2|z-al

= S(x,%,a) + S(v,,a) + S(z,z,a).

Therefore (X,S) is an S-metric space. Note that D*(4,7,3) = 6 # 8 = D*(3,4,7). Hence
(X, S) is not a D*-metric space.
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Proposition 1.7 The S-metric space is a generalization of the G-metric space and the D*-
metric space.

Proof The proof is straightforward. O

Modification, enrichment, and extension of the structure of domains of the definition to
obtain more general spaces is one of the active research areas in fixed point theory. One of
the basic and the most widely applied fixed point theorems in mathematical analysis is the
‘Banach (or Banach-Caccioppoli) contraction principle’ It states that if (X, d) is a complete
metric space and f : X — X satisfies

d(fx,fy) < kd(x,y),

for all x,y € X, with k € (0,1), then f has a unique fixed point. This result is simple and
powerful with a wide range of applications in science and engineering. It can be em-
ployed to prove the existence of solution of differential or integral equations including
iterative methods for solving linear, nonlinear, differential, integral, and difference equa-
tions (see for example Samet [17], Sedghi and Dung [18], Lakshmikantham and Ciri¢ [19],
and Berinde and Vetro [20]) to mention just a few.

Definition 1.8 (see [21]) Let (X, <) bea partially ordered set. A mapping f : X? — X is said
to have mixed monotone property on X, if for any x,y € X, x1, 47 € X, %1 <% = f(x1,9) <
fx2,y) and y1, 92 € X, y1 <92 = f(x%, 1) = f (%, 92).

An element (x,y) € X x X is called a coupled fixed point of f if x = f(x,y) and y = f (y, x).

In 2006, Bhaskar and Lakshmikantham [21] initiated the study of coupled fixed points
and mixed monotone mapping in the setup of metric spaces, which provided powerful
tools for solving complex problems; and therefore numerous interesting results on coupled
fixed point theorems for various classes of contractive-type mappings in partially ordered
metric spaces have been proved; see for example [7, 22—-25], and the references therein.
Gordji et al. [26] introduced the concepts of coupled common fixed points and mixed
weakly monotone pair of mappings as follows.

Definition 1.9 (see [26]) Let (X, <) be a partially ordered set and f,g : X*> — X be two
maps. The pair (f,g) is said to have the mixed weakly monotone property on X if, for all
%y €X,x <f(xy),y = f(y,x) imply f(x,y) < g(f (%, 7).f (v, %)), f (9, %) = g(f (y,%), f () and
x < glxy), y = g(y,x) imply g(x,y) < f(g(x,), 80, %)), g, %) = f(g(1, %), g(x,y)).

An element (x,y) € X x X is called a coupled common fixed point of f and g if x = f (x, ),
y=f(y,%), x =g(x,y) and y = g(y,x). They proved the following result.

Theorem 1.10 (see [26]) Let (X, <,d) be a partially ordered complete metric space, f,g :
X2 — X be the mappings such that the pair (f,g) has mixed weakly monotone property
on X. Suppose that there exist p,q,r,s > 0, withp + q + r + 2s <1 such that

d(f(5,).gv) = ED((.9), @) + 2D((%.2).1 )

+ 2D((@ ), (g(at,v),8(v,))
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+ =D((x,9), (g(,v),g(v,u)))

+

N N

D((w, ), (fx.9),.£ ()

holds for all x,y,u,v € X with x < u and y > v. Let x0,y0 € X be such that x, <
Fx0,90),.f Wo,%0) < yo or xo < g(x0,90),2W0,%x0) < yo. If f or g is continuous, then f and
g have a coupled common fixed point in X.

Furthermore, assume that X has the following properties:

(@) if {x,} is an increasing sequence with x, — x, then x, < x forall n > 1;

(b) if {yn} is a decreasing sequence with y, — y, then y <y, forall n > 1.
Then f and g have a coupled common fixed point in X.

Recently, Dung [27] generalized the results of Gordji e al. [26] in the framework of an
S-metric space. He proved the following theorem.

Theorem 1.11 Let (X, <,S) be a complete partially ordered S-metric space, f,g: X* — X
be two maps such that the pair (f,g) has mixed weakly monotone property on X. Suppose

that x0,y0 € X are such that xo < f(x0,0).f (yo,%0) < yo or xo < g(x0,¥0)&(0,%0) < Yo,
and there exist p,q,r,s > 0, satisfyingp + q+r +2s <1 and

S(fxp).f (x,9),8(u,v)) <

(RN

D), (5,9), (4,) + TD((5,9), (5,90, 0,)

+

N N N

D((u,v), (u,v), (g(w,v),g(v, )))

+ =D((x,), (x,9), (¢(w,v), gv, w)))

+

D((u,v), (w,v), (f(x,).f (,%)))

foranyx,y,u,ve X withx <uandy > v. Assumef or g is continuous or X has the following
properties:

(@) if {xx} is an increasing sequence with xx — x, then xx < x for all k € N;

(b) if {xx} is a decreasing sequence with xx — x, then x < xi for all k € N.
Then f and g have a coupled common fixed point in X.

It is our purpose in this paper to first propose a generalization of the S-metric space,
called an A-metric space, and then prove some coupled common fixed point theorems for
mixed weakly monotone maps in partially ordered A-metric spaces. Our results extend,
unify, and generalize comparable results in [4, 26, 27], and [21].

2 A-metric space

We now present the concept of an A-metric space and study some of its properties needed
in the sequel.

Definition 2.1 Let X be a nonempty set. A function 4 : X" — [0, 00) is called an A-metric
on X if for any x;,a € X, i =1,2,...,n, the following conditions hold:
(Al) A(xl: X2, X35 0003 Xpn-1, xn) > 0:

(A2) A(x1,22,%3,...,%,-1,%,) =0 ifand onlyifx; =y =x3 = -+ - =x,,1 =%y,



Abbas et al. Fixed Point Theory and Applications (2015) 2015:64 Page 7 of 24

(A3)
A(xlle’x31 vee ’xn—lrxn) = A(xlrxlij e (xl)(n—l)r ﬂ)

+ A (%2, %0, %2, ..., (%) (n-1), @)

+ A (3,3, %3, . ., (%3) (1), @)

+A (x(n—l)’ KX(n-1)>X(n-1)r+++» (x(n—l))(n—l); ﬂ)
+ A (% %0 Xy - (%) (1), @)
The pair (X, A) is called an A-metric space.

Note that A-metric space is an #-dimensional S-metric space. Therefore the ordinary

metric d and S-metric are special cases of an A-metric with # = 2 and n = 3, respectively.

Lemma 2.2 Let (X,A) be A-metric space. Then A(x,%,%,...,%,9) = AW, %, ¥, ..., ¥,%) for all
x,y€e€X.

Proof Applying condition (A3) of an A-metric, we obtain

A, x,%,...,%9) <A@ x,%,...,%%)

+ AW, %%, ..., %, %)

+ A, %,%,...,%,%)

+ ALY %)
=AW 9. 9 X). (2.1)

In a similar fashion

AW 09 0,%) <A, 0 )
+ A0V Y)

+ AW 005 0))
+A@®,x,%,...,%,)

= A, x,%,...,%,9). (2.2)
The result follows from (2.1) and (2.2). O

Example 2.3 Let X = R. Define a function A : X — [0, 00) by

A1, %0, %3, 5 X1, %) = |1 — KXo | + [ — 3| + -+ + ¥ — %]

+ | —x3] + o —xg| + -+ [xp — Xy
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+ |xn—2 _xn—1| + |xn—2 _xn| + |xn—1 —Xn

= iz oe; — ;.

=1 i<j
Then (X, A) is a usual A-metric space.

Example 2.4 Let X = R. Define a function A : X" — [0, 00) by

A1, %2,%3, -+, X1, %) = \xn X+t xy = (m— 1)x1|

+ |xn+xn_1+~~~+x3—(n—2)x2|

+ %y + X1 + Xpp — 3%,,_3]
+ 1% + X1 — 23]

+ [ — Xyt
Then (X, A) is an A-metric space.

Lemma 2.5 Let (X, A) be A-metric space. Then for all x,y € X we have A(x,x,%,...,%x,z) <
(n-1DAMXxx,%,...,x,9) + A2, 2,2, ...,2,y) and A(x,x,%,...,%,2) < (n - DAx,x,%,...,%,9) +
AW, 9, .9, 2).

Proof Applying Lemma 2.2 and condition (A3) of the A-metric, we obtain

A, x,%,...,%,2) < AX,%,%,...,%,)

+ AW, X,%,...,%,)

+AX%,%,...,%,9)
+Az,2,2,...,2,)
= (mn-DAxx%x,....,%9) +Az,2,2,...,2,)

= (n-DAxx%%....%9) + AW, %9, .. ), 2),
which implies

A, x,%,...,%,2) < (n-1DAx,xx%,...,%,9) +Alz,2,2,...,2,9)

= (m-1DAKx%%,...,%9) + AY,%,Y ..., 2).

Hence the result. g
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Lemma 2.6 Let (X,A) be A-metric space. Then (X%, D) is A-metric space on X x X with
the metric Dy given by D((x1,%1), (%2,¥2),- -+, X Vn)) = A1, %2,%3, ..., %0,) + A1, 92,93,
cooya) forallx,y e X, ij=1,2,...,n.

Proof For all x;,y; € X, i,j = 1,2,...,n, we have D((x1,y1), (%2, ¥2), (%3,¥3)s .., (% ¥n)) =
0. Note that D((x1,%1), (X2, ¥2), (¥3,¥3), - - -» (%, V1)) = 0 & A(x1, %0, %3, ..., %, ) + A1, Y2, Y3,
v ¥n) =0 & A(xy, %0,%3,...,%,,) =0 and A(y1,92,¥3,-- V) =0 S X1 =Xy =%x3 =+ =%,
andy1 =y2 =y3 = =yu & (®1,01) = (%2,92) = (%3,¥3) = - - = (%, yu). Consider

D((xl)yl)y (xZ)y2), ey (xn:yn))
= A(x11x2) v ,xn») + A(ylryZ, LR ;yn)

= A(xlyxlxxlr cee ’xlrd) + A(x2tx2yx2; ey X2, 61)

+ AXpy Xy Xgs o o5 Xy A)

+A()’1,J’17y1, “ee 1ylrb) +A()’2;)’2,y2, .o -;yZ)b)

+ A(ym_ym_ym eI b)
= A(xy, %1, %1, ...,x5,a) + AW, V5,91 - Y1, D)

+ A(xo,%0,%2,..., X2, a) +A()’2,y2,y2, . ..,yz,b)

+ Ay X1 X5 o> %1 @) + AW Vs Yo > Vs b)
= D((xl»yl)) (xl)yl)y cees (xl)yl)» (ar b))

+D((x2,¥2), (%2,92), - .., (%2, ¥2), (a, b))

+ D((6 Y)s s Yi)s > (Xns yn), (a, b))
=
D((x1, 1), (%2, Y2); - -5 (%))
< D((x1, 1), (1,01, .., (%1, 31), (@, b))

+D((%2,72), (%2, 32), ..., (%2,32), (a, b))

+D((xnryn)lr(xmyn):”w(xmyn)x (ﬂ,b)) D

Hence (X?,D,) is an A-metric space on X x X.
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Remark 2.7 It is easy to see that whenever n = 2, we would get D((x1,1), (x2,72)) =
d(x1,%2) + d(y1,y2) where D4y = D,; and if we put n = 3, then we have D((x1, 1), (x2,¥2),
(%3,¥3)) = S(x1,%2,%3) + SOV, ¥2,¥3).

Note also that the following implications hold.

G-metric space = D*-metric space = S-metric space = A-metric space.

Definition 2.8 The A-metric space (X, A) is said to be bounded if there exists a constant
r> 0 such that A(x,x,x,...,%,5) <r forall x,y € X. Otherwise, X is unbounded.

Definition 2.9 Given a point x( in A-metric space (X,A) and a positive real number r,
the set B(xo,7) ={y € X : A(,3,,...,¥,%0) < r} is called an open ball centered at x, with
radius r.

The set B(xo,7) = {y € X : A(5,%,,...,y,%0) < r} is called a closed ball centered at xy with

radius 7.

Definition 2.10 A subset G in A-metric space (X, A) is said to be an open set if for each
x € G there exists an r > 0 such that B(x,r) C G. A subset F C X is called closed if X \ F is

open.

Lemma 2.11 [n any A-metric space (X, A), each open ball is an open set in X and each

closed ball is also a closed set in X.

Proof Lety € B(x,r) be arbitrary. Thus A(y, 9,9, ...,y,%x) <r.Sets =r— A, %,%,...,y,%) > 0.
We show that B(y, s) C B(x,r). For this, let z € B(y, s). Then by the condition (A3), we have

Alz,2,2,...,2,%) AW Y, .. 9%) + A2, 2,2, ..., 2,9).

This implies A(z,z,2,...,2,x2) < A®,9,9,...,9,%) + s = r. Hence z € B(x,r). Thus B(x,r) is

open. It is easy to show that X \ B(x, r) is open and hence B(x, r) is closed. a

Theorem 2.12 Let (X, A) be A-metric space, then:
(i) An arbitrary union and finite intersection of open balls B(x,r) € X is open.

(i) An arbitrary intersection and finite union of closed balls B(x,r) € X is closed.
Proof The proof is direct and similar to the case of an ordinary metric space. O

Theorem 2.13 The collection I = {B(x,r) : x € X,r > 0} of all balls in A-metric space (X, A)

is a basis for a topology T on X.

Definition 2.14 Let (X, A) be A-metric space. A sequence {x;} in X is said to converge to
a point x € X. If A(xy, x¢, Xk, - . ., X, x) = 0 as k — oo.
That is, for each € > 0, there exists N € N such that for all kK > N we have A (xy, xx, xx,

..., Xk, %) < € and we write limy_, o, X; = X.

Lemma 2.15 Let (X, A) be A-metric space. If the sequence {x} in X converges to a point x,

then x is unique.
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Proof Suppose {xx} converges to x and y. Then given € > 0, there exist Nj, N, € N such
that for all kK > N; we have A(xi, Xi, Xk, ..., X, %) < ﬁ and for every k > N, we get
A(%k) Xky Xy - - %1, Y) < 5. Choose N = max{Ny, N>}, therefore, for all k > N, we have

A, x,%,...,%9) < (m-1DAMXX%,...,% %) + AXk XXk - -« Xk )

= (= DA Xkr Xks + > Xier X) + AlKkes Xes Xker + 5 Xies V)

€ €
+ —
2n-1) 2

< (n-1) x
=e.

Since € is arbitrary, we have A(x, x,x,...,%,7) = 0 and so x = y. Establishing the uniqueness
of {xr}. O

Definition 2.16 Let (X,A) be A-metric space. A sequence {x4} in X is called a Cauchy
sequence if A(xk, X, Xk, - - -, Xk, %) = 0 s k, m — 00.
That is, for each € > 0, there exists N € N such that for all k,m,# > N we have

Ay Xy Kes -3 Xk Xon) < €.
Lemma 2.17 Every convergent sequence in A-metric space is a Cauchy sequence.

Proof Let {x} be a convergent sequence in (X, A). Let limy_, o, xx = x. Then given € > 0,
there exist N1, N, € N such that for all Xk > N; we have A(xy, Xr, Xk, ..., X5y X) < ﬁ and
for all m > Ny we get A%y, Xy, Xy - -, ¥y %) < 5. Put N = max{Ny, N»}. Therefore, for all

k,m > N, we obtain

A(xkyxloxk) .. '1xk1xm) = (}’l - I)A(xkyxerkt .. '7xktx)

+A(xm’xm»xmr e 1xm:x)

(n-1) € €
<(n-1)x + =
2n-1) 2
= €.
This implies that {x} is a Cauchy sequence. g

Remark 2.18 The converse of Lemma 2.17 does not hold in general. A Cauchy sequence
in an A-metric space does not need to be convergent. To see this we consider the space
(X = Q,A) with the A-metric defined as in Example 2.3. Let {x} be a sequence defined by
xpe =01+ %)k. Observe that x; € Q Vk € N. Furthermore,

Ak Kk Xies oo s Kk Xo) = (1= 1) ok — Xy

k m
=(n—1)’<1+%> —(1+%>

as k,m — o0. Thus, {x} is Cauchy. But xy — e as k — oo and e is not in Q. Hence {x;}

-0

does not converge.

Definition 2.19 The A-metric space (X,A) is said to be complete if every Cauchy se-

quence in X is convergent.
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Definition 2.20 Let (X,Ax) and (Z,Az) be A-metric spaces.

A function f : X — Z is said to be continuous at a point xo € X. If f~/(G) is open in X, for
each open set G in Z. The function f is continuous on X if it is continuous at each points
of X.

Theorem 2.21 Let (X,Ax) and (Z,Az) be A-metric spaces.
A functionf : X — Z is continuous at a point xo € X iff it is sequentially continuous at xy.

Lemma 2.22 Let (X,A) be A-metric space, then the function A(x,x,x,...,%,y) is continu-
ous in all of its arguments. In other words, if there exist sequences {xi} and {yi} such that

limy_, o0 X% = & and limy_, o0 Y = y then limy_, oo A%k, Xk Xk« - - Xk Vi) = A%, %, %, ..., X, ).

Proof Let {x;} and {yx} be convergent sequences in (X,A). Let limy_xx = x and
limg_, o yx = y. Then given € > 0, there exist Nj, Ny € N such that, for all kK > Nj, we get

Aty Xy Xy oo 3 Kkey X) < m and, for all k > N,, we have A(Yi, Y, Vi - - -» Vi ¥) < ﬁ Put

N = max{N;, N,}, therefore, for every k > N, we have
AKX, Xpr Xker - Xk Vi) < (1= D) AGk, Xk Xkes - - 5 Xk %) + A, 2,%, .., %, Vi)
= (n— DAk, Xk, Xy - - - » Xjer X)
+ AWk Vi Vs -2 Vior %)
< (n = DAk Xk Kker -+« » Xy X)
+(n = DAY Yo Vs -+ s Y)

+ AW, Ys %)

€
=(m-1) x m+(m—l)x 20 -1

+A®,x,%,...,%,),
which implies
Ak Xk Xier -« Ko Vi) — A, %, %, ..., %,Y) < €. (2.3)
On the other hand,

AR, x,%,...,%9) < (n-1AXx%,%,...,%,%) + AW, 9,95, Y, Xk)
<(m-1Axxx%,...,%%K)
+(n=DAW,55-- Yk
+ AXk> Xk Xker -+ - » Xk» Vi)

=(n-1)x

+(n-1) x

€ €
2(n-1) 2(n-1)
+ AKXy Xes Xker + 5 Xkes Vi)

A, x,%,...,%,9) — Ak, Xk, Xy - - > Xir Vi) < €. (2.4)
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Therefore by (2.3) and (2.4) we obtain |A(xx, xx, Xk, - - ., Xk, Vi) — Alx, %, %, ..., %,9)| <€, ie.
klim AKXk Xk Xker + + -1 Kk Vi) = A%, %, %, ..., %, ).
— 00
This completes the proof. O

3 Main result
In this section, we obtain common coupled fixed point results of mappings satisfying more
general contractive conditions in the framework of partially ordered A-metric spaces. We

start with the following result.

Theorem 3.1 Let (X, <,A) be a partially ordered complete A-metric space, f, g : X2 X
two maps such that;
(1) The pair (f,g) has mixed weakly monotone property on X;

x0 < f(x0,0),f (0, %0) < yo or x0 < g(x0,¥0),8(0,%0) =< yo for some xo,yo € X.
(2) Thereexista, >0,1=1,...,5, satisfying Z? o, <1land

A @) f (o 9)s o f ®9),8@ V) + A(F O 2).f 0,2) . f (,0), 8 (v, )
<o D((x,9), (%,9), (%,9), %, 9), .., (%,), (u, v))
+ azD((x,y), ), - (% 9), (f (%, 9), f (9, %)) )
+ asD((19), (V) ., (1,V), (g0, ), (v, 1))
+ a4D((x,y) ®%9)s - (%,9) (g(u, v),g (v, u)
((

+asD((u,v), (u,v), ..., (u,v), (f %),f, x))) (3.1)
forallx,y,u,ve X withx <uandy>v.

(3) Either f or g is continuous or X has the following properties:
(@) If {xx} is an increasing sequence with x, — x, then x; < x for all k € N.
(b) If {yx} is a decreasing sequence with yx — y, then y < yi for all k € N.

Then f and g have a coupled common fixed point in X.

Proof Let (x0,y0) be a given point in X x X.

Choose x1 = f(x0,50), 1 =f (Yo, %0), %2 = g(x1,31), and y5 = g(y1,%1).
From the condition xy < f(x0,%0),%0 > f (¥0,%0), and the fact that (f, g) has mixed weakly

monotone property we have

x1 =f(x0,0) < &(f(®0,70).f W0, %0)) =glx1,51) = X1 <x and
Xy = g(x1,91) Sf(g(xhyl),g(yl,xﬂ) =f(x2,52) =  x2=<ux3.

Thus,

91 =f(0,%0) = &(f 50, %0),f (%0,%0)) =gy, ®1) =  y1 =y and
y2 =g, %1) Zf(g(ybxl),g(xl,yl)) =f2,x2) = 2273
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Continuing this way, we obtain

X2k+1 =f (xzk:yzk), Yok+1 :f (sz,xzk) and

(3.2)
Koks2 = 8(Xoks1, Yoke1)s Yoks2 = 8Voks1,%2k41) forallk e N.
Therefore the sequences {x} and {yx} are monotone:
X a1 <xp Sz <coe <o SHope1 <Kok <00 and
(3.3)

YoZ Y12 Y2 = Y32 - = Vk = Yokl = Yoks2 = 7 -

Now we show that these sequences are Cauchy. From the contractive condition (3.1) we
have for all k e N

A(X2k+1) X2k 415 -+ +» X2k 1 X2k42) + AYV2kr1 Yoksls - - ) Y2ko s Y2ks2)
= A(f (2t Y2k )of G2k Y2k)s - - 5 f (koo Y215 & Kk s15 Y2k41) )
+ A(f 02 %2)o f O2ses %210)s -« 5 f Y2k %20, D2ks1, %2k41) )
< o D((%2, Y2k) (K2 Y2k )5 - - -» (ks Y2k)s (k415 Yake1))
+ 03 D((%25 Y21)s (%2 Y21)s - - (ks ¥21)s (f K2es Vi) f B2kr %24) ) )
+ 3D ((%ak+1, Yake1), (K2k415 Y2ks1)s - -5 (K2k415 Y2k41)5 (g(xzm,yzm (y2k+1»x2k+1)))

+ 0 D((26, Y2k) 20 Y24)s - > K210 Y205 (§(2k415 Y21 €2k 1 K2k1)) )
+ 05D (%2415 Y2ke1)s B2kt Yake1)s - - s Kaksts Vakon)s (F o2k Y2r)o f (V2 %2k ) -

Applying (3.2) we get

Ak 115 X2k41s - > X2k 1) X2kr2) + AV2kals Y2k 1s « - o5 V(2k+1)s Y2k+2)
< oy D((%2 Y2k)s (B2 Y2k )5 - - - » (ks Y2k )5 (k415 Y2ks1))
+ o D((%2ks Y2k)s K2k Y2k)s - - (ks Yak)s Ras1s Yoks1))
+ a3 D((%2k11 Yake1)s Baksts Yaka1)s -+ s (ks Yokt )s akr2s Yoks2))
+ 0t D( (%215 Y2k)s 2k Y2k)s - - (ks Y2k)s (ka5 Yaks2))
+ asD((xzm,yzm), (X2k415 Y2ks1)y -+ +» (K2ks1, Y2ks1)s (xzk+1,yzk+1))
= o1 D((%26, Y24)s (¥2k Y2k)s - - -» (%25 Y2k)s (Rkes1, Yaka1))
+ 03 D((%25 Y21)s (K2 Y2k)s - - - (ks Y2k )s (Rkea1 Y2ks1))
+ 0l3D((x2k+1;)/2k+1), (2ks15 Y2k41); -+ > (R2kes1, Y2k41)s (x2k+2,y2k+2))
+ gD (2, Y21)s 2 Y2k)s - - -5 2s Yak)s k125 Yoks2))
= 01D ((%2k Y2k)s K2k Y2k)s - - » (B2 Vi) (Kaks1s Y2ko1))
+ o D (ks Y2k)s K2k Y2k)s - - (ks Yak)s Kas1s Yaks1))

+ a3 D((%2k11 Yake1)s Baks1s Yaka1)s -+ s (ks Yokat)s (R2kr2s Yoks2))
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+ ot D((%2k5 Y2k) %2k Y2k )s - - (Rkes Y2k)s (Rkes1s Y2ka1))

+ 04D (%41, Yaks1)s ®akss Yok - s (Rakat, Yaka1)s (Raks2, Yoks2))
= (a1 + oz + 0a)D((%ak Y2k)s (K2 Y2k)s - - » (K2ses Y2k)s (K2ks15 Y2k41))

+ (a3 + a4)D((xzk+1,yzk+1), (X2ks1s Y2ke1)s -+ -5 (B2ker1s Y2ra1)s (x2k+2»y2/<+2))
= (o1 + a2 + 0a) [A (2t Kok - X2ss ¥2ks1) + A2k Y2k - -+ Voo Y2k |

+ (o3 + 00a) [A (k1 Xaka1s -+ Xkats H2ks2) + AV2ksts Yakats -+ r Y2ksts Yake2) |- (3.4)

Similarly we obtain

AWY2kr1 Yaksls -+ Yokos Yaks2) + AX2kr1, X2k415 - -5 X2ks 1) X2k +2)
< (o1 + a2+ a)[AW2i Yakr - - Yok Yaka1) + Aok Xors - > Xker X2ks1) |

+ (3 + 0a) [AQV2ke1s Yakots - - Yokots Yoke) + AKks1s Xoksts - - Kokels Xaka2) |- (3.5)

From (3.4) and (3.5), we have

2[A(Xakr1s F2kss - - > Fks 1 K2ks2) + AW2kss Y2kl - - - Vakols V2ks2) )
< 2[(0n + oz + 0ta) [A(Xss ¥k - X2 X2ks1) + A2k Y2k - Y2ko Y2ks1) ]|

+2[ (o3 + a) [AWakr1s F2kss - - > F2ks 1 K2ks2) + AW2kss Yokl - - - Vakats Yors2) ] |-

This implies that

[AG2ks1s Xoks1s - - » X2ker1s ¥2kea2) + AV2ks1s Yakats - - - Yokt Yake2) | [1 = (o3 + )]

< (on + a2 + 0a)[Aas Kok - Kok Xaks1) + AWk Yok - - Yoko Yo2ka1) |-

Thus

AXka1s Xkl -+ -3 X2k 1 X2k42) + AW 2kals Yokals - o Yokl Y2ks2)

(o1 +0rp + 0g)

= m[f\(xzk,xzk, oo Kok K1) + AWk Yok - ..,yzk:yzku)].
—la3 +ay

Let$ = [M],then058<land

1—(ar3+0tg.)

AXoka1s Xk -+ -3 X2k X2k+2) + AW 2kals Yok ls - o Yokals Y2ks2)

<34 (A(xzerzk: oo X2k X2441) + AV260 Y2k - - - ,yzk,y2k+1))' (3.6)

For all k € N, applying (3.1) again and by interchanging the roles of f and g, we obtain

AXks2s Xoka2s -+ 1 X2ks25 K2k43) + A(Voka2s Yoka2s - - » Yok+25 Y2k+3)

<34 (A(x2k+1,x2k+1, oo X2hes 1 X2k42) + AV2kr1, Yoks1s - - ,y2k+1,y2k+2))~ (3.7)
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It follows from (3.6) that

A(X2ks1) X2k 15 -+ +» X2k 11 X2k42) + AYV2kr1 Yaksls - - ) Yokols Y2ks2)
< 8(A W@k Kok - Xaks Kaks1) + Ao Yok -+ 5 Yok Yoks1))
< 8(8(Aok-1, %2415 - - X2k-1, X2k) + AYV2k-1s Yak-1 - - -» Y2k-1,Y2k)))

8(8(8(Alakns Hok—2s - - s Kok, X2k1) + AWV2k=2 Y2k2s - - -» Y2k-2: Y2k-1))) )

This implies

AWokes1, Xok+15 « - - X2ks 1) X2ks2) + A()’2k+1,y2k+1, cee ,y2k+1,y2k+2)

< 8% (A(k-ts X2kt - - > F2k—ts ¥2k-3) + A(V2kots Y2kt - - -» Y2kt Y2k-3))

< 82k+1(A(xo,x0,...,x0,x1) + A0, Y05+ Y0,71))- (3.8)
Similarly, by (3.7) we get

AWokes2s Xoks2s -+« 1 X2kr2, K2ke3) + A()’zk+2,y2k+2, cee ,y2k+2,y2k+3)

< 82k+2(A(x0,x0, oo %0,%1) + A(Y0, Y0, . - - ,yo,y1))' (3.9)

By Lemma 2.5 we have for all k,m € N with k <m

Aokt X2ks1s -+ -3 X2k 1 X2me1) < (1 — DAKDRA1, X2kals -+ » Krls X2k42)

+ A(Xok+25 X2ks2s - -+ X2k 25 X2 s1)

and

Aokl Yokels - s Yoke1s Voms1) < (11— DA oks1, Yoksls - - Yokl Voks2)

+ AYok+2) Yoks2s -+« » Y2kt 2 Y2m1)-

So we have

AX2kr1, X2ks15 -+ Xaks 1y X2ms1) + AV2kr1s Y2ko1s -+ Yoks1s Yams1)
< (n = DA@2ks1, X2ks 15 - - - X2k415 X2k42)
+ (1 = DAW2k11 Yoks1 -+ - Y2ks1s Y2ke2)
+ A(X2ks20 X2k 25 -+ 9 X220 X241)
+ A(Y2k+2 Y2k2s - -2 Y2ks25 Y2ms1)
= (1 = D[ Aaks1, ¥2k415 - - > ¥2ks1, K2k42) + AW2k15 Y2ks1s - - - Vakols Y2ks2) |

+ (1 = 1)[A(Xaks2: Xaks2s - - -» Xks2s 2ks3) + AV2ks2s Yoks2s - -5 Y2ks2s V2ke3) |



Abbas et al. Fixed Point Theory and Applications (2015) 2015:64 Page 17 of 24

+ (1 = 1)[AXame1s Xomts - - » X2t Xam) + AW 2m1s Yom-1s - -» Yam—1s Yom) |
+ [A(me»xZWU«H;x2m:x2m+1) +A(yzm,y2m,...,y2m,y2m+1)]
=
AKXk X2kt 1s -+ -3 X2kl Xame1) + A(Y2k+1x)’2k+1» cee ,y2k+1,)’2m+1)

<(n- 1)[A(x2k+1,x2k+1, oo X2ks15 X2k42) + AWY2kr1 Yokt - - ,y2k+1,y2k+2)]

+ (1= D[A@2m %25 - - > Xoms X2ms1) + AY 2 Yams - Yams Yoms1) ]
= (- D[54 g2 4 g%y gl 2]

X [(A(x0, %0, - ., %0, %1) + A(Y0, Y0 - - » Y0, 1) ]
=

AX2ks1, Xakt1s -+ - Xofer 1y X2me1) + A(y2k+1:y2k+1y e ,y2k+1:y2m+1)

52k+1
<(mn- 1)<1 3 ) (A(xo»xo, < %0,%1) + Ao, Yo, - ..,yo,yl))~

Similarly, we have

Aok X2k -+ -5 Kks Koma1) + AW2ks Yok -+ - Yok Yame1)
82/(

< (n—l)(m

) (A(x();xOr e 7x0)x1) +A()’0;J/0; oo J’od’l))
and

AKXk Xokes + 3 X2k Xom) + AWk Yok - - Y2k Yom)

< (Vl _ 1)[82]( + 32k+1 + 82k+2 bt 82m—1]

X [(A(xO’xO) .. ';xOJxl) +A()/0,yo, .. ~,y0;)’1)]

82/(
=(n- 1)<1 ~ 8) (A(xo,xo,...,xo,xl) +A()’0,}’0,m,)’0,y1))-

Hence, for all k,m € N with k < m, we have
A(xerkr- . ’xerm) +A()’k,yk: .o ')ykrym)

5k
<(n- 1)<m> (A(xo,xo,...,xo,xl) + Ao, Y0, - ..,yo,yl)).

Since 0 <6 = [%] <1, we have

lim (A(xk,xk,...,xk,xm) +A()/k¢yk:--~;ykrym)) =0.

k,m—00

That is,

Hm Ak, Xk« v o s Xk X =klim AW Yir -« Vi Ym) = 0.

k,m—00
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Therefore, {x} and {yx} are both Cauchy sequences in X. By the completeness of X, there
exist x,y € X such that xy — x and yx — y as k — oo.

We next show that the pair (x, ) is a coupled common fixed point of f and g.

Now, suppose f is continuous, then we have

x = lim %o = lim f(xox, yor)
k—o00 k— o0

:f( lim %y, lim y2k>
k—o00 k— 00

:f(x7y)

and

y = lim yops1 = lim f(yor, %)
k—00 k— o0
- 7( 1im yy, 1i )
f (kL‘&y 2k D KK

=f(,%).

Applying (3.1), we have

A(f),f®9), . f(5,9),85,9)) + A(F,2),f 05 %), ... f 0,%), g3, %))

< aiD((x,9), (%,9), (%,9), (®,9), ..., (%), (x,9))
+aaD((%,9), (%,9), ..., (%,9), (f (%, 9).f (7, %)) )
+asD((%,9), (%,9), ..., (%), (g(x,7),g(:%)))
+aaD((x,9), (%,),..., (%,9), (¢(%,), g3, %)))
+asD((%,9), ®,9), -, (,), (Fx%).f 7,%)))

= aD((%,9), (%,9), .., (%,9), (x,9))
+a3D((%,9), (%,9), ..., (x,9), (g, 7),(7,%)))
+aaD((x,9), (%), -, (%,9), (¢(x,9), 85, %)))
+asD((x,9), (%,9), ..., (%,9), (x,9))

= (a3 + )D((%,9), (%,9), ..., (%,9), (g%, ), g, %))

= (a3 +oz4)(A(x,x,...,x,g(x,y)) +A(y,y,...,y,g(y,x))).

Therefore

A(x,x,x,...,x,g(x,y)) +A(y,y,y,...,y,g(y,x))
<(az+a)(A(xx%,...,%,8%Y) + A100, ... 1,80 %))).

Since 0 < (ag + @a) <1, A%, %,%,...,%,2(%,9) =AW, 9,9, ...,5,2(,%)) = 0.
That is, g(x,y) = x and g(y,x) = y. This implies (x,y) is a coupled fixed point of g.
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In a similar fashion, suppose g is continuous, then we have

x = lim Xy = lim g(xoxe15 Yoks1)
k— o0 k— o0
= g( lim xo4,q, lim J/2k+1>
k—o00 k— 00
=g(x,y)
and
y = lim yoreo = lim g(yake1, Xoke1)
k—o00 k— 00

= g( lim yyp,1, lim x2k+1>
k— 00 k— o0

=g0’»x).

Applying (3.1) again, we also get

A(x,x, . ..,x,f(x,y)) +A(y,y, s ,y,f(y,x))
< (a2 +as) (A% ..., %, (%) + A1, 0., (01,%))).
This implies f(x,y) = x and f(y,x) = y and so (x,y) is as well a coupled fixed point of f.
Therefore, (x,y) is a coupled common fixed point of f and g.

Finally, suppose X satisfies hypotheses (3a) and (3b). Then by (3.3) we get xx < x and
y < yi for all k € N. Applying Lemmas 2.5 and 2.6, we obtain

D((%,9), (%, 3), -, (9, (f(x,9).f (7,%)))

< (m=1)D((%,9),(%,9), .-, (*%,), (X2ks2, Y2k42))
+ D((Xak+25 Yak+2)s K2ks2 Yake2)s - - - Kaka2s Yake2)s (F (3, 9), f (9, %)) )

= (n=1)D((x,9), (%, 9), .., (%), (*2x+2, Y2k+2))
+ D((g(ars1, Yars1), €Wk ¥2k41)) s (X1, Yako1)s §Waksts k1)) -5
(@11, y2k41), € Waks1s X2ks1))s (f (%, %), f (3, %)) )

< (m=1)D((%,9),(%,9), .-, (*%,9), (Xaks2, Y2k+2))
+ A(g (k11 Yor1), €2kt Yoka1)s - - (§ke15 Y2k 41) ) o f (%, 7))
+ A(g0ars1 %261, EW2ks 1, X2k - - - (€W2k01, %2k41) ) f (0 %) ).

This implies

D((x,), (%,9), . (%,9), (f (%, 9).f 7, %))
< (=DAEX, ..., %%002) + (1= DAD, Y., Yoks2)
+ A(g(2ks1, Y2rs1)s € X2kt Yaka1)s - - - (§aks1, Yaka1) ) f (%, 9))
+ A(gak1 %241, EW2ks 1, K2ks1)s - - - » (€W2ks1s H2k41) ) f (0 ) ). (3.10)
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By using (3.1) and interchanging the roles of f with g we obtain

A(g(Xakr1, Y2k61) & Xaksts Y2ks1)s - - - &Kakeats Yors)s f (%, 7))

+ A(g2kr1> %21 E Y2k 15 X21)s - - - & Wkeats X1 ), f (9, %))

< a1D((%2k415 Y2us1)s K2ks 1, Y2ks1)s - - o Fosats Yara1)s (%, 7))
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+ OlzD((xzkmyzku), (X2ks1s Y2ke1)s - -+ (B2ka1s Y2re1)s (g(x2k+1,yzk+1),g(yzk+1, x2k+1)))

+ agD((x,y) (*9), ..., (%, 9), (f x9).f 0, x)))

+ 0 D((%2k415 Y2ks1)s k41, Yok ) - - > aats Yaiean)s (F (2 9),f (3 %))

+ 055D((x,y)» (xry)’ veey (x»y)» (g(x2k+lﬁy2k+l)’g(y2k+l> x2k+1)))

= o1 D((%oks1, Yoks1)s Koks 1 Yars)s - - - (Bakats Yorsn)s (%,9))

+ aa D((¥2k41 Yake1)s R2ks1s Yarst)s - - (Rkats Yaka1)s (R2ks2s Yaka2))

+0a3D((%,9), (%,9)s .., (%), (f (£, 9).f (%))

(
+ 064D( X2k+1s Y2k+1)s (X2k41s Y2ka1)s -+ (K2ka1 Y2ko1)s (f %9.f % ))
(

+ O[5D (xry) (xry) (x¢y): (x2k+2’y2k+2))'
It follows from (3.10) and (3.11) that
D((%,3), (%, 3), -, (), (f(x,9).f (7,%)))

= (I’l - 1)A(x1x: e !x7x2/(+2) + (}’1 - I)A()/,y, e ,y,y2k+2)

+ alD((x2k+1xy2k+1)> (%2ks1s Yake1)s -+ -5 (F2kr 1 Y2ua1)s (%, y))

+ oo D((V2k+1 Y2rs1)s (K2ks1s Yoke1)s - - ,(x2k+1,y2k+1),(x2k+2,y2k+2))

+ 0 D((%2k41 Yaks1)s 2ks1 Yokt - - » Bass Yaian)s (F (2, 9),f (3 %)) )

(¢

+asD((%,9), ®%,9), ..., (), (f(x9).f (,%)))
(€
(@

+asD o (5,), Kaki2, Y2k42))-

Taking the limit as k — oo in (3.12), we get

D((x,9), (%, 3), -, (%9, (f(x,9),f (7,%)))
< (n-1DAEX,..., x5 + (1=1AG,,...,7)
+ a1 D((x,9), (%), ..., (%), (x,9))
+ @ D((%9), (%,9), -, (x,9), (x,9))
+asD((x,9), %,9), ..., (%), (f%).f (,%)))
+asD((%,9), %,9)s .., %), (f %, 9),f (%))
+asD((x,9), (x,9), ..., (x,9), (x,9))
= asD((x,9), (%,9); ..., (%), (f %, 9).f (7,%)))
+asD((%,9), (%), (,9), (f(x,).f (7,%))).

(3.11)

(3.12)
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Therefore,

D((%,9), %, 3), -, (), (f(x,).f (7,%)))
=< (053 + Ol4)D((x’y)’ (x»)’), LR (x»)’)» (f(%)’)’f(%x)))

Since (a3 + ag) < 1 we have D((x, ), (x,7),. 9), (f(x,9),f(9,%))) = 0. That is f(x,y) = x
and f(y,x) = y. This implies (x,y) is a coupled ﬁxed point of f.

Similarly, we can show that g(x,y) = x and g(y,x) = y.

Hence, f(x,y) = x = g(x,y) and f (y,x) = y = g(y,%x). Thus (x, y) is a coupled common fixed
point of f and g. This completes the proof. d

Theorem 3.2 In addition to the hypotheses of Theorem 3.1, if X is a totally ordered set,
then f and g have a unique coupled common fixed point. Furthermore, any fixed point of f
is a fixed point of g, and conversely.

Proof Let X be a totally ordered set. Suppose (x,y), (x*,y*) are coupled common fixed
points of f and g. That is, f(x,y) = x, f(y,x) = y, and g(x*,y*) = x*, g(y*,x*) = y*. We show
that x = x*, y = y*, and subsequently x = y.

Observe that if X is a totally ordered set, then, for every (x,), (x*,y*) € X x X, there
exists (#,v) € X x X that is comparable to (x,y) and (x*,y*).

So we let (x,7) < (x*,5*) without loss of generality, then it follows from Lemma 2.6 and
Theorem 3.1 that

D((%,9), (,9), ..., (%), (x*,5"))
=A%, %5 ) + Ay 0 )")
= A(fee,2).f @), f (x,9),8(x%,5"))
FAFO L0, .. f 02), 8 (5, %7))
<aiD((®), (%), ..., (x ), (x*,5%))
+aaD((x,), @), (5,9), (Fx, ), £ 3%)))
+asD((x",5"), (x*;y*)w (",57): (g(x".5"). 8 (7", %")))
+aaD((%,9), (6 9),-.., (6, (€(x 7). (4, x7)) )
s asD((5%5"), (55 ) (97), (FG9),f 0,0)))
= a1D((x,9), (%), .., (%), (x*,5%))
+ @ D((%,9), @), -, (®,7), (%))
+asD((5%5"), (4,5 ) (297), (5557))
+aaD((®9), %)) ., (5,9), (6%,5%))
+asD((x557), (555 ) (29%), (69))
=a1D((%,9), @ )., ®%,9), (x*,57))
+asD((%,9), (5,), ., (5,), (%))
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+asD((x%5%), (655, -.o (5%5%), (x,9))
= (0[1 + 04 + 0[5)D(( ) (x).y) ( XY )y (x*)y*))
Since 0 < (01 + ag + a5) < 1, we have D((x, ), (x,9),...,(x, ), (x*,¥*)) = 0, which implies
x=x*and y = y*.
Proceeding, we show that any fixed point of f is a fixed point of g, and conversely. Ap-
plying Lemma 2.6 and Theorem 3.1 we have

A%, %)) +AG, Y, ), X)

= A(f @S @), o f (5,9), 80, %)
+Af0r 0. f 0, %), .. f (31%),8(x,))

<aD((x9), (x,9), ..., (%), (7,%))
+aD((x,9), (%,9), ..., (%), (f(x,9),f (%))
+a3D((0,%), (0,%), ..., (0,%), (g3, %), (%, 9))
+asD((%,), (%), ..., (x,9), (80, %), g(x,))
+asD((5,%), 35 %), ..., (%), (f (%, 9),f ()

= a1D((x,9), (%), .., (%), (5,%))

)
)
)
)

+aaD((x,9), (%,9), ..., (x,9), (%,9))
+asD((1,%), (0,2), ..., (3,%), (3 %))
+aaD((%,9), (% 9)s..., (%,9), (7,%))
+asD((5,%), (5,%), ..., (9,%), (x,9))
= a1 D((%,9), (%,9),-.-, (x,9), (5, %))
+asD((%,), (%) .., (x,9), (9, %))
+asD((%,9), (6, Y) .., (£,9), (%))

Therefore

A% .. %,9) + AW Y, %) < (01 + 04 +a5)(A(x,x,...,x,y) +A(y,y,...,y,x)).

Since 0 < (g + g + a5) <L, A%, %,...,%,9) + Ay, y,...,9,%x) = 0.
That is, x = y. The coupled common fixed point of f and g is unique. 0

Ifn=3,01=p,ap =q, a3 =1, a4 = 5 = s in Theorem 3.1 with D4 = Ds, then we obtain
the main result in [26].

Ifn=2,01=p, as=q, a3 =r,a4 =as =s, in Theorem 3.1 with D4 = D, then we get the
main result in [7].

Example 3.3 Let (R, <,A) be a totally ordered complete A-metric space with A-metric
defined as in Example 2.3. Let f,g : R — R be two maps defined by f(x,y) = %
and g(x,y) = W forall m > 1.
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The pair (f, g) has the mixed weakly monotone property on R and

A(f @), f9), o f %,9), 8, V) + A(Ff (05%), f 0, %), ..., f (%), 8 (v, 1))
=(n- 1)[f(x,y) —g(u,v)| +(n— I)Lf(y,x) —gW, u)|

—(i-1) 6x—3y+24n-3 8Bu-—-4v+32n—-4
-V 241 321
6y—-3x+24n—-3 8v—-4u+32n-4
+(n-1) -
24n 32n
n-1 n-1
= (768n) 192(x — u) + 96(y —v)| + (768n) 192(y - v) + 96(x — )|
192(n -1
< %(m—m +ly=vi+ly=vl+ |x - ul)
(n-1)
= x—ul+|y—vl|).
o (I |+ ly—vl)
Then the contractive condition (3.2) is satisfied with a; = (";‘1), oy =3z =0y = o5 = 0.

Moreover, (1,1) is the unique coupled common fixed point of f and g.
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