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Abstract
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1 Introduction
The research of functional integral equations and differential equations is a main object
of investigations of nonlinear functional analysis. These equations occur in physical, bio-
logical, and economic problems. The existence of solutions of them are commonly proved
by suitable fixed point theorems. In this paper, we establish a new fixed point theorem for
continuous mappings on locally convex algebras. These results arose out of our exami-
nation of a particular functional integral with unbounded deviations. We noticed in our
study that the fixed point theorems developed in the Banach algebras (see [–] and the
references given therein) were not always useful in establishing existence principles for
the problems that we are interested in Section . More precisely, the well-known results
in Banach algebras are not applicable to nonlinear integral equations with unbounded de-
viations.

2 Preliminaries
Before stating the main results, we give some useful definitions, preliminaries which will
be used in the sequel.

Let X be a uniform space. Then uniform topology on X is generated by the family of
uniform continuous pseudometrics on X × X (see []). In this paper, by (X,P) we mean a
Hausdorff uniform space whose uniformity is generated by a saturated family of pseudo-
metrics P = {dα(x, y) : α ∈ I}, where I is an index set. Note that (X,P) is Hausdorff if and
only if dα(x, y) =  for all α ∈ I implies x = y.

Definition . ([]) Let (X,P) be a Hausdorff uniform space.
() The sequence {xn} ⊂ X is Cauchy if dα(xn, xm) →  as m, n → +∞ for every α ∈ I .

© 2015 Khanh Hung; licensee Springer. This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in
any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://dx.doi.org/10.1186/s13663-015-0310-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13663-015-0310-9&domain=pdf
mailto:lekhanhhungdhv@gmail.com


Khanh Hung Fixed Point Theory and Applications  (2015) 2015:60 Page 2 of 14

() X is said to be sequentially complete if every Cauchy sequence {xn} in X converges
to x ∈ X .

Definition . ([]) Let j : I → I be an arbitrary mapping of the index set I into itself. The
iterations of j can be defined inductively

j(α) = α, jk(α) = j
(
jk–(α)

)
, k = , , . . . .

Now, we introduce the two classes of functions which play crucial roles in the fixed point
theory. Sometimes, they are called control functions.

Let � = {φ} be a class of functions with the properties:
(i) φ : [, +∞) → [, +∞) is monotone non-decreasing and continuous;

(ii)  < φ(t) < t for all t >  and φ() = .
Let � = {ψ} be a class of functions with the properties:
(i) ψ : [, +∞) → [, +∞) is monotone non-decreasing and continuous;

(ii) ψ() = .
We need the following fact for the class of functions �. It may be not original.

Lemma . For any φ ∈ �, if K is a bounded subset of [, +∞) then there exists k ∈ (, )
such that

φ(t) ≤ kt

for all t ∈ K .

Proof Since the closure K of K is compact and φ is continuous, we have

max
t∈K

φ(t) = φ(t) < t

for some t ∈ K . Suppose that there no  < k <  such that φ(t) ≤ kt for all t ∈ K . Then, for
each n = , , . . . we can find tn ∈ K such that

φ(tn) ≥
(

 –

n

)
tn. ()

Since K is compact, there exists a subsequence (tnk ) of the sequence (tn) such that tnk →
t ∈ K . Letting nk → +∞ in (), we arrive at φ(t) ≥ t and this is a contradiction. �

Definition . ([]) Let (X,P) be a uniform space and {φα}α∈I ⊂ � be a family of func-
tions. A mapping T : X → X is said to be �-contractive on X if

dα(Tx, Ty) ≤ φα

(
dj(α)(x, y)

)
,

for all x, y ∈ X, α ∈ I and for some fixed mapping j : I → I .

The following is due to Angelov [].
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Theorem . ([, ]) Let (X,P) be a Hausdorff sequentially complete uniform space and
T : X → X be a mapping. Suppose that

() T is �-contractive;
() for every α ∈ I there exists a function φα ∈ � such that

sup
{
φjn(α)(t) : n = , , , . . .

} ≤ φα(t)

and φα (t)
t is monotone non-decreasing;

() there is x ∈ X such that for every α ∈ I there exists q(α) >  such that the inequality
djn(α)(x, Tx) ≤ q(α) is valid for all n = , , . . . .

Then T has at least one fixed point in X.

Angelov added the following properties of X for the uniqueness of fixed point.

Definition . ([]) A uniform space (X,P) is said to be j-bounded if for every α ∈ I and
x, y ∈ X there exists q = q(x, y,α) such that

djn(α)(x, y) ≤ q(x, y,α) < +∞, for all n ∈N.

Theorem . ([, ]) Suppose that the conditions of Theorem . are fulfilled. If X is j-
bounded then F has a unique fixed point.

Remark . If E is a locally convex space with a saturated family of seminorms {pα}α∈I ,
then the associated family of pseudometrics {dα}α∈I defined by dα(x, y) = pα(x–y) for every
x, y ∈ E and α ∈ I . The uniform topology, which is generated by this family of pseudomet-
rics {dα}α∈I , coincides with the original topology of the space E. Therefore, as a corollary
of Theorem ., we obtain the fixed point theorems in locally convex spaces.

Let X be a locally convex space and T : X → X. Then T is called a compact operator if
T(X) is a compact subset of X. Again T is called totally bounded if for any bounded set
S of X, T(S) is a totally bounded set of X. Further, T is called completely continuous if it
is continuous and totally bounded. Note that every compact operator is totally bounded.
The two notions are equivalent on a bounded set of X.

The following theorem is called the Tikhonov-Schauder fixed point theorem.

Theorem . ([]) Let E be a Hausdorff locally convex space, C a convex subset of E and
F : C → E a continuous mapping such that

F(C) ⊂ A ⊂ C

with A compact. Then F has at least one fixed point.

Throughout this paper, we consider associative and commutative algebras over the field
K of complex numbers or real numbers.

Definition . ([, ]) Let E be an algebra over K. E is called a topological algebra if
() E is a topological vector space;
() the multiplication in E is continuous.
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We recall that a seminorm on the vector space E is a real-valued function p : E → R such
that the following conditions are satisfied:

(i) p(x) ≥ , for every x ∈ E;
(ii) p(x + y) ≤ p(x) + p(y), for any x, y ∈ E;

(iii) p(λx) = |λ|p(x), for any λ ∈ K and x ∈ E.

Definition . ([, ]) Let E be a topological algebra.
() A seminorm p : E →R is called submultiplicative if p(xy) ≤ p(x)p(y) for any

elements x, y in E.
() A set U ⊂ E is called multiplicative if U · U ⊂ U .

Definition . ([, ]) The topological algebra E is called a locally multiplicatively con-
vex algebra if E has a local basis consisting of multiplicative and convex sets.

In this paper, a locally multiplicatively convex algebra is briefly called a locally convex
algebra. The following remark is due to [] and [].

Remark . ([, ]) Let E be a locally convex algebra. Then one can show that its topol-
ogy is defined by a saturated family P = {pα}α∈I of submultiplicative seminorms.

Example . Let X = C(R;R) be the algebra consisting all continuous functions from R
to R. Then X is a locally convex algebra that defined by the countable family of submulti-
plicative seminorms

pn(x) = max
t∈[–n,n]

∣∣x(t)
∣∣, x ∈ X, n = , , . . . .

For more basis material as regards the theory of locally convex algebra, we refer the
reader to [, ], and [].

3 Fixed point theorems in locally convex algebras
Let X be a locally convex algebra with a saturated family of seminorms {pα}α∈I .

Definition . The mapping T : X → X is said to be D-Lipschitzian with the family of
functions {ψα}α∈I if

pα(Tx – Ty) ≤ ψα

(
pj(α)(x – y)

)
,

for all x, y ∈ X and α ∈ I , where {ψα}α∈I is a subfamily of � .
If ψα(t) = kαt for all t ≥ , where kα is a real number for all α ∈ I , then T is called Lips-

chitzian with the family of Lipschitz constants {kα}α∈I .

Theorem . Let X be a locally convex algebra such that topology of X is Hausdorff se-
quentially complete. Let S be a closed, convex and bounded subset of X and A : X → X,
B : S → X be two operators such that
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(A) A is D-Lipschitzian with the family of functions {ψα};
(A) B is completely continuous and x = AxBy implies x ∈ S for every y ∈ S;
(A) pj(α)(x – y) ≤ pα(x – y) for every x, y ∈ S and α ∈ I ;
(A) for every x ∈ X and for every α ∈ I , there exists q(α, x) such that

pjk (α)(x) ≤ q(α, x) < +∞

for all k = , , , . . . . In particular, pjk (α)(x) ≤ q(α) < +∞ for every x ∈ S and for all
k = , , , . . . ;

(A) for each α ∈ I ,

Mαψα(t) < t

for all t >  and there exists φα ∈ � such that φα (t)
t is non-decreasing and

sup
{

Mjk (α)ψjk (α)(t) : k = , , , . . .
} ≤ φα(t)

for every t > , where Mα = sup{pα(B(x)) : x ∈ S}, α ∈ I .
Then the operator equation x = AxBx has a solution.

Proof Now, let y ∈ S, we define a mapping Ay : X → X by

Ay(x) = AxBy, x ∈ X.

First, we claim that Ay is D-Lipschitzian. For each α ∈ I , we have

pα(Ayx – Ayx) = pα(AxBy – AxBy)

≤ pα(Ax – Ax)pα(By)

≤ pα(Ax – Ax)Mα

≤ Mαψα

(
pj(α)(x – x)

)

= φα

(
pj(α)(x – x)

)
, ()

where φα = Mαψα ∈ �. Then it is easy to see that all conditions of Theorem . are fulfilled
for Ay with every α ∈ I . Hence, we get a unique fixed point x∗ ∈ X of Ay, that is,

x∗ = Ayx∗ = Ax∗By.

Since condition (A) holds, we have x∗ ∈ S. Now, we define a mapping N : S → X by

Ny = z,

where z ∈ X is the unique solution of the equation

z = AzBy, z ∈ S.
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Now, we show that N is continuous. Let {yn} be a sequence in S converging to a point y.
Since S is closed, we obtain y ∈ S. For each α ∈ I , we have

pα(Nyn – Ny) = pα(AznByn – AzBy) = pα(AznByn – AzByn + AzByn – AzBy)

≤ pα

(
(Azn – Az)Byn

)
+ pα

(
Az(Byn – By)

)

≤ pα(Azn – Az)pα(Byn) + pα(Az)pα(Byn – By).

For each n = , , . . . , since A is D-Lipschitzian, in view () and the condition (A), we have

pα(Azn – Az)pα(Byn) ≤ ψα

(
pj(α)(zn – z)

)
Mα

= φα

(
pj(α)(zn – z)

)
= φα

(
pj(α)(Nyn – Ny)

)

≤ φα

(
pα(Nyn – Ny)

)
.

Hence

pα(Nyn – Ny) ≤ φα

(
pα(Nyn – Ny)

)
+ pα(Az)pα(Byn – By).

Letting n → +∞ and by the continuity of B, we get

lim sup
n→+∞

pα(Nyn – Ny) ≤ lim sup
n→+∞

φα

(
pα(Nyn – Ny)

)

+ lim sup
n→+∞

pα(Az)pα(Byn – By)

= lim sup
n→+∞

φα

(
pα(Nyn – Ny)

)

= φα

(
lim sup
n→+∞

pα(Nyn – Ny)
)

. ()

Since S is bounded and N(S) ⊂ S we have

lim sup
n→+∞

pα(Nyn – Ny) = r < +∞

for each α ∈ I . Therefore, it follows from () that

r ≤ φα(r).

This implies that

r = lim sup
n→+∞

pα(Nyn – Ny) = 

for all α ∈ I . Hence {Nyn} converges to Ny. This proves that N is continuous.
Next we show that N is a compact mapping. Since S is bounded and pj(α) is continuous,

pj(α)(S) is a bounded subset of [, +∞). Applying Lemma ., we can seek kα ∈ [, ) such
that

φα

(
pj(α)(x – y)

)
< kαpα(x – y)
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for all x, y ∈ S. Now, for each α ∈ I and for any z ∈ S we have

pα(Az) ≤ pα(Aa) + pα(Az – Aa) ≤ pα(Aa) + kαpα(z – a) ≤ cα ,

where cα = pα(Aa) + q(α), and a ∈ S.
Let U be an open neighborhood of  in X. Without loss of generality, we may assume

that

U =
{

x ∈ X : pα (x) < ε, pα (x) < ε, . . . , pαm (x) < ε
}

for some ε > , α, . . . ,αm ∈ I . Since B is completely continuous, B(S) is totally bounded.
Then there is a finite set Y = {y, . . . , yn} ⊂ S such that

B(S) ⊂
n⋃

l=

B(yl) + V ,

where

V =
{

x ∈ X : pα (x) <
(

 – kα

cα

)
ε, . . . , pαm (x) <

(
 – kαn

cαn

)
ε,

pj(α)(x) < ε, . . . , pj(αm)(x) < ε

}
.

Therefore, for any y ∈ S we have yl ∈ Y such that

pαi (By – Byl) <
(

 – kαi

cαi

)
ε, pj(αi)(By – Byl) < ε

for every i = , , . . . , m. Also, for every i = , , . . . , m and zl = Nyl , we have

pαi (z – zl) = pαi (Ny – Nyl) = pαi (AzBy – AzlByl)

≤ pαi (AzBy – AzlBy) + pαi (AzlBy – AzlByl)

≤ pαi (Az – Azl)pαi (By) + pαi (Azl)pαi (By – Byl)

< φαi

(
pj(αi)(z – zl)

)
+ cαi

(
 – kαi

cαi

)
ε

< kαi pj(αi)(z – zl) + ( – kαi )ε

≤ kαi pαi (z – zl) + ( – kαi )ε.

This yields

pαi (z – zl) < ε

for every l = , , . . . , n. Hence Ny – Nyl = z – zl ∈ U , that is, z = Ny ∈ zl + U . It follows that

N(S) ⊂
n⋃

l=

(zl + U).
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This implies that N is totally bounded. Combining this fact and the continuity of N , we
can conclude that N is a compact operator.

Since S is convex, closed, and bounded, applying Tikhonov-Schauder’s fixed theorem,
we find that N has a fixed point in S. Then by the definition of N , we obtain

x = Nx = A(Nx)Bx = AxBx.

This proves that the operator equation x = AxBx has a solution in S. The theorem is
proved. �

Remark . If S contains  then the condition (A) implies condition (A). Indeed, since
 ∈ S and condition (A) we have

pj(α)(x) ≤ pα(x)

for every x ∈ X and α ∈ I . It follows that

pjk (α)(x) ≤ pα(x)

for every x ∈ X and k = , , . . . . Moreover, since S is bounded, for every α ∈ I , there exists
q(α) such that

pjk (α)(x) ≤ q(α)

for all x ∈ S.

We can immediately obtain the following corollary.

Corollary . Let X be a locally convex algebra such that the topology of X is Hausdorff
sequentially complete. Let S be a closed, convex, and bounded subset of X and let A : X → X,
B : S → X be two operators such that:

(B) A is Lipschitzian with the family of Lipschitz constants {kα};
(B) B is completely continuous and x = AxBy implies x ∈ S for every y ∈ S;
(B) pj(α)(x – y) ≤ pα(x – y) for every x, y ∈ S and α ∈ I ;
(B) for every x ∈ X and for every α ∈ I , there exists q(α, x) such that

pjk (α)(x) ≤ q(α, x) < +∞

for all k = , , , . . . . In particular, pjk (α)(x) ≤ q(α) < +∞ for every x ∈ S and for all
k = , , , . . . ;

(B) for each α ∈ I ,

Mαkα < 

and

sup{Mjk (α)kjk (α) : k = , , , . . .} ≤ rα < ,

where Mα = sup{pα(B(x)) : x ∈ S}, α ∈ I .
Then the operator equation x = AxBx has a solution.



Khanh Hung Fixed Point Theory and Applications  (2015) 2015:60 Page 9 of 14

4 Applications to nonlinear integral equations
In this section, we apply the previous result to investigate the existence of a solution to
nonlinear integral equations with unbounded deviations. Let us consider the following
integral equation:

x(t) = F
(

t,
∫ 	(t)


x(s) ds, . . . ,

∫ 	m(t)


x(s) ds, x

(
τ(t)

)
, . . . , x

(
τn(t)

))

×
[

q(t) +
∫ t


f
(
s, x(s)

)
ds

]
()

for t > , where we have an unknown function x(t), the deviations 	i, τj : [, +∞) →
[, +∞) are continuous functions, in the general case, unbounded, and q : [, +∞) → R,
f : [, +∞) × R → R are continuous functions. Note that, since the deviations are un-
bounded, we cannot apply the well-known fixed point theorems in Banach algebras (see
[–], and the references given therein) for the above integral equations.

By a solution of the FIE (), we mean a continuous function x : [, +∞) →R that satisfies
FIE () on R+ := [, +∞). Let X = C(R+,R) be the locally convex algebra (in fact, Frechet
algebra) of all continuous real-valued functions on R+ with a family of seminorms,

p[,n](x) = max
{∣∣x(t)

∣∣ : t ∈ [, n]
}

.

As in [] and [], we shall adopt the following assumptions.

Assumption .
(C) The functions 	i(t) : R+ →R+, i = , , . . . , m; τl(t) : R+ →R+, l = , , . . . , n, are

continuous and 	i(t) ≤ t, τl(t) ≤ t for every t > .
(C) The function F : (t, u, u, . . . , um, v, . . . , vn) : R+ ×R

m+n → [, ] is continuous and
satisfies the conditions

∣
∣F(t, u, . . . , um, v, . . . , vn) – F(t, u, . . . , um, v, . . . , vn)

∣
∣

≤ �
(
t, |u – u|, . . . , |um – um|, |v – v|, . . . , |vn – vn|

)
,

where the function �(t, x, . . . , xm, y, . . . , yn) : Rm+n+
+ →R+ is continuous in t,

non-decreasing and continuous in each xi, yl , �(t, ay, . . . , ay, y, . . . , y) < y for every
constant a >  and �(t,ay,...,ay,y,...,y)

y is non-decreasing in y.
(C) q is uniformly continuous on R+, ‖q‖∞ = supt∈R+ |q(t)| <  and

∫ +∞
 |f (s, x(s))|ds <  – ‖q‖∞ for every x ∈ C(R+,R) with |x(t)| ≤  for all t.

Theorem . Under assumptions (C), (C), and (C), () has at least one solution x = x(t)
which belongs to the space C(R+,R).

Proof Let S = {x ∈ C(R+,R) : p[,n](x) ≤ , n = , , . . .}. It is easy to see that S is a convex,
closed, and bounded subset of C(R+,R). Let us consider two operators A, B defined on
C(R+,R) by

(Ax)(t) = F
(

t,
∫ 	(t)


x(s) ds, . . . ,

∫ 	m(t)


x(s) ds, x

(
τ(t)

)
, . . . , x

(
τn(t)

))
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and

(Bx)(t) = q(t) +
∫ t


f
(
s, x(s)

)
ds,

for all t ∈ R+.
Then () is equivalent to the operator equation

x = AxBx

on C(R+,R). Now, we claim that the operators A and B satisfy all conditions of Theo-
rem . with S as previously mentioned.

Now, we consider the index set I = {[, k] : k = , , . . .} and for each [, k] ∈ I , we set

r(k) :=
[
max

{
max

t∈[,k]
	i(t), max

t∈[,k]
τl(t) : i = , , . . . , m; l = , , . . . , n

}]
,

where [x] is the integer part of x ∈R. By the condition (C) we get r(k) ≤ k. Let us

N(k) =

⎧
⎨

⎩
r(k) +  if r(k) < k,

r(k) if r(k) = k.

We define a map j : I → I by

j
(
[, k]

)
=

[
, N(k)

]
.

It is easy to see that

[
, max

t∈[,k]
	i(t)

]
⊂ j

(
[, k]

)
and

[
, max

t∈[,k]
τl(t)

]
⊂ j

(
[, k]

)
()

for all i = , , . . . , m, l = , , . . . , n.
For each k = , , . . . , we put 	i

k = maxt∈[,k] 	i(t) and

ak = max
{
	i

k : i = , , . . . , m
}

.

It follows from (C) that the function

φ[,k](y) := sup
{
�(t, aky, . . . , aky, y, . . . , y) : t ∈ [, k]

}

is continuous and non-decreasing, φ[,k](y) < y for every y > , and φ[,k](y)
y is non-

decreasing.
Next, we shall show that A is D-Lipschitzian. Indeed, for each [, n] ∈ I and for every

x, y ∈ C(R+,R), using (C), we have

p[,k](Ax – Ay)

= sup
t∈[,k]

∣∣(Ax)(t) – (Ay)(t)
∣∣
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= sup
t∈[,k]

∣
∣∣
∣F

(
t,

∫ 	(t)


x(s) ds, . . . ,

∫ 	m(t)


x(s) ds, x

(
τ(t)

)
, . . . , x

(
τn(t)

)
)

– F
(

t,
∫ 	(t)


y(s) ds, . . . ,

∫ 	m(t)


y(s) ds, y

(
τ(t)

)
, . . . , y

(
τn(t)

)
)∣

∣∣
∣

≤ sup
t∈[,k]

�

(
t,

∣∣
∣∣

∫ 	(t)



(
x(s) – y(s)

)
ds

∣∣
∣∣, . . . ,

∣∣
∣∣

∫ 	m(t)



(
x(s) – y(s)

)
ds

∣∣
∣∣,

∣
∣x

(
τ(t)

)
– y

(
τ(t)

)∣∣, . . . ,
∣
∣x

(
τn(t)

)
– y

(
τn(t)

)∣∣
)

≤ sup
t∈[,k]

�

(
t,

∫ 	(t)



∣∣x(s) – y(s)
∣∣ds, . . . ,

∫ 	m(t)



∣∣x(s) – y(s)
∣∣ds,

∣
∣x

(
τ(t)

)
– y

(
τ(t)

)∣∣, . . . ,
∣
∣x

(
τn(t)

)
– y

(
τn(t)

)∣∣
)

. ()

For each t ∈ [, k], in view to (), we have

�

(
t,

∫ 	(t)



∣
∣x(s) – y(s)

∣
∣ds, . . . ,

∫ 	m(t)



∣
∣x(s) – y(s)

∣
∣ds,

∣∣x
(
τ(t)

)
– y

(
τ(t)

)∣∣, . . . ,
∣∣x

(
τn(t)

)
– y

(
τn(t)

)∣∣
)

≤ �
(

t,
∣∣	(t)

∣∣ max
s∈[,maxt∈[,k] 	(t)]

∣∣x(s) – y(s)
∣∣, . . . ,

∣∣	m(t)
∣∣ max

s∈[,maxt∈[,k] 	m(t)]

∣∣x(s) – y(s)
∣∣,

max
s∈[,maxt∈[,k] τ(t)]

∣∣x(s) – y(s)
∣∣, . . . , max

s∈[,maxt∈[,k] τn(t)]

∣∣x(s) – y(s)
∣∣
)

≤ �
(

t,
∣∣	(t)

∣∣ max
s∈j([,k])

∣∣x(s) – y(s)
∣∣, . . . ,

∣∣	m(t)
∣∣ max

s∈j([,k])

∣∣x(s) – y(s)
∣∣,

max
s∈j([,k])

∣∣x(s) – y(s)
∣∣, . . . , max

s∈j([,k])

∣∣x(s) – y(s)
∣∣
)

≤ �
(
t,	

kpj([,k])(x – y), . . . ,	m
k pj([,k])(x – y),

pj([,k])(x – y), . . . , pj([,k])(x – y)
)

≤ �
(
t, akpj([,k])(x – y), . . . , akpj([,k])(x – y),

pj([,k])(x – y), . . . , pj([,k])(x – y)
)
. ()

From () and (), we obtain

p[,k](Ax – Ay)

≤ sup
t∈[,k]

�
(
t, akpj([,k])(x – y), . . . , akpj([,k])(x – y),

pj([,k])(x – y), . . . , pj([,k])(x – y)
)

= φ[,k]
(
pj([,k])(x – y)

)
.

This proves that A is D-Lipschitzian.
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Moreover, by assumption (C) and the definition of j we have

jk([, n]
) ⊂ [, n]

for all n and k. It follows that the conditions (A) and (A) of Theorem . are satisfied.
By the above reasoning, we have

φjk ([,n])(y) ≤ φ[,n](y) := φ[,n](y) ∈ �.

Next, we shall deal with some estimations on

M[,n] := sup
{

p[,n]
(
B(x)

)
: x ∈ S

}
.

We have

p[,n]
(
B(x)

)
= sup

t∈[,n]

∣
∣∣
∣q(t) +

∫ t


f
(
s, x(s)

)
ds

∣
∣∣
∣

≤ sup
t∈[,n]

∣∣q(t)
∣∣ + sup

t∈[,n]

∫ t



∣∣f
(
s, x(s)

)∣∣ds

≤ ‖q‖∞ +
∫ +∞



∣
∣f

(
s, x(s)

)∣∣ds

< ‖q‖∞ +
(
 – ‖q‖∞

)
=  ()

for every n = , , . . . and x ∈ S. Hence M[,n] ≤ , so that M[,n]φ[,n](t) < t for every t > 
and the condition (A) of Theorem . holds.

Now, we shall check the condition (A). Firstly, we show that B is completely contin-
uous. Suppose (xk) ⊂ S and xk → x. Since S is closed, we have x ∈ S. By the definition
of seminorms p[,n], we can deduce that (xk) uniformly convergent to x on [, n] for each
n = , , . . . . It follows that |f (s, xk(s)) – f (s, x(s))| →  as k → +∞ for every s ∈ [, +∞).
Moreover, by the condition (C), we infer the g(s) := f (s, x(s)) is a bounded function on
[, n] for each n = , , . . . .

For each k = , , . . . , set gk(s) = f (s, xk(s)), for every s ∈ [, n]. We show that (gk) be a
bounded sequence on [, n]. Suppose to the contrary, for each k = , , . . . there exists sk ∈
[, n] such that

∣∣gk(sk)
∣∣ =

∣∣f
(
sk , xk(sk)

)∣∣ > k. ()

Since [, n] is compact, there exists a subsequence (skj ) of (sk) which converges to s ∈
[, n]. Since {xk} is uniformly convergent to x on [, n], we have xkj (skj ) → x(s) as kj → ∞.
Therefore, let kj → ∞ in () and using continuity of f we infer |f (s, x(s))| = ∞. Hence, f
is unbounded on [, n]. This is a contradiction.

Applying the Lebesgue dominated convergence theorem, we have

∫ n



∣
∣f

(
s, xk(s)

)
– f

(
s, x(s)

)∣∣ds → 
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as k → ∞. From

p[,n]
(
B(xk) – B(x)

)
= max

t∈[,n]

∣∣
∣∣

∫ t


f
(
s, xk(s)

)
ds –

∫ t


f
(
s, x(s)

)
ds

∣∣
∣∣

≤ max
t∈[,n]

∫ t



∣∣f
(
s, xk(s)

)
– f

(
s, x(s)

)∣∣ds

≤
∫ n



∣∣f
(
s, xk(s)

)
– f

(
s, x(s)

)∣∣ds,

we conclude that

p[,n]
(
B(xk) – B(x)

) → 

as k → ∞, for n = , , . . . . This proves that B is continuous.
Now, we show that B(S) is totally bounded. It follows from () that B(S) ⊂ S. For any ε > 

and Bx ∈ B(S), since
∫ +∞

 |f (s, x(s))|ds <  –‖q‖∞ and f (s, x(s)) is continuous, it follows that
|f (s, x(s))| ≤ M < +∞ for all s ≥ , for some M. By the uniform continuity of q, we can seek
the δ(ε) such that

∣
∣q(t) – q(τ )

∣
∣ <

ε



for all |t – τ | < δ(ε). Now, if we choose δ = min{ ε
M , δ(ε)} then

∣
∣Bx(t) – Bx(τ )

∣
∣ =

∣∣
∣∣q(t) – q(τ ) +

∫ t


f
(
s, x(s)

)
ds –

∫ τ


f
(
s, x(s)

)
ds

∣∣
∣∣

≤ ∣∣q(t) – q(τ )
∣∣ +

∫ τ

t

∣∣f
(
s, x(s)

)∣∣ds

≤ ε


+ M|t – τ | < ε

for every t, τ ∈ [, +∞) and |t – τ | < δ. Hence B(S) is a equicontinuous family. By Arzela-
Ascoli’s theorem, we deduce that B(S) is a precompact set of C(R+,R). Therefore, B is
completely continuous. It follows from condition (C) and condition (C) that the remain
of condition (A) of Theorem . is satisfied.

Finally, applying Theorem ., we can conclude that () has a solution. �

The following example is an illustration of Theorem ..

Example . Consider the following nonlinear functional integral equation:

x(t) =


 + |x(τ (t))|
(

te–t
+

∫ t


se–s(+x(s)) ds

)
, ()

where τ (t) is a continuous function on [, +∞) and τ (t) ≤ t for all t ∈ [, +∞).
We will show that the equation has a solution on C(R+,R).
Set q(t) := te–t and f (s, x(s)) := se–s(+x(s)). Since q is continuous on [, +∞) and

limt→+∞ q(t) = , it is easy to show that q is uniform continuous. We also have

‖q‖∞ =
√
e

< 
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and
∫ +∞


se–s(+x(s)) ds ≤

∫ +∞


se–s

ds =



<  –
√
e

=  – ‖q‖∞

for every x ∈ C(R+,R).
Consider the function F : R+ ×R

 → [, ] defined by

F(t, u, v) =


 + |v| ,

for all (t, u, v) ∈ R+ × R
. It is easy to check that F satisfies the condition (C) with

�(t, x, y) = y
 . Hence, the Assumption . holds for the above q, f , and F .
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