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Abstract
Sedghi et al. (Mat. Vesn. 64(3):258-266, 2012) introduced the notion of a S-metric as a
generalized metric in 3-tuples S : X3 → [0,∞), where X is a nonempty set. The aim of
this paper is to introduce the concept of an n-tuple metric A : Xn → [0,∞) and to
study its basic topological properties. We also prove some generalized coupled
common fixed point theorems for mixed weakly monotone maps in partially ordered
A-metric spaces. Some examples are presented to support the results proved herein.
Our results generalize and extend various results in the existing literature.
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1 Introduction and preliminaries
Many mathematical problems require one to find a distance between two or more ob-
jects which is not easy to measure precisely in general. There exist different approaches to
obtaining the appropriate concept of a metric structure. Due to the need to construct
a suitable framework to model several distinguished problems of practical nature, the
study of generalized metric has attracted, and continues to attract the interest of many
authors. Over the last few decades, a number of generalizations of metric space have thus
appeared in many papers. These generalizations were then also used to extend the scope
of the study of fixed point theory. For more discussions of such generalizations, we refer
to [–], and [].

In the sequel, the letters R, R+, and N will denote the set of all real numbers, the set of
all nonnegative real numbers, and the set of all positive integers, respectively.

In , Gähler [] introduced the notion of a -metric space as follows.

Definition . Let X be a nonempty set. A function d : X → R is said to be a -metric
on X if the following conditions hold:

(d) For any distinct points x, y ∈ X there is z ∈ X such that d(x, y, z) �= ,
(d) d(x, y, z) =  if any two elements of the set {x, y, z} in X are equal,
(d) d(x, y, z) = d(x, z, y) = d(y, x, z) = d(z, x, y) = d(y, z, x) = d(z, y, x),
(d) d(x, y, z) ≤ d(x, y, a) + d(x, a, z) + d(a, y, z) for all x, y, z, a ∈ X .

The pair (X, d) is called a -metric space.
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Gähler [] claimed that -metric space is a generalization of an ordinary metric space.
He mentioned in [] that d(x, y, z) geometrically represents the area of a triangle formed
by the points x, y, z ∈ X as its vertices.

On the other hand, Ha et al. [] and Sharma [] found some mathematical flaws in these
claims. It was demonstrated in [] that d(x, y, z) does not always represent the area of a
triangle formed by the points x, y, z ∈ X. Ha et al. [] proved that the -metric is not se-
quentially continuous in each of its arguments whereas an ordinary metric satisfies this
property.

In order to carry out meaningful studies of fixed point results, Dhage [] suggested an
improvement in the basic structure of -metric space.

In , Dhage in his Ph.D. thesis [] identified condition (d) as a weakness in Gähler’s
theory of a -metric space. To overcome these problems, he then introduced the concept
of a D-metric space.

Definition . Let X be a nonempty set. A function D : X → R is called a D-metric on
X if it satisfies the following conditions:

(D) D(x, y, z) ≥  for all x, y, z ∈ X and equality holds if and only if x = y = z,
(D) D(x, y, z) = D(x, z, y) = D(y, x, z) = D(z, x, y) = D(y, z, x) = D(z, y, x),
(D) D(x, y, z) ≤ D(x, y, a) + D(x, a, z) + D(a, y, z) for all x, y, z, a ∈ X .

The pair (X, D) is called a D-metric space.

It is important to note that condition (d) and (D) are equivalent. Condition (d) and
(D) are also equivalent, whereas (d) and (d) have been replaced by (D). Dhage []
modified condition (d) to obtain the natural nonnegativity condition of ordinary metric.

Dhage [] then studied topological properties of D-metric space in a series of papers.
The notions of open balls and sequential continuity in D-metric space were introduced in
[]. It was claimed that the D-metric induces a Hausdorff topology, and that the family
of all open balls in a D-metric space forms a base for such a topology. Naidu et al. []
proved that the concepts of convergent sequences and sequential continuity are not well
defined in D-metric spaces. Naidu et al. [] pointed out some drawbacks in the idea of
open balls in D-metric space. In , Mustafa and Sims [] identified condition (D) as
a weakness in Dhage’s theory of D-metric space.

In , Mustafa and Sims [] introduced the notion of G-metric space and suggested
an important generalization of metric space as follows.

Definition . Let X be a nonempty set. A function G : X →R
+ is called a G-metric on

X if it satisfies the following conditions: For all x, y, z, a ∈ X,
(G) G(x, y, z) =  if x = y = z,
(G)  ≤ G(x, y, y) for all x, y ∈ X with x �= y,
(G) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z �= y,
(G) G(x, y, z) = G(x, z, y) = G(y, x, z) = G(z, x, y) = G(y, z, x) = G(z, y, x),
(G) G(x, y, z) ≤ G(x, a, a) + G(a, y, z).

The pair (X, G) is called a G-metric space.

Note that condition (D) has been replaced with (G), (G), and (G). Condition (D)
is equivalent to (G) and condition (D) has been replaced by (G). The deficiency of
Dhage’s theory of D-metric is thus corrected. Subsequently, Mustafa and Sims [] studied
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some topological properties of G-metric space and afterwards some authors have obtained
generalized fixed point theorems in the setup of G-metric space; see for example [].

Unlike in the theory of G-metric space, where condition (D) was replaced with the
three separate axioms (G), (G), and (G), Sedghi et al. [] observed that condition (D)
can be replaced with two axioms and thus introduced the notion of a D∗-metric space as
follows.

Definition . Let X be a nonempty set. A function D∗ : X → R
+ is called a D∗-metric

on X if it satisfies the following conditions: For all x, y, z, a ∈ X,

(D∗) D∗(x, y, z) ≥ ,
(D∗) D∗(x, y, z) =  if and only if x = y = z,
(D∗) D∗(x, y, z) = D∗(x, z, y) = D∗(y, x, z) = D∗(z, x, y) = D∗(y, z, x) = D∗(z, y, x),
(D∗) D∗(x, y, z) ≤ D∗(x, y, a) + D∗(a, z, z).

The pair (X, D∗) is called a D∗-metric space.

Note that condition (D) has been replaced with (D∗) and (D∗). Condition (D)
and (D∗) are equivalent. Condition (D) has been replaced with (D∗). The tetrahe-
dral inequality in D-metric has been replaced with the prototypical rectangular inequality
adopted by Mustafa and Sims []. Therefore D∗-metric space theory can be viewed as an
improved version of Dhage’s theory of D-metric space. To the best of our knowledge, little
or no work has appeared on the topological properties of D∗-metric space. Some interest-
ing fixed point results in D∗-metric space have been obtained in [].

Every G-metric space is a D∗-metric space. Indeed conditions (G), (G), and (G) imply
(D∗). Axioms (G) and (D∗) are equivalent. (G) and (D∗) are also equivalent, whereas
(G) and (G) imply (D∗). The converse, however, is false in general; a D∗-metric space
is not necessarily a G-metric space. To see this let X = R and D∗ : X → R

+ be a function
defined by

D∗(x, y, z) = |z – x – y| + |x – y – z| + |y – x – z|.

Clearly (D∗) holds, that is, D∗(x, y, z) ≥  for all x, y, z ∈ X.
Note that D∗(x, y, z) =  ⇔ |z – x – y| = , |x – y – z| = , and |y – x – z| =  ⇔ z –

x = y, x – y = z, and y – x = z ⇔ x = y = z. Thus condition (D∗) holds. As D∗(x, y, z) =
D∗(x, z, y) = D∗(y, x, z) = D∗(z, x, y) = D∗(y, z, x) = D∗(z, y, x), (D∗) is valid for all x, y, z ∈ X.
If x, y, z, a ∈ X, then we have

D∗(x, y, z) = |z – x – y| + |x – y – z| + |y – x – z|
≤ |a – x – y| + |z – a| + |x – y – a| + |z – a| + |y – x – a| + |z – a|
= |a – x – y| + |x – y – a| + |y – x – a| + |z – a|.

This implies D∗(x, y, z) ≤ D∗(x, y, a) + D∗(a, z, z). Hence (X, D∗) is a D∗-metric space. Now,
if x = , y = –, and z = , then G(, , –) =  and G(, –, ) = . Thus condition (G)
fails. So not every D∗-metric space needs to be a G-metric space.



Abbas et al. Fixed Point Theory and Applications  (2015) 2015:64 Page 4 of 24

Sedghi et al. [] identified condition (G) as a peculiar limitation of the G-metric space
but classified the symmetry condition as a common weakness of both G- and D∗-metric
spaces.

To overcome these difficulties, Sedghi et al. [] introduced a new generalized metric
space called an S-metric space.

Definition . Let X be a nonempty set. Suppose a function S : X → [,∞) satisfies the
following conditions:

(S) S(x, y, z) ≥ ,
(S) S(x, y, z) =  if and only if x = y = z,
(S) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a) for any x, y, z, a ∈ X .

Then the ordered pair (X, S) is called an S-metric space.

It is observed that the shortfalls of the G-metric are corrected and conditions (D∗) and
(D∗) are replaced with (S).

Proposition . Every D∗-metric space is an S-metric space.

Proof Let (X, D∗) be a D∗-metric space. From Definitions . and ., we see that:
() (D∗) and (S) are equivalent,
() (D∗) is equivalent to (S), and
() (D∗) and (D∗) imply (S). Indeed, for all x, y, z, a ∈ X , we have

D∗(x, y, z) ≤ D∗(x, y, a) + D∗(a, z, z)

= D∗(a, x, y) + D∗(a, z, z)

≤ D∗(a, x, a) + D∗(a, a, y) + D∗(a, z, z)

= D∗(x, x, a) + D∗(y, y, a) + D∗(z, z, a).

Thus, every D∗-metric space is an S-metric space. �

But the converse of Proposition . does not hold in general. To prove this, let X = R.
Define the mapping S : X × X × X → [,∞) by

S(x, y, z) = |x – y – z| + |z – y|

for all x, y, z ∈ X. Obviously, conditions (S) and (S) are satisfied. We shall show that, for
all x, y, z ∈ X, (S) is valid.

S(x, y, z) = |x – y – z| + |z – y|
≤ |x – a| + |y – a| + |z – a|
= S(x, x, a) + S(y, y, a) + S(z, z, a).

Therefore (X, S) is an S-metric space. Note that D∗(, , ) =  �=  = D∗(, , ). Hence
(X, S) is not a D∗-metric space.
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Proposition . The S-metric space is a generalization of the G-metric space and the D∗-
metric space.

Proof The proof is straightforward. �

Modification, enrichment, and extension of the structure of domains of the definition to
obtain more general spaces is one of the active research areas in fixed point theory. One of
the basic and the most widely applied fixed point theorems in mathematical analysis is the
‘Banach (or Banach-Caccioppoli) contraction principle’. It states that if (X, d) is a complete
metric space and f : X → X satisfies

d(fx, fy) ≤ kd(x, y),

for all x, y ∈ X, with k ∈ (, ), then f has a unique fixed point. This result is simple and
powerful with a wide range of applications in science and engineering. It can be em-
ployed to prove the existence of solution of differential or integral equations including
iterative methods for solving linear, nonlinear, differential, integral, and difference equa-
tions (see for example Samet [], Sedghi and Dung [], Lakshmikantham and Ćirić [],
and Berinde and Vetro []) to mention just a few.

Definition . (see []) Let (X,≤) be a partially ordered set. A mapping f : X → X is said
to have mixed monotone property on X, if for any x, y ∈ X, x, x ∈ X, x ≤ x ⇒ f (x, y) ≤
f (x, y) and y, y ∈ X, y ≤ y ⇒ f (x, y) ≥ f (x, y).

An element (x, y) ∈ X × X is called a coupled fixed point of f if x = f (x, y) and y = f (y, x).
In , Bhaskar and Lakshmikantham [] initiated the study of coupled fixed points

and mixed monotone mapping in the setup of metric spaces, which provided powerful
tools for solving complex problems; and therefore numerous interesting results on coupled
fixed point theorems for various classes of contractive-type mappings in partially ordered
metric spaces have been proved; see for example [, –], and the references therein.
Gordji et al. [] introduced the concepts of coupled common fixed points and mixed
weakly monotone pair of mappings as follows.

Definition . (see []) Let (X,≤) be a partially ordered set and f , g : X → X be two
maps. The pair (f , g) is said to have the mixed weakly monotone property on X if, for all
x, y ∈ X, x ≤ f (x, y), y ≥ f (y, x) imply f (x, y) ≤ g(f (x, y), f (y, x)), f (y, x) ≥ g(f (y, x), f (x, y)) and
x ≤ g(x, y), y ≥ g(y, x) imply g(x, y) ≤ f (g(x, y), g(y, x)), g(y, x) ≥ f (g(y, x), g(x, y)).

An element (x, y) ∈ X ×X is called a coupled common fixed point of f and g if x = f (x, y),
y = f (y, x), x = g(x, y) and y = g(y, x). They proved the following result.

Theorem . (see []) Let (X,≤, d) be a partially ordered complete metric space, f , g :
X → X be the mappings such that the pair (f , g) has mixed weakly monotone property
on X. Suppose that there exist p, q, r, s ≥ , with p + q + r + s <  such that

d
(
f (x, y), g(u, v)

) ≤ p


D
(
(x, y), (u, v)

)
+

q


D
(
(x, y), f (y, x)

)
)

+
r


D
(
(u, v),

(
g(u, v), g(v, u)

))
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+
s


D
(
(x, y),

(
g(u, v), g(v, u)

))

+
s


D
(
(u, v),

(
f (x, y), f (y, x)

))

holds for all x, y, u, v ∈ X with x ≤ u and y ≥ v. Let x, y ∈ X be such that x ≤
f (x, y), f (y, x) ≤ y or x ≤ g(x, y), g(y, x) ≤ y. If f or g is continuous, then f and
g have a coupled common fixed point in X.

Furthermore, assume that X has the following properties:
(a) if {xn} is an increasing sequence with xn → x, then xn ≤ x for all n ≥ ;
(b) if {yn} is a decreasing sequence with yn → y, then y ≤ yn for all n ≥ .

Then f and g have a coupled common fixed point in X.

Recently, Dung [] generalized the results of Gordji et al. [] in the framework of an
S-metric space. He proved the following theorem.

Theorem . Let (X,≤, S) be a complete partially ordered S-metric space, f , g : X → X
be two maps such that the pair (f , g) has mixed weakly monotone property on X . Suppose
that x, y ∈ X are such that x ≤ f (x, y), f (y, x) ≤ y or x ≤ g(x, y), g(y, x) ≤ y,
and there exist p, q, r, s ≥ , satisfying p + q + r + s <  and

S
(
f (x, y), f (x, y), g(u, v)

) ≤ p


D
(
(x, y), (x, y), (u, v)

)
+

q


D
(
(x, y), (x, y), f (y, x)

)

+
r


D
(
(u, v), (u, v),

(
g(u, v), g(v, u)

))

+
s


D
(
(x, y), (x, y),

(
g(u, v), g(v, u)

))

+
s


D
(
(u, v), (u, v),

(
f (x, y), f (y, x)

))

for any x, y, u, v ∈ X with x ≤ u and y ≥ v. Assume f or g is continuous or X has the following
properties:

(a) if {xk} is an increasing sequence with xk → x, then xk ≤ x for all k ∈ N;
(b) if {xk} is a decreasing sequence with xk → x, then x ≤ xk for all k ∈N.

Then f and g have a coupled common fixed point in X.

It is our purpose in this paper to first propose a generalization of the S-metric space,
called an A-metric space, and then prove some coupled common fixed point theorems for
mixed weakly monotone maps in partially ordered A-metric spaces. Our results extend,
unify, and generalize comparable results in [, , ], and [].

2 A-metric space
We now present the concept of an A-metric space and study some of its properties needed
in the sequel.

Definition . Let X be a nonempty set. A function A : Xn → [,∞) is called an A-metric
on X if for any xi, a ∈ X, i = , , . . . , n, the following conditions hold:

(A) A(x, x, x, . . . , xn–, xn) ≥ ,
(A) A(x, x, x, . . . , xn–, xn) =  if and only if x = x = x = · · · = xn– = xn,
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(A)
A(x, x, x, . . . , xn–, xn) ≤ A

(
x, x, x, . . . , (x)(n–), a

)

+ A
(
x, x, x, . . . , (x)(n–), a

)

+ A
(
x, x, x, . . . , (x)(n–), a

)

...

+ A
(
x(n–), x(n–), x(n–), . . . , (x(n–))(n–), a

)

+ A
(
xn, xn, xn, . . . , (xn)(n–), a

)
.

The pair (X, A) is called an A-metric space.

Note that A-metric space is an n-dimensional S-metric space. Therefore the ordinary
metric d and S-metric are special cases of an A-metric with n =  and n = , respectively.

Lemma . Let (X, A) be A-metric space. Then A(x, x, x, . . . , x, y) = A(y, y, y, . . . , y, x) for all
x, y ∈ X.

Proof Applying condition (A) of an A-metric, we obtain

A(x, x, x, . . . , x, y) ≤ A(x, x, x, . . . , x, x)

+ A(x, x, x, . . . , x, x)
...

+ A(x, x, x, . . . , x, x)

+ A(y, y, y, . . . , y, x)

= A(y, y, y, . . . , y, x). (.)

In a similar fashion

A(y, y, y, . . . , y, x) ≤ A(y, y, y, . . . , y, y)

+ A(y, y, y, . . . , y, y)

...

+ A(y, y, y, . . . , y, y)

+ A(x, x, x, . . . , x, y)

= A(x, x, x, . . . , x, y). (.)

The result follows from (.) and (.). �

Example . Let X = R. Define a function A : Xn → [,∞) by

A(x, x, x, . . . , xn–, xn) = |x – x| + |x – x| + · · · + |x – xn|
+ |x – x| + |x – x| + · · · + |x – xn|
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...

+ |xn– – xn–| + |xn– – xn| + |xn– – xn|

=
n∑

i=

∑

i<j

|xi – xj|.

Then (X, A) is a usual A-metric space.

Example . Let X = R. Define a function A : Xn → [,∞) by

A(x, x, x, . . . , xn–, xn) =
∣∣xn + xn– + · · · + x – (n – )x

∣∣

+
∣
∣xn + xn– + · · · + x – (n – )x

∣
∣

...

+ |xn + xn– + xn– – xn–|
+ |xn + xn– – xn–|
+ |xn – xn–|.

Then (X, A) is an A-metric space.

Lemma . Let (X, A) be A-metric space. Then for all x, y ∈ X we have A(x, x, x, . . . , x, z) ≤
(n – )A(x, x, x, . . . , x, y) + A(z, z, z, . . . , z, y) and A(x, x, x, . . . , x, z) ≤ (n – )A(x, x, x, . . . , x, y) +
A(y, y, y, . . . , y, z).

Proof Applying Lemma . and condition (A) of the A-metric, we obtain

A(x, x, x, . . . , x, z) ≤ A(x, x, x, . . . , x, y)

+ A(x, x, x, . . . , x, y)

...

+ A(x, x, x, . . . , x, y)

+ A(z, z, z, . . . , z, y)

= (n – )A(x, x, x, . . . , x, y) + A(z, z, z, . . . , z, y)

= (n – )A(x, x, x, . . . , x, y) + A(y, y, y, . . . , y, z),

which implies

A(x, x, x, . . . , x, z) ≤ (n – )A(x, x, x, . . . , x, y) + A(z, z, z, . . . , z, y)

= (n – )A(x, x, x, . . . , x, y) + A(y, y, y, . . . , y, z).

Hence the result. �
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Lemma . Let (X, A) be A-metric space. Then (X, DA) is A-metric space on X × X with
the metric DA given by D((x, y), (x, y), . . . , (xn, yn)) = A(x, x, x, . . . , xn, ) + A(y, y, y,
. . . , yn) for all xi, yj ∈ X, i, j = , , . . . , n.

Proof For all xi, yj ∈ X, i, j = , , . . . , n, we have D((x, y), (x, y), (x, y), . . . , (xn, yn)) ≥
. Note that D((x, y), (x, y), (x, y), . . . , (xn, yn)) =  ⇔ A(x, x, x, . . . , xn, ) + A(y, y, y,
. . . , yn) =  ⇔ A(x, x, x, . . . , xn, ) =  and A(y, y, y, . . . , yn) =  ⇔ x = x = x = · · · = xn

and y = y = y = · · · = yn ⇔ (x, y) = (x, y) = (x, y) = · · · = (xn, yn). Consider

D
(
(x, y), (x, y), . . . , (xn, yn)

)

= A(x, x, . . . , xn, ) + A(y, y, . . . , yn)

≤ A(x, x, x, . . . , x, a) + A(x, x, x, . . . , x, a)

...

+ A(xn, xn, xn, . . . , xn, a)

+ A(y, y, y, . . . , y, b) + A(y, y, y, . . . , y, b)

...

+ A(yn, yn, yn, . . . , yn, b)

= A(x, x, x, . . . , x, a) + A(y, y, y, . . . , y, b)

+ A(x, x, x, . . . , x, a) + A(y, y, y, . . . , y, b)

...

+ A(xn, xn, xn, . . . , xn, a) + A(yn, yn, yn, . . . , yn, b)

= D
(
(x, y), (x, y), . . . , (x, y), (a, b)

)

+ D
(
(x, y), (x, y), . . . , (x, y), (a, b)

)

...

+ D
(
(xn, yn), (xn, yn), . . . , (xn, yn), (a, b)

)

⇒
D

(
(x, y), (x, y), . . . , (xn, yn)

)

≤ D
(
(x, y), (x, y), . . . , (x, y), (a, b)

)

+ D
(
(x, y), (x, y), . . . , (x, y), (a, b)

)

...

+ D
(
(xn, yn), (xn, yn), . . . , (xn, yn), (a, b)

)
. �

Hence (X, DA) is an A-metric space on X × X.
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Remark . It is easy to see that whenever n = , we would get D((x, y), (x, y)) =
d(x, x) + d(y, y) where DA = Dd and if we put n = , then we have D((x, y), (x, y),
(x, y)) = S(x, x, x) + S(y, y, y).

Note also that the following implications hold.
G-metric space ⇒ D∗-metric space ⇒ S-metric space ⇒ A-metric space.

Definition . The A-metric space (X, A) is said to be bounded if there exists a constant
r >  such that A(x, x, x, . . . , x, y) ≤ r for all x, y ∈ X. Otherwise, X is unbounded.

Definition . Given a point x in A-metric space (X, A) and a positive real number r,
the set B(x, r) = {y ∈ X : A(y, y, y, . . . , y, x) < r} is called an open ball centered at x with
radius r.

The set B(x, r) = {y ∈ X : A(y, y, y, . . . , y, x) ≤ r} is called a closed ball centered at x with
radius r.

Definition . A subset G in A-metric space (X, A) is said to be an open set if for each
x ∈ G there exists an r >  such that B(x, r) ⊂ G. A subset F ⊂ X is called closed if X \ F is
open.

Lemma . In any A-metric space (X, A), each open ball is an open set in X and each
closed ball is also a closed set in X .

Proof Let y ∈ B(x, r) be arbitrary. Thus A(y, y, y, . . . , y, x) < r. Set s = r – A(y, y, y, . . . , y, x) > .
We show that B(y, s) ⊂ B(x, r). For this, let z ∈ B(y, s). Then by the condition (A), we have

A(z, z, z, . . . , z, x) ≤ A(y, y, y, . . . , y, x) + A(z, z, z, . . . , z, y).

This implies A(z, z, z, . . . , z, x) < A(y, y, y, . . . , y, x) + s = r. Hence z ∈ B(x, r). Thus B(x, r) is
open. It is easy to show that X \ B(x, r) is open and hence B(x, r) is closed. �

Theorem . Let (X, A) be A-metric space, then:
(i) An arbitrary union and finite intersection of open balls B(x, r) ∈ X is open.

(ii) An arbitrary intersection and finite union of closed balls B(x, r) ∈ X is closed.

Proof The proof is direct and similar to the case of an ordinary metric space. �

Theorem . The collection � = {B(x, r) : x ∈ X, r > } of all balls in A-metric space (X, A)
is a basis for a topology τ on X.

Definition . Let (X, A) be A-metric space. A sequence {xk} in X is said to converge to
a point x ∈ X. If A(xk , xk , xk , . . . , xk , x) →  as k → ∞.

That is, for each ε ≥ , there exists N ∈ N such that for all k ≥ N we have A(xk , xk , xk ,
. . . , xk , x) ≤ ε and we write limk→∞ xk = x.

Lemma . Let (X, A) be A-metric space. If the sequence {xk} in X converges to a point x,
then x is unique.
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Proof Suppose {xk} converges to x and y. Then given ε > , there exist N, N ∈ N such
that for all k ≥ N we have A(xk , xk , xk , . . . , xk , x) < ε

(n–) and for every k ≥ N we get
A(xk , xk , xk , . . . , xk , y) < ε

 . Choose N = max{N, N}, therefore, for all k ≥ N , we have

A(x, x, x, . . . , x, y) ≤ (n – )A(x, x, x, . . . , x, xk) + A(xk , xk , xk , . . . , xk , y)

= (n – )A(xk , xk , xk , . . . , xk , x) + A(xk , xk , xk , . . . , xk , y)

< (n – ) × ε

(n – )
+

ε


= ε.

Since ε is arbitrary, we have A(x, x, x, . . . , x, y) =  and so x = y. Establishing the uniqueness
of {xk}. �

Definition . Let (X, A) be A-metric space. A sequence {xk} in X is called a Cauchy
sequence if A(xk , xk , xk , . . . , xk , xm) →  as k, m → ∞.

That is, for each ε ≥ , there exists N ∈ N such that for all k, m ≥ N we have
A(xk , xk , xk , . . . , xk , xm) ≤ ε.

Lemma . Every convergent sequence in A-metric space is a Cauchy sequence.

Proof Let {xk} be a convergent sequence in (X, A). Let limk→∞ xk = x. Then given ε > ,
there exist N, N ∈ N such that for all k ≥ N we have A(xk , xk , xk , . . . , xk , x) < ε

(n–) and
for all m ≥ N we get A(xm, xm, xm, . . . , xm, x) < ε

 . Put N = max{N, N}. Therefore, for all
k, m ≥ N , we obtain

A(xk , xk , xk , . . . , xk , xm) ≤ (n – )A(xk , xk , xk , . . . , xk , x)

+ A(xm, xm, xm, . . . , xm, x)

< (n – ) × ε

(n – )
+

ε


= ε.

This implies that {xk} is a Cauchy sequence. �

Remark . The converse of Lemma . does not hold in general. A Cauchy sequence
in an A-metric space does not need to be convergent. To see this we consider the space
(X = Q, A) with the A-metric defined as in Example .. Let {xk} be a sequence defined by
xk = ( + 

k )k . Observe that xk ∈Q ∀k ∈N. Furthermore,

A(xk , xk , xk , . . . , xk , xm) = (n – )|xk – xm|

= (n – )
∣∣
∣∣

(
 +


k

)k

–
(

 +

m

)m∣∣
∣∣ → 

as k, m → ∞. Thus, {xk} is Cauchy. But xk → e as k → ∞ and e is not in Q. Hence {xk}
does not converge.

Definition . The A-metric space (X, A) is said to be complete if every Cauchy se-
quence in X is convergent.
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Definition . Let (X, AX) and (Z, AZ) be A-metric spaces.
A function f : X → Z is said to be continuous at a point x ∈ X. If f –I(G) is open in X, for

each open set G in Z. The function f is continuous on X if it is continuous at each points
of X.

Theorem . Let (X, AX) and (Z, AZ) be A-metric spaces.
A function f : X → Z is continuous at a point x ∈ X iff it is sequentially continuous at x.

Lemma . Let (X, A) be A-metric space, then the function A(x, x, x, . . . , x, y) is continu-
ous in all of its arguments. In other words, if there exist sequences {xk} and {yk} such that
limk→∞ xk = x and limk→∞ yk = y then limk→∞ A(xk , xk , xk , . . . , xk , yk) = A(x, x, x, . . . , x, y).

Proof Let {xk} and {yk} be convergent sequences in (X, A). Let limk→∞ xk = x and
limk→∞ yk = y. Then given ε > , there exist N, N ∈ N such that, for all k ≥ N, we get
A(xk , xk , xk , . . . , xk , x) < ε

(n–) and, for all k ≥ N, we have A(yk , yk , yk , . . . , yk , y) < ε
(n–) . Put

N = max{N, N}, therefore, for every k ≥ N , we have

A(xk , xk , xk , . . . , xk , yk) ≤ (n – )A(xk , xk , xk , . . . , xk , x) + A(x, x, x, . . . , x, yk)

= (n – )A(xk , xk , xk , . . . , xk , x)

+ A(yk , yk , yk , . . . , yk , x)

≤ (n – )A(xk , xk , xk , . . . , xk , x)

+ (n – )A(yk , yk , yk , . . . , yk , y)

+ A(y, y, y, . . . , y, x)

= (n – ) × ε

(n – )
+ (n – ) × ε

(n – )
+ A(x, x, x, . . . , x, y),

which implies

A(xk , xk , xk , . . . , xk , yk) – A(x, x, x, . . . , x, y) ≤ ε. (.)

On the other hand,

A(x, x, x, . . . , x, y) ≤ (n – )A(x, x, x, . . . , x, xk) + A(y, y, y, . . . , y, xk)

≤ (n – )A(x, x, x, . . . , x, xk)

+ (n – )A(y, y, y, . . . , y, yk)

+ A(xk , xk , xk , . . . , xk , yk)

= (n – ) × ε

(n – )
+ (n – ) × ε

(n – )

+ A(xk , xk , xk , . . . , xk , yk),

A(x, x, x, . . . , x, y) – A(xk , xk , xk , . . . , xk , yk) ≤ ε. (.)
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Therefore by (.) and (.) we obtain |A(xk , xk , xk , . . . , xk , yk) – A(x, x, x, . . . , x, y)| ≤ ε, i.e.

lim
k→∞

A(xk , xk , xk , . . . , xk , yk) = A(x, x, x, . . . , x, y).

This completes the proof. �

3 Main result
In this section, we obtain common coupled fixed point results of mappings satisfying more
general contractive conditions in the framework of partially ordered A-metric spaces. We
start with the following result.

Theorem . Let (X,≤, A) be a partially ordered complete A-metric space, f , g : X → X
two maps such that;

() The pair (f , g) has mixed weakly monotone property on X ;
x ≤ f (x, y), f (y, x) ≤ y or x ≤ g(x, y), g(y, x) ≤ y for some x, y ∈ X .

() There exist αı ≥ , ı = , . . . , , satisfying
∑

ı αı <  and

A
(
f (x, y), f (x, y), . . . , f (x, y), g(u, v)

)
+ A

(
f (y, x), f (y, x), . . . , f (y, x), g(v, u)

)

≤ αD
(
(x, y), (x, y), (x, y), (x, y), . . . , (x, y), (u, v)

)

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
f (x, y), f (y, x)

))

+ αD
(
(u, v), (u, v), . . . , (u, v),

(
g(u, v), g(v, u)

))

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
g(u, v), g(v, u)

))

+ αD
(
(u, v), (u, v), . . . , (u, v),

(
f (x, y), f (y, x)

))
(.)

for all x, y, u, v ∈ X with x ≤ u and y ≥ v.
() Either f or g is continuous or X has the following properties:

(a) If {xk} is an increasing sequence with xk → x, then xk ≤ x for all k ∈N.
(b) If {yk} is a decreasing sequence with yk → y, then y ≤ yk for all k ∈ N.

Then f and g have a coupled common fixed point in X.

Proof Let (x, y) be a given point in X × X.
Choose x = f (x, y), y = f (y, x), x = g(x, y), and y = g(y, x).
From the condition x ≤ f (x, y), y ≥ f (y, x), and the fact that (f , g) has mixed weakly

monotone property we have

x = f (x, y) ≤ g
(
f (x, y), f (y, x)

)
= g(x, y) ⇒ x ≤ x and

x = g(x, y) ≤ f
(
g(x, y), g(y, x)

)
= f (x, y) ⇒ x ≤ x.

Thus,

y = f (y, x) ≥ g
(
f (y, x), f (x, y)

)
= g(y, x) ⇒ y ≥ y and

y = g(y, x) ≥ f
(
g(y, x), g(x, y)

)
= f (y, x) ⇒ y ≥ y.
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Continuing this way, we obtain

xk+ = f (xk , yk), yk+ = f (yk , xk) and

xk+ = g(xk+, yk+), yk+ = g(yk+, xk+) for all k ∈ N.
(.)

Therefore the sequences {xk} and {yk} are monotone:

x ≤ x ≤ x ≤ x ≤ · · · ≤ xk ≤ xk+ ≤ xk+ ≤ · · · and

y ≥ y ≥ y ≥ y ≥ · · · ≥ yk ≥ yk+ ≥ yk+ ≥ · · · .
(.)

Now we show that these sequences are Cauchy. From the contractive condition (.) we
have for all k ∈N

A(xk+, xk+, . . . , xk+, xk+) + A(yk+, yk+, . . . , yk+, yk+)

= A
(
f (xk , yk), f (xk , yk), . . . , f (xk , yk), g(xk+, yk+)

)

+ A
(
f (yk , xk), f (yk , xk), . . . , f (yk , xk), g(yk+, xk+)

)

≤ αD
(
(xk , yk), (xk , yk), . . . , (xk , yk), (xk+, yk+)

)

+ αD
(
(xk , yk), (xk , yk), . . . , (xk , yk),

(
f (xk , yk), f (yk , xk)

))

+ αD
(
(xk+, yk+), (xk+, yk+), . . . , (xk+, yk+),

(
g(xk+, yk+), g(yk+, xk+)

))

+ αD
(
(xk , yk), (xk , yk), . . . , (xk , yk),

(
g(xk+, yk+), g(yk+, xk+)

))

+ αD
(
(xk+, yk+), (xk+, yk+), . . . , (xk+, yk+),

(
f (xk , yk), f (yk , xk)

))
.

Applying (.) we get

A(xk+, xk+, . . . , x(k+), xk+) + A(yk+, yk+, . . . , y(k+), yk+)

≤ αD
(
(xk , yk), (xk , yk), . . . , (xk , yk), (xk+, yk+)

)

+ αD
(
(xk , yk), (xk , yk), . . . , (xk , yk), (xk+, yk+)

)

+ αD
(
(xk+, yk+), (xk+, yk+), . . . , (xk+, yk+), (xk+, yk+)

)

+ αD
(
(xk , yk), (xk , yk), . . . , (xk , yk), (xk+, yk+)

)

+ αD
(
(xk+, yk+), (xk+, yk+), . . . , (xk+, yk+), (xk+, yk+)

)

= αD
(
(xk , yk), (xk , yk), . . . , (xk , yk), (xk+, yk+)

)

+ αD
(
(xk , yk), (xk , yk), . . . , (xk , yk), (xk+, yk+)

)

+ αD
(
(xk+, yk+), (xk+, yk+), . . . , (xk+, yk+), (xk+, yk+)

)

+ αD
(
(xk , yk), (xk , yk), . . . , (xk , yk), (xk+, yk+)

)

= αD
(
(xk , yk), (xk , yk), . . . , (xk , yk), (xk+, yk+)

)

+ αD
(
(xk , yk), (xk , yk), . . . , (xk , yk), (xk+, yk+)

)

+ αD
(
(xk+, yk+), (xk+, yk+), . . . , (xk+, yk+), (xk+, yk+)

)
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+ αD
(
(xk , yk), (xk , yk), . . . , (xk , yk), (xk+, yk+)

)

+ αD
(
(xk+, yk+), (xk+, yk+), . . . , (xk+, yk+), (xk+, yk+)

)

= (α + α + α)D
(
(xk , yk), (xk , yk), . . . , (xk , yk), (xk+, yk+)

)

+ (α + α)D
(
(xk+, yk+), (xk+, yk+), . . . , (xk+, yk+), (xk+, yk+)

)

= (α + α + α)
[
A(xk , xk , . . . , xk , xk+) + A(yk , yk , . . . , yk , yk+)

]

+ (α + α)
[
A(xk+, xk+, . . . , xk+, xk+) + A(yk+, yk+, . . . , yk+, yk+)

]
. (.)

Similarly we obtain

A(yk+, yk+, . . . , yk+, yk+) + A(xk+, xk+, . . . , xk+, xk+)

≤ (α + α + α)
[
A(yk , yk , . . . , yk , yk+) + A(xk , xk , . . . , xk , xk+)

]

+ (α + α)
[
A(yk+, yk+, . . . , yk+, yk+) + A(xk+, xk+, . . . , xk+, xk+)

]
. (.)

From (.) and (.), we have


[
A(xk+, xk+, . . . , xk+, xk+) + A(yk+, yk+, . . . , yk+, yk+)

]

≤ 
[
(α + α + α)

[
A(xk , xk , . . . , xk , xk+) + A(yk , yk , . . . , yk , yk+)

]]

+ 
[
(α + α)

[
A(xk+, xk+, . . . , xk+, xk+) + A(yk+, yk+, . . . , yk+, yk+)

]]
.

This implies that

[
A(xk+, xk+, . . . , xk+, xk+) + A(yk+, yk+, . . . , yk+, yk+)

][
 – (α + α)

]

≤ (α + α + α)
[
A(xk , xk , . . . , xk , xk+) + A(yk , yk , . . . , yk , yk+)

]
.

Thus

A(xk+, xk+, . . . , xk+, xk+) + A(yk+, yk+, . . . , yk+, yk+)

≤ (α + α + α)
( – (α + α))

[
A(xk , xk , . . . , xk , xk+) + A(yk , yk , . . . , yk , yk+)

]
.

Let δ = [ (α+α+α)
(–(α+α)) ], then  ≤ δ <  and

A(xk+, xk+, . . . , xk+, xk+) + A(yk+, yk+, . . . , yk+, yk+)

≤ δ
(
A(xk , xk , . . . , xk , xk+) + A(yk , yk , . . . , yk , yk+)

)
. (.)

For all k ∈N, applying (.) again and by interchanging the roles of f and g , we obtain

A(xk+, xk+, . . . , xk+, xk+) + A(yk+, yk+, . . . , yk+, yk+)

≤ δ
(
A(xk+, xk+, . . . , xk+, xk+) + A(yk+, yk+, . . . , yk+, yk+)

)
. (.)
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It follows from (.) that

A(xk+, xk+, . . . , xk+, xk+) + A(yk+, yk+, . . . , yk+, yk+)

≤ δ
(
A(xk , xk , . . . , xk , xk+) + A(yk , yk , . . . , yk , yk+)

)

≤ δ
(
δ
(
A(xk–, xk–, . . . , xk–, xk) + A(yk–, yk–, . . . , yk–, yk)

))

= δ
(
δ
(
δ
(
A(xk–, xk–, . . . , xk–, xk–) + A(yk–, yk–, . . . , yk–, yk–)

)))
.

This implies

A(xk+, xk+, . . . , xk+, xk+) + A(yk+, yk+, . . . , yk+, yk+)

≤ δ(A(xk–, xk–, . . . , xk–, xk–) + A(yk–, yk–, . . . , yk–, yk–)
)

...

≤ δk+(A(x, x, . . . , x, x) + A(y, y, . . . , y, y)
)
. (.)

Similarly, by (.) we get

A(xk+, xk+, . . . , xk+, xk+) + A(yk+, yk+, . . . , yk+, yk+)

≤ δk+(A(x, x, . . . , x, x) + A(y, y, . . . , y, y)
)
. (.)

By Lemma . we have for all k, m ∈N with k ≤ m

A(xk+, xk+, . . . , xk+, xm+) ≤ (n – )A(xk+, xk+, . . . , xk+, xk+)

+ A(xk+, xk+, . . . , xk+, xm+)

and

A(yk+, yk+, . . . , yk+, ym+) ≤ (n – )A(yk+, yk+, . . . , yk+, yk+)

+ A(yk+, yk+, . . . , yk+, ym+).

So we have

A(xk+, xk+, . . . , xk+, xm+) + A(yk+, yk+, . . . , yk+, ym+)

≤ (n – )A(xk+, xk+, . . . , xk+, xk+)

+ (n – )A(yk+, yk+, . . . , yk+, yk+)

+ A(xk+, xk+, . . . , xk+, xm+)

+ A(yk+, yk+, . . . , yk+, ym+)

= (n – )
[
A(xk+, xk+, . . . , xk+, xk+) + A(yk+, yk+, . . . , yk+, yk+)

]

+ (n – )
[
A(xk+, xk+, . . . , xk+, xk+) + A(yk+, yk+, . . . , yk+, yk+)

]

...
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+ (n – )
[
A(xm–, xm–, . . . , xm–, xm) + A(ym–, ym–, . . . , ym–, ym)

]

+
[
A(xm, xm, . . . , xm, xm+) + A(ym, ym, . . . , ym, ym+)

]

⇒
A(xk+, xk+, . . . , xk+, xm+) + A(yk+, yk+, . . . , yk+, ym+)

≤ (n – )
[
A(xk+, xk+, . . . , xk+, xk+) + A(yk+, yk+, . . . , yk+, yk+)

]

...

+ (n – )
[
A(xm, xm, . . . , xm, xm+) + A(ym, ym, . . . , ym, ym+)

]

= (n – )
[
δk+ + δk+ + δk+ + · · · + δm– + δm]

× [
(A(x, x, . . . , x, x) + A(y, y, . . . , y, y)

]

⇒
A(xk+, xk+, . . . , xk+, xm+) + A(yk+, yk+, . . . , yk+, ym+)

≤ (n – )
(

δk+

 – δ

)(
A(x, x, . . . , x, x) + A(y, y, . . . , y, y)

)
.

Similarly, we have

A(xk , xk , . . . , xk , xm+) + A(yk , yk , . . . , yk , ym+)

≤ (n – )
(

δk

 – δ

)
(
A(x, x, . . . , x, x) + A(y, y, . . . , y, y)

)

and

A(xk , xk , . . . , xk , xm) + A(yk , yk , . . . , yk , ym)

≤ (n – )
[
δk + δk+ + δk+ + · · · + δm–]

× [
(A(x, x, . . . , x, x) + A(y, y, . . . , y, y)

]

= (n – )
(

δk

 – δ

)(
A(x, x, . . . , x, x) + A(y, y, . . . , y, y)

)
.

Hence, for all k, m ∈N with k ≤ m, we have

A(xk , xk , . . . , xk , xm) + A(yk , yk , . . . , yk , ym)

≤ (n – )
(

δk

 – δ

)
(
A(x, x, . . . , x, x) + A(y, y, . . . , y, y)

)
.

Since  ≤ δ = [ (α+α+α)
(–(α+α)) ] < , we have

lim
k,m→∞

(
A(xk , xk , . . . , xk , xm) + A(yk , yk , . . . , yk , ym)

)
= .

That is,

lim
k,m→∞

A(xk , xk , . . . , xk , xm) = lim
k,m→∞

A(yk , yk , . . . , yk , ym) = .
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Therefore, {xk} and {yk} are both Cauchy sequences in X. By the completeness of X, there
exist x, y ∈ X such that xk → x and yk → y as k → ∞.

We next show that the pair (x, y) is a coupled common fixed point of f and g .
Now, suppose f is continuous, then we have

x = lim
k→∞

xk+ = lim
k→∞

f (xk , yk)

= f
(

lim
k→∞

xk , lim
k→∞

yk

)

= f (x, y)

and

y = lim
k→∞

yk+ = lim
k→∞

f (yk , xk)

= f
(

lim
k→∞

yk , lim
k→∞

xk

)

= f (y, x).

Applying (.), we have

A
(
f (x, y), f (x, y), . . . , f (x, y), g(x, y)

)
+ A

(
f (y, x), f (y, x), . . . , f (y, x), g(y, x)

)

≤ αD
(
(x, y), (x, y), (x, y), (x, y), . . . , (x, y), (x, y)

)

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
f (x, y), f (y, x)

))

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
g(x, y), g(y, x)

))

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
g(x, y), g(y, x)

))

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
f (x, y), f (y, x)

))

= αD
(
(x, y), (x, y), . . . , (x, y), (x, y)

)

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
g(x, y), g(y, x)

))

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
g(x, y), g(y, x)

))

+ αD
(
(x, y), (x, y), . . . , (x, y), (x, y)

)

= (α + α)D
(
(x, y), (x, y), . . . , (x, y),

(
g(x, y), g(y, x)

))

= (α + α)
(
A

(
x, x, . . . , x, g(x, y)

)
+ A

(
y, y, . . . , y, g(y, x)

))
.

Therefore

A
(
x, x, x, . . . , x, g(x, y)

)
+ A

(
y, y, y, . . . , y, g(y, x)

)

≤ (α + α)
(
A

(
x, x, x, . . . , x, g(x, y)

)
+ A

(
y, y, y, . . . , y, g(y, x)

))
.

Since  ≤ (α + α) < , A(x, x, x, . . . , x, g(x, y)) = A(y, y, y, . . . , y, g(y, x)) = .
That is, g(x, y) = x and g(y, x) = y. This implies (x, y) is a coupled fixed point of g .
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In a similar fashion, suppose g is continuous, then we have

x = lim
k→∞

xk+ = lim
k→∞

g(xk+, yk+)

= g
(

lim
k→∞

xk+, lim
k→∞

yk+

)

= g(x, y)

and

y = lim
k→∞

yk+ = lim
k→∞

g(yk+, xk+)

= g
(

lim
k→∞

yk+, lim
k→∞

xk+

)

= g(y, x).

Applying (.) again, we also get

A
(
x, x, . . . , x, f (x, y)

)
+ A

(
y, y, . . . , y, f (y, x)

)

≤ (α + α)
(
A

(
x, x, . . . , x, f (x, y)

)
+ A

(
y, y, . . . , y, f (y, x)

))
.

This implies f (x, y) = x and f (y, x) = y and so (x, y) is as well a coupled fixed point of f .
Therefore, (x, y) is a coupled common fixed point of f and g .
Finally, suppose X satisfies hypotheses (a) and (b). Then by (.) we get xk ≤ x and

y ≤ yk for all k ∈N. Applying Lemmas . and ., we obtain

D
(
(x, y), (x, y), . . . , (x, y),

(
f (x, y), f (y, x)

))

≤ (n – )D
(
(x, y), (x, y), . . . , (x, y), (xk+, yk+)

)

+ D
(
(xk+, yk+), (xk+, yk+), . . . , (xk+, yk+),

(
f (x, y), f (y, x)

))

= (n – )D
(
(x, y), (x, y), . . . , (x, y), (xk+, yk+)

)

+ D
((

g(xk+, yk+), g(yk+, xk+)
)
,
(
g(xk+, yk+), g(yk+, xk+)

)
, . . . ,

(
g(xk+, yk+), g(yk+, xk+)

)
,
(
f (x, y), f (y, x)

))

≤ (n – )D
(
(x, y), (x, y), . . . , (x, y), (xk+, yk+)

)

+ A
(
g(xk+, yk+), g(xk+, yk+), . . . ,

(
g(xk+, yk+)

)
, f (x, y)

)

+ A
(
g(yk+, xk+), g(yk+, xk+), . . . ,

(
g(yk+, xk+)

)
, f (y, x)

)
.

This implies

D
(
(x, y), (x, y), . . . , (x, y),

(
f (x, y), f (y, x)

))

≤ (n – )A(x, x, . . . , x, xk+) + (n – )A(y, y, . . . , y, yk+)

+ A
(
g(xk+, yk+), g(xk+, yk+), . . . ,

(
g(xk+, yk+)

)
, f (x, y)

)

+ A
(
g(yk+, xk+), g(yk+, xk+), . . . ,

(
g(yk+, xk+)

)
, f (y, x)

)
. (.)
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By using (.) and interchanging the roles of f with g we obtain

A
(
g(xk+, yk+), g(xk+, yk+), . . . , g(xk+, yk+), f (x, y)

)

+ A
(
g(yk+, xk+), g(yk+, xk+), . . . , g(yk+, xk+), f (y, x)

)

≤ αD
(
(xk+, yk+), (xk+, yk+), . . . , (xk+, yk+), (x, y)

)

+ αD
(
(xk+, yk+), (xk+, yk+), . . . , (xk+, yk+),

(
g(xk+, yk+), g(yk+, xk+)

))

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
f (x, y), f (y, x)

))

+ αD
(
(xk+, yk+), (xk+, yk+), . . . , (xk+, yk+),

(
f (x, y), f (y, x)

))

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
g(xk+, yk+), g(yk+, xk+)

))

= αD
(
(xk+, yk+), (xk+, yk+), . . . , (xk+, yk+), (x, y)

)

+ αD
(
(xk+, yk+), (xk+, yk+), . . . , (xk+, yk+), (xk+, yk+)

)

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
f (x, y), f (y, x)

))

+ αD
(
(xk+, yk+), (xk+, yk+), . . . , (xk+, yk+),

(
f (x, y), f (y, x)

))

+ αD
(
(x, y), (x, y), . . . , (x, y), (xk+, yk+)

)
. (.)

It follows from (.) and (.) that

D
(
(x, y), (x, y), . . . , (x, y),

(
f (x, y), f (y, x)

))

≤ (n – )A(x, x, . . . , x, xk+) + (n – )A(y, y, . . . , y, yk+)

+ αD
(
(xk+, yk+), (xk+, yk+), . . . , (xk+, yk+), (x, y)

)

+ αD
(
(xk+, yk+), (xk+, yk+), . . . , (xk+, yk+), (xk+, yk+)

)

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
f (x, y), f (y, x)

))

+ αD
(
(xk+, yk+), (xk+, yk+), . . . , (xk+, yk+),

(
f (x, y), f (y, x)

))

+ αD
(
(x, y), (x, y), . . . , (x, y), (xk+, yk+)

)
. (.)

Taking the limit as k → ∞ in (.), we get

D
(
(x, y), (x, y), . . . , (x, y),

(
f (x, y), f (y, x)

))

≤ (n – )A(x, x, . . . , x, x) + (n – )A(y, y, . . . , y, y)

+ αD
(
(x, y), (x, y), . . . , (x, y), (x, y)

)

+ αD
(
(x, y), (x, y), . . . , (x, y), (x, y)

)

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
f (x, y), f (y, x)

))

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
f (x, y), f (y, x)

))

+ αD
(
(x, y), (x, y), . . . , (x, y), (x, y)

)

= αD
(
(x, y), (x, y), . . . , (x, y),

(
f (x, y), f (y, x)

))

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
f (x, y), f (y, x)

))
.
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Therefore,

D
(
(x, y), (x, y), . . . , (x, y),

(
f (x, y), f (y, x)

))

≤ (α + α)D
(
(x, y), (x, y), . . . , (x, y),

(
f (x, y), f (y, x)

))
.

Since (α + α) <  we have D((x, y), (x, y), . . . , (x, y), (f (x, y), f (y, x))) = . That is f (x, y) = x
and f (y, x) = y. This implies (x, y) is a coupled fixed point of f .

Similarly, we can show that g(x, y) = x and g(y, x) = y.
Hence, f (x, y) = x = g(x, y) and f (y, x) = y = g(y, x). Thus (x, y) is a coupled common fixed

point of f and g . This completes the proof. �

Theorem . In addition to the hypotheses of Theorem ., if X is a totally ordered set,
then f and g have a unique coupled common fixed point. Furthermore, any fixed point of f
is a fixed point of g, and conversely.

Proof Let X be a totally ordered set. Suppose (x, y), (x∗, y∗) are coupled common fixed
points of f and g . That is, f (x, y) = x, f (y, x) = y, and g(x∗, y∗) = x∗, g(y∗, x∗) = y∗. We show
that x = x∗, y = y∗, and subsequently x = y.

Observe that if X is a totally ordered set, then, for every (x, y), (x∗, y∗) ∈ X × X, there
exists (u, v) ∈ X × X that is comparable to (x, y) and (x∗, y∗).

So we let (x, y) ≤ (x∗, y∗) without loss of generality, then it follows from Lemma . and
Theorem . that

D
(
(x, y), (x, y), . . . , (x, y),

(
x∗, y∗))

= A
(
x, x, . . . , x, x∗) + A

(
y, y, . . . , y, y∗)

= A
(
f (x, y), f (x, y), . . . , f (x, y), g

(
x∗, y∗))

+ A
(
f (y, x), f (y, x), . . . , f (y, x), g

(
y∗, x∗))

≤ αD
(
(x, y), (x, y), . . . , (x, y),

(
x∗, y∗))

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
f (x, y), f (y, x)

))

+ αD
((

x∗, y∗),
(
x∗, y∗), . . . ,

(
x∗, y∗),

(
g
(
x∗, y∗), g

(
y∗, x∗)))

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
g
(
x∗, y∗), g

(
y∗, x∗)))

+ αD
((

x∗, y∗),
(
x∗, y∗), . . . ,

(
x∗, y∗),

(
f (x, y), f (y, x)

))

= αD
(
(x, y), (x, y), . . . , (x, y),

(
x∗, y∗))

+ αD
(
(x, y), (x, y), . . . , (x, y), (x, y)

)

+ αD
((

x∗, y∗),
(
x∗, y∗), . . . ,

(
x∗, y∗),

(
x∗, y∗))

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
x∗, y∗))

+ αD
((

x∗, y∗),
(
x∗, y∗), . . . ,

(
x∗, y∗), (x, y)

)

= αD
(
(x, y), (x, y), . . . , (x, y),

(
x∗, y∗))

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
x∗, y∗))
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+ αD
((

x∗, y∗),
(
x∗, y∗), . . . ,

(
x∗, y∗), (x, y)

)

= (α + α + α)D
(
(x, y), (x, y), . . . , (x, y),

(
x∗, y∗)).

Since  ≤ (α + α + α) < , we have D((x, y), (x, y), . . . , (x, y), (x∗, y∗)) = , which implies
x = x∗ and y = y∗.

Proceeding, we show that any fixed point of f is a fixed point of g , and conversely. Ap-
plying Lemma . and Theorem . we have

A(x, x, . . . , x, y) + A(y, y, . . . , y, x)

= A
(
f (x, y), f (x, y), . . . , f (x, y), g(y, x)

)

+ A
(
f (y, x), f (y, x), . . . , f (y, x), g(x, y)

)

≤ αD
(
(x, y), (x, y), . . . , (x, y), (y, x)

)

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
f (x, y), f (y, x)

))

+ αD
(
(y, x), (y, x), . . . , (y, x),

(
g(y, x), g(x, y)

))

+ αD
(
(x, y), (x, y), . . . , (x, y),

(
g(y, x), g(x, y)

))

+ αD
(
(y, x), (y, x), . . . , (y, x),

(
f (x, y), f (y, x)

))

= αD
(
(x, y), (x, y), . . . , (x, y), (y, x)

)

+ αD
(
(x, y), (x, y), . . . , (x, y), (x, y)

)

+ αD
(
(y, x), (y, x), . . . , (y, x), (y, x)

)

+ αD
(
(x, y), (x, y), . . . , (x, y), (y, x)

)

+ αD
(
(y, x), (y, x), . . . , (y, x), (x, y)

)

= αD
(
(x, y), (x, y), . . . , (x, y), (y, x)

)

+ αD
(
(x, y), (x, y), . . . , (x, y), (y, x)

)

+ αD
(
(x, y), (x, y), . . . , (x, y), (y, x)

)
.

Therefore

A(x, x, . . . , x, y) + A(y, y, . . . , y, x) ≤ (α + α + α)
(
A(x, x, . . . , x, y) + A(y, y, . . . , y, x)

)
.

Since  ≤ (α + α + α) < , A(x, x, . . . , x, y) + A(y, y, . . . , y, x) = .
That is, x = y. The coupled common fixed point of f and g is unique. �

If n = , α = p, α = q, α = r, α = α = s in Theorem . with DA = DS , then we obtain
the main result in [].

If n = , α = p, α = q, α = r, α = α = s, in Theorem . with DA = Dd , then we get the
main result in [].

Example . Let (R,≤, A) be a totally ordered complete A-metric space with A-metric
defined as in Example .. Let f , g : R → R be two maps defined by f (x, y) = x–y+n–

n
and g(x, y) = x–y+n–

n for all n ≥ .
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The pair (f , g) has the mixed weakly monotone property on R and

A
(
f (x, y), f (x, y), . . . , f (x, y), g(u, v)

)
+ A

(
f (y, x), f (y, x), . . . , f (y, x), g(v, u)

)

= (n – )
∣∣f (x, y) – g(u, v)

∣∣ + (n – )
∣∣f (y, x) – g(v, u)

∣∣

= (n – )
∣∣
∣∣
x – y + n – 

n
–

u – v + n – 
n

∣∣
∣∣

+ (n – )
∣
∣∣∣
y – x + n – 

n
–

v – u + n – 
n

∣
∣∣∣

=
(n – )
n

∣∣(x – u) + (y – v)
∣∣ +

(n – )
n

∣∣(y – v) + (x – u)
∣∣

≤ (n – )
n

(|x – u| + |y – v| + |y – v| + |x – u|)

=
(n – )

n
(|x – u| + |y – v|).

Then the contractive condition (.) is satisfied with α = (n–)
n , α = α = α = α = .

Moreover, (, ) is the unique coupled common fixed point of f and g .
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