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Abstract
We discuss the extension of some fundamental results in nonlinear analysis to the
setting of gauge spaces. In particular, we establish Ekeland type and Caristi type
results under suitable hypotheses for mappings and cyclic mappings. Our theorems
generalize and complement some analogous results in the literature, also in the sense
of ordered sets and oriented graphs. We apply our results to establishing the
existence of solution to a second order nonlinear initial value problem.
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1 Introduction
The variational principle established by Ekeland in , see [, ], is one of the most
discussed and applied result in the context of nonlinear analysis. This principle plays a
crucial role in establishing many theoretical results. Here, we refer to the statement below.

Definition . Let (X, d) be a metric space. A function ϕ : X → [, +∞) is lower semi-
continuous at x ∈ X if and only if, for every sequence {xn} in X with xn → x as n → +∞,
lim infn→+∞ ϕ(xn) ≥ ϕ(x). Also, ϕ is lower semicontinuous if and only if it is lower semi-
continuous at every x ∈ X.

Now, L(y) := {x ∈ X : ϕ(x) ≤ y} is called the lower counter set defined by a point y ∈
[, +∞). Then the following results hold true.

Proposition . Let (X, d) be a metric space. Let ϕ : X → [, +∞) be a function. Then φ is
lower semicontinuous if and only if L(y) is closed for every y ∈ [, +∞).

Theorem . ([]) Let (X, d) be a complete metric space and ϕ : X → [, +∞] be a proper
and lower semicontinuous function. Then, for all c > , δ > , and x ∈ X such that ϕ(x) ≤
infx∈X ϕ(x) + cδ, there exists x∗ ∈ X such that

(i) ϕ(x∗) ≤ ϕ(x);
(ii) d(x, x∗) ≤ δ;

(iii) ϕ(x∗) < ϕ(x) + cd(x, x∗) for all x �= x∗.
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Of course, in the above statement we can, alternatively, consider a function ϕ : X →
(–∞, +∞], by adding the hypothesis that it is bounded from below. The other fundamental
theorem that we would like to discuss is the following fixed point result established by
Caristi in ; see [].

Theorem . ([]) Let (X, d) be a complete metric space and f : X → X be a mapping not
necessarily continuous. Assume that there exists a function ϕ : X → [, +∞), which is lower
semicontinuous, such that

d(x, fx) ≤ ϕ(x) – ϕ(fx) for all x ∈ X.

Then f has a fixed point z, that is, z = fz.

Also, f is called a Caristi mapping on (X, d). The above theorems are strongly related
each other: it is well known that the results of Ekeland and Caristi are equivalent.

On the other hand, we notice that most of the spaces studied in mathematical analy-
sis, share many algebraic and topological properties as well as metric properties. Con-
sequently, there is no line separating clearly metric theory from the other topological or
set-theoretic branches. In view of this fact, many authors considered the problem of estab-
lishing theoretic results of nonlinear analysis in a metric space (see, for instance, [–]).
On the other hand, since several notions and theorems in the literature do not require that
all the properties of a metric hold true, various definitions of generalized metrics were in-
troduced (see, for example, [, ]). Here we are interested in the so-called gauge spaces
that are characterized by the fact that the distance between two points of the space may
be zero even if the two points are distinct. For instance, Frigon [, ], Chiş and Precup []
gave generalizations of fixed point theorems and Ekeland’s variational principle on gauge
spaces (see also [–]). Consistent with this line of research, our aim is to further discuss
the above fundamental theorems, by establishing new results under modified conditions
in complete gauge spaces. In particular, we deal with ordered sets and oriented graphs.
Then, to illustrate the usefulness of our theory, we apply our results to establishing the
existence of a solution to a second order nonlinear initial value problem.

2 Preliminaries
We collect some preliminaries on gauge spaces and basic definitions.

Definition . Let X be a nonempty set. A function d : X × X → [, +∞) is called a
pseudo-metric in X whenever

(i) d(x, x) =  for all x ∈ X ;
(ii) d(x, y) = d(y, x) for all x, y ∈ X ;

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .

Definition . Let X be a nonempty set endowed with a pseudo-metric d. The d-ball of
radius ε >  centered at x ∈ X is the set

B(x; d, ε) =
{

y ∈ X | d(x, y) < ε
}

.
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Definition . A family F = {dλ | λ ∈A} of pseudo-metrics is called separating if for each
pair (x, y) with x �= y, there is a dλ ∈F such that dλ(x, y) �= .

Definition . Let X be a nonempty set and F = {dλ | λ ∈ A} be a family of pseudo-
metrics on X. The topology T (F ) having as a sub-basis the family

B(F ) =
{

B(x; dλ, ε) | x ∈ X, dλ ∈F , ε > 
}

of balls is called the topology in X induced by the family F . The pair (X,T (F )) is called a
gauge space. Notice that (X,T (F )) is Hausdorff if we require that F is separating.

Definition . Let (X,T (F )) be a gauge space with respect to the family F = {dλ | λ ∈A}
of pseudo-metrics on X. Let {xn} be a sequence in X and x ∈ X. Then

(a) the sequence {xn} converges to x if and only if

for all λ ∈A and ε > , there exists N ∈N such that dλ(xn, x) < ε for all n ≥ N .

In this case, we denote xn
F−→ x.

(b) The sequence {xn} is Cauchy if and only if

for all λ ∈A and ε > , there exists N ∈N such that dλ(xn+p, xn) < ε,∀n ≥ N , p ∈N.

(c) (X,T (F )) is complete if and only if any Cauchy sequence in (X,T (F )) is convergent
to an element of X .

(d) A subset of X is said to be closed if it contains the limit of any convergent sequence
of its elements.

For complete reading on gauge spaces we suggest []. Notice that every metric space is
a pseudo-metric space. Also, if a pseudo-metric d is not a metric, it is because there are at
least two points x �= y for which d(x, y) = . In most situations this does not happen, which
means that metrics come up in mathematics more often than pseudo-metrics; however,
pseudo-metrics arise in a natural way in functional analysis and in the theory of hyperbolic
complex manifolds [].

Frigon in , see [], proved useful generalizations of the Ekeland variational princi-
ple and Caristi’s fixed point theorem in complete gauge spaces. However, in establishing
her results, she does not require that the family F is separating, but she uses a gauge struc-
ture {dn | n ∈N} satisfying the following condition:

d(x, y) ≤ d(x, y) ≤ · · · for all x, y ∈ X. ()

Theorem . ([]) Let X be endowed with a complete gauge structure {dn | n ∈ N} satis-
fying condition (). For every n ∈N, let ϕn : X → [, +∞] be a proper and lower semicontin-
uous function. Then, for all sequences of positive numbers {cn}, {δn}, and x ∈ X such that
ϕn(x) ≤ infx∈X ϕn(x) + cnδn, there exists x∗ ∈ X such that

(i) ϕn(x∗) ≤ ϕn(x) for all n ∈N;
(ii) dn(x, x∗) ≤ δn for all n ∈N;

(iii) for all x �= x∗, there exists n ∈N such that ϕn(x∗) < ϕn(x) + cndn(x, x∗).
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Theorem . ([]) Let X be endowed with a complete gauge structure {dn | n ∈ N} satis-
fying condition (). Let f : X → X be a mapping. For every n ∈ N, let ϕn : X → [, +∞) be a
lower semicontinuous function such that

dn(x, fx) ≤ ϕn(x) – ϕn(fx) for all x ∈ X.

Then f has a fixed point z, that is, z = fz.

3 Main results
3.1 Some consequences of Frigon’s theorems
Inspired by the significant work of Frigon [], we give some consequences of Theorem ..

Theorem . Let X be endowed with a complete gauge structure {dn | n ∈ N} satisfying
condition (). Let T , f : X → X be two mappings with T continuous. For every n ∈ N, let rn

be a negative real number such that

dn(x, Tfx) ≤ dn(x, Tx) + rndn(x, fx) for all x ∈ X. ()

Then f has a fixed point z, that is, z = fz.

Proof The continuity of T implies that the function ϕn : X → [, +∞) defined by

ϕn(y) := –

rn

dn(y, Ty) for all y ∈ X,

is lower semicontinuous. From (), we get

dn(x, fx) ≤ ϕn(x) – ϕn(fx) for all x ∈ X.

Thus, by Theorem ., f has a fixed point. �

Theorem . Let X be endowed with a complete gauge structure {dn | n ∈ N} satisfying
condition (). Let f : X → X be a mapping. For every n ∈ N, let kn ∈ [, ) be such that

dn
(
fx, f x

) ≤ kndn(x, fx) for all x ∈ X. ()

If one of the following conditions holds:
(i) the function hn : X → [, +∞) defined by hn(x) := dn(x, fx) is lower semicontinuous;

(ii) the mapping f is continuous;
then f has a fixed point in X.

Proof Note that (ii) implies (i). In fact, let x ∈ X and {xm} ⊂ X such that xm → x as m →
+∞ and assume that f is continuous. From

hn(x) = dn(x, fx) ≤ dn(x, xm) + dn(xm, fxm) + dn(fxm, fx)

= dn(x, xm) + hn(xm) + dn(fxm, fx),
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we get

hn(x) ≤ lim inf
m→+∞ hn(xm).

Now, we prove that f has a fixed point in X if (i) holds. By (), we have

dn(x, fx) – kndn(x, fx) ≤ dn(x, fx) – dn
(
fx, f x

)
for all x ∈ X.

This implies that

dn(x, fx) ≤ ϕn(x) – ϕn(fx) for all x ∈ X,

where ϕn : X → [, +∞) is defined by

ϕn(y) :=


 – kn
dn(y, fy) for all y ∈ X.

Now, by (i), the function ϕn is lower semicontinuous for all n ∈ N. Thus, the existence of
a fixed point follows by an application of Theorem .. �

As consequences of Theorem ., we give the following results, without proof. For the
origin of Theorem . and different contractive conditions, see [, ].

Theorem . Let X be endowed with a complete gauge structure {dn | n ∈ N} satisfying
condition (). Let f : X → X be a mapping. For every n ∈ N, let kn ∈ [, ) be such that

dn(fx, fy) ≤ kndn(x, y) for all x, y ∈ X. ()

Then f has a fixed point in X.

Theorem . Let X be endowed with a complete gauge structure {dn | n ∈ N} satisfying
condition (). Let f : X → X be a mapping. For every n ∈ N, let kn ∈ [, ) be such that

dn(fx, fy) ≤ kn max

{
dn(x, y), dn(x, fx), dn(y, fy),

dn(x, fy) + dn(y, fx)


}
for all x, y ∈ X.

If one of the following conditions holds:
(i) the function hn : X → [, +∞) defined by hn(x) := dn(x, fx) is lower semicontinuous;

(ii) the mapping f is continuous;
then f has a fixed point in X.

Example . Let X = R and, for any n ∈N, define

dn(x, y) =
n

n + 
∣∣x – y∣∣ for all x, y ∈ X.

Clearly, {dn | n ∈ N} is a complete gauge structure satisfying condition (). Also, define
f : X → X by fx = x

 for all x ∈ X. Now, for every n ∈ N, let kn ∈ [ 
 , ) so that condition ()

is satisfied for all x, y ∈ X. Therefore, f has a fixed point in X; here  is a unique fixed point
of f .



Jleli et al. Fixed Point Theory and Applications  (2015) 2015:62 Page 6 of 13

3.2 Results for cyclic mappings
In [], Kirk et al. obtained extensions of well-known fixed point theorems for cyclic map-
pings, by considering, for instance, a cyclical contractive condition as given by the next
theorem.

Definition . Let A, B be two nonempty subsets of a metric space (X, d). Then f : X → X
is called a cyclic mapping associated to (A, B) if the following conditions hold:

(i) X = A ∪ B;
(ii) f (A) ⊆ B and f (B) ⊆ A.

Theorem . ([]) Let A, B be two nonempty closed subsets of a metric space (X, d) and
f : X → X be a cyclic mapping associated to (A, B). Let k ∈ (, ) be such that

d(fx, fy) ≤ kd(x, y) for all x ∈ A and y ∈ B.

Then f has a unique fixed point in A ∩ B.

Inspired by this result, other fixed point theorems with cyclical contractive conditions
were obtained (see, for instance, [–]). Our aim in this section is to prove some fixed
point theorems for cyclic mappings in complete gauge spaces. First, we state the extension
of Theorems . and . for a cyclic mapping and a complete gauge structure.

Theorem . Let X be endowed with a complete gauge structure {dn | n ∈ N} satisfying
condition (). Let A, B be two nonempty closed subsets of X and f : A ∪ B → A ∪ B be a
cyclic mapping associated to (A, B). For every n ∈N, let kn ∈ [, ) be such that

dn(fx, fy) ≤ kndn(x, y) for all x ∈ A and y ∈ B.

Then f has a fixed point in A ∩ B.

Now, we prove the following theorem.

Theorem . Let X be endowed with a complete gauge structure {dn | n ∈ N} satisfying
condition (). Let A, B be two nonempty closed subsets of X and f : A∪B → A∪B be a cyclic
mapping associated to (A, B). For every n ∈ N, let ϕ

n : A → [, +∞) and ϕ
n : B → [, +∞)

be lower semicontinuous functions such that

dn(x, fx) ≤ ϕ
n(x) – ϕ

n(fx) for all x ∈ A ()

and

dn(x, fx) ≤ ϕ
n(x) – ϕ

n(fx) for all x ∈ B. ()

Then f has a fixed point in A ∩ B.

Proof Let x ∈ A and let xm+ = fxm for all m ∈N. From () and () we get

ϕ
n(x) ≥ ϕ

n(x) ≥ · · · ≥ ϕ
n(xm–) ≥ ϕ

n(xm) ≥ · · · .
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This implies that the sequences {ϕ
n(xm–)} and {ϕ

n(xm)} are non-increasing and have the
same limit, say r ≥ . Let p > m. Then

dn(xm–, xp) ≤
p∑

k=m

dn(xk–, xk)

≤ ϕ
n(xm–) – ϕ

n(xm) + ϕ
n(xm) – ϕ

n(xm+) + · · · + ϕ
n(xp–) – ϕ

n(xp)

= ϕ
n(xm–) – ϕ

n(xp) →  (as m → +∞).

Since dn(xm, xm+) →  as m → +∞, we see that {xm} is a Cauchy sequence and A ∩ B �= ∅.
Now, we have the following:

dn(x, fx) ≤ min
{
ϕ

n(x) – ϕ
n(fx),ϕ

n(x) – ϕ
n(fx)

}
for all x ∈ A ∩ B.

Thus,

dn(x, fx) ≤ ϕn(x) – ϕn(fx) for all x ∈ A ∩ B,

where ϕn : A ∩ B → [, +∞) is defined by ϕn(x) := 
 (ϕ

n(x) + ϕ
n(x)) for all x ∈ A ∩ B. Clearly,

ϕn is lower semicontinuous and, hence, the conclusion follows from Theorem .. �

Example . Let A = B = X = [, +∞) and define

d(x, y) =

⎧
⎨

⎩
 if x = y or x, y ∈ [, ],

 otherwise,

and, for any n ∈N \ {},

dn(x, y) =

⎧
⎨

⎩
dn–(x, y) if x, y ∈ [, n],

n otherwise.

Clearly, {dn | n ∈N} is a complete gauge structure satisfying condition (). Also, let f : X →
X be defined by

fx =

⎧
⎨

⎩
 if x /∈ [, ],

 if x ∈ [, ].

It follows that

d(x, fx) =

⎧
⎨

⎩
 if x ∈ [, ],

 otherwise,

and

dn(x, fx) =

⎧
⎨

⎩
dn–(x, fx) if x ∈ [, n],

n otherwise.
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Notice that ϕ : X → X, defined by

ϕ(x) =

⎧
⎨

⎩
 if x ∈ [, ],

x otherwise,

is a lower semicontinuous function such that dn(x, fx) ≤ ϕ(x) – ϕ(fx), for all x ∈ X. Thus,
we can apply Theorem ., with ϕ

n = ϕ
n = ϕ, to conclude that f has a fixed point; here 

and  are fixed points of f .

The following result uses a nice contractive condition introduced by Geraghty in ;
see [].

Theorem . Let X be endowed with a complete gauge structure {dn | n ∈ N} satisfying
condition (). Let A, B be two nonempty closed subsets of X and f : A ∪ B → A ∪ B be a
cyclic mapping associated to (A, B). For every n ∈ N, let αn : [, +∞) → [, ) be such that
αn(tm) →  implies tm → . Assume that, for every n ∈N, the following condition holds:

dn(fx, fy) ≤ αn
(
dn(x, y)

)
dn(x, y) for all x ∈ A and y ∈ B. ()

Then f has a fixed point in A ∩ B.

Proof Let x ∈ A and let xm+ = fxm for all m ∈N. From (), we deduce that

dn(xm+, xm+) ≤ αn
(
dn(xm, xm+)

)
dn(xm, xm+) ≤ dn(xm, xm+)

and so the sequence {dn(xm, xm+)} is non-increasing and bounded from below. This im-
plies that there exists rn ≥  such that dn(xm, xm+) → rn as m → +∞. If rn > . Then,
by (), we obtain

dn(xm+, xm+)
dn(xm, xm+)

≤ αn
(
dn(xm, xm+)

)
.

Letting m → +∞, we deduce that αn(dn(xm, xm+)) →  and so dn(xm, xm+) → . To show
that the sequence {xm} is Cauchy, we suppose the contrary. Assume that, given k ∈N, there
exist m > p > k such that

dn(xp–, xm) ≥ ε.

From

dn(xp–, xm) ≤ dn(xp–, xp) + dn(xp, xm+) + dn(xm+, xm),

we get

[
 – αn

(
dn(xp–, xm)

)]
ε ≤ [

 – αn
(
dn(xp–, xm)

)]
dn(xp–, xm)

≤ dn(xp–, xp) + dn(xm+, xm).
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Letting p, m → +∞, we deduce that αn(dn(xp–, xm)) →  and so dn(xp–, xm) → . This
implies that the sequence {xm} is Cauchy. Then A ∩ B �= ∅ and xm → z ∈ A ∩ B. Since
f : A ∩ B → A ∩ B is continuous, we get z = fz, that is, z is a fixed point of f in A ∩ B. �

4 Ordered sets and oriented graphs
In this section, we adapt the ideas in [] to get further theorems in complete gauge spaces.

4.1 Fixed points of monotone non-decreasing mappings
Let (X,�) be a partially ordered set and f : X → X be a mapping. Then f is said to be a
monotone non-decreasing mapping if the following condition holds:

x � y ⇐⇒ fx � fy for all x, y ∈ X.

Also, two elements x, y ∈ X such that x � y are said to be comparable.

Theorem . Let (X,�) be a partially ordered set endowed with a complete gauge struc-
ture {dn | n ∈ N} satisfying condition (). Let f : X → X be a continuous and monotone
non-decreasing mapping. For every n ∈ N, let ϕn : X → [, +∞) be a lower semicontinuous
function such that

dn(x, fx) ≤ ϕn(x) – ϕn(fx) for all x ∈ X with fx � x.

Then f has a fixed point if and only if there exists x ∈ X with fx � x.

Proof Let x ∈ X with fx � x and let xm = fxm– for all m ∈ N. Since f is monotone non-
decreasing, then xm+ � xm for every m ∈N. Therefore, for every m, n ∈N, we have

dn(xm, xm+) ≤ ϕn(xm) – ϕn(xm+).

This implies that the sequence {ϕn(xm)} is non-increasing and so there exists rn ≥  such
that ϕn(xm) → rn as m → +∞. For every m, n, p ∈N, we get

dn(xm, xm+p) ≤
p–∑

i=

d(xm+i, xm+i+)

≤ ϕn(xm) – ϕn(xm+p).

This implies that {xm} is a Cauchy sequence in X. Now, by completeness, there exists z ∈ X
such that xm → z as m → +∞. Finally, by continuity of f we conclude that fz = z, that is,
z is a fixed point of f .

On the other hand, if x is a fixed point of f , then x = fx and so the order relation
fx � x is trivially satisfied. This completes the proof. �

Remark . The novelty of the last theorem over the corresponding theorem without
ordering is due to the fact that the contractive behavior of f is restricted to the elements
x ∈ X which are comparable to fx.
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4.2 Fixed points of G-edge preserving mappings
Definition . A graph G is an ordered pair (V , E), where V is a set and E ⊆ V × V is a
binary relation. We say that V is the vertex set and E is the edge set.

We refer the reader to [] for a more detailed background on this topic.

Definition . Let G = (V , E) be a graph and D be a subset of V . We say that D is G-
directed if for every x, y ∈ D, there exists z ∈ V such that (x, z), (y, z) ∈ E.

Example . Let V = F([, ],R) be the set of functions u : [, ] → R and define E ⊆
V × V by

(u, v) ∈ E ⇐⇒ u(t) ≤ v(t) for all t ∈ [, ].

Then G = (V , E) is a graph. Let D = M([, ],R) be the set of measurable functions u :
[, ] → R. Then D is G-directed. Indeed, for every u, v ∈ D, the function z = max{u, v}
satisfies (u, z), (v, z) ∈ E.

Let (V , d) be a metric space. We consider a family G = {Gi :  ≤ i ≤ q} of q ≥  graphs
such that Gi = (V , Ei), Ei ⊆ V × V , i = , , . . . , q.

Definition . Let f : V → V be a given mapping. We say that f is G-monotone if for all
i = , , . . . , q, we see that (x, y) ∈ Ei implies that (fx, fy) ∈ Ei+, with Eq+ = E. Consequently,
(f kqx, f kqy) ∈ Ei for each nonnegative integer number k if f is G-monotone.

Remark . If q =  (G = G), we say that f is G-edge preserving; see [].

Building on Theorem ., we give a further generalization of Caristi type, by substituting
the ordering relation with an oriented graph.

Theorem . Let X be a complete gauge structure {dn | n ∈ N} satisfying condition ().
Let G be an oriented graph on X such that (x, x) ∈ E(G) for all x ∈ X. Let f : X → X be
a continuous and G-edge preserving mapping. For every n ∈ N, let ϕn : X → [, +∞) be a
lower semicontinuous function such that

dn(x, fx) ≤ ϕn(x) – ϕn(fx) for all x ∈ X with (fx, x) ∈ E(G).

Then f has a fixed point if and only if there exists x ∈ X with (fx, x) ∈ E(G).

Proof Let x ∈ X such that (fx, x) ∈ E(G) and let xm = fxm– for all m ∈ N. Since f is G-
edge preserving, by Definition . and in view of Remark ., we deduce that (xm+, xm) ∈
E(G) for every m ∈N. Then, for every m, n ∈N, we get

dn(xm, xm+) ≤ ϕn(xm) – ϕn(xm+).
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This implies that the sequence {ϕn(xm)} is non-increasing and so there exists rn ≥  such
that φn(xm) → rn as m → +∞. For every m, n, p ∈N, we have

dn(xm, xm+p) ≤
p–∑

i=

d(xm+i, xm+i+)

≤ ϕn(xm) – ϕn(xm+p).

This implies that {xm} is a Cauchy sequence in X. Now by completeness, there exists z ∈ X
such that xm → z as m → +∞. Finally, by continuity of f we conclude that fz = z, that is,
z is a fixed point of f .

On the other hand, if x is a fixed point of f , then (fx, x) ∈ E(G), since by hypothesis
(x, x) ∈ E(G) for all x ∈ X. This completes the proof. �

5 Application to ordinary differential equation
A typical application of fixed point methods is in establishing sufficient conditions for the
existence of solution of integro-differential problems. Referring to [], we consider the
following second order nonlinear initial value problem:

⎧
⎪⎨

⎪⎩

x′′(t) = k(t, x(t)), t > ,
x() = α,
x′() = β ,

()

where k : [, +∞) × R
n → R

n is a continuous function. It is well known that the above
problem is equivalent to the following integral equation:

x(t) =
∫ t


(t – s)k

(
s, x(s)

)
ds + βt + α, t ≥ .

Let X = C([, +∞),Rn) be the set of continuous functions defined on [, +∞). Then, for
every n ∈N, we consider the semi-norm ‖ · ‖n : X → [, +∞) given by

‖x‖n = max
t∈[,n]

∣∣x(t)
∣∣ for all x ∈ X,

where | · | denote the norm in R
n. Also, for every n ∈N, let

dn(x, y) = ‖x – y‖n for all x, y ∈ X.

Clearly, F = {dn | n ∈ N} is a family of pseudo-metrics on X satisfying condition (). Also,
(X,T (F )) is a complete gauge space.

We shall prove the following theorem.

Theorem . For every n ∈ N, assume that the following condition holds:

∣∣k
(
s, x(s)

)
– k

(
s, y(s)

)∣∣ ≤ γ (s)
[
 – e– min{dn(x,y),}] for each s ∈ [, n] and for all x, y ∈ X,
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and γ : [, +∞) → [, +∞) is such that the function t �→ ∫ t
 (t – s)γ (s) ds is bounded on

[, +∞) and

sup
t≥

∫ t


(t – s)γ (s) ds ≤ .

Then the second order nonlinear initial value problem () has a solution x∗ ∈ C([, +∞),
R

n).

Proof Consider the operator f : X → X defined by

fx(t) =
∫ t


(t – s)k

(
s, x(s)

)
ds + βt + α, t ≥ , x ∈ X,

which is well defined, since k is a continuous function.
It is immediate that x∗ is a solution of () if and only if x∗ is a fixed point of f . Then we

need to show that Theorem . is applicable to the operator f to conclude the proof of
Theorem ..

Let n ∈N and let x, y ∈ X, then for all t ∈ [, n] we write

∣∣fx(t) – fy(t)
∣∣ ≤

∫ t


(t – s)

∣∣k
(
s, y(s)

)
– k

(
s, x(s)

)∣∣ds

≤
∫ t


(t – s)γ (s)

[
 – e– min{dn(x,y),}]ds

≤ [
 – e– min{dn(x,y),}]

∫ t


(t – s)γ (s) ds

≤  – e– min{dn(x,y),}.

Then, for all n ∈N, we get

dn(fx, fy) ≤  – e– min{dn(x,y),} for all x, y ∈ X,

which further gives us

dn(fx, fy) ≤  – e– min{dn(x,y),}

min{dn(x, y), } dn(x, y).

Notice that, for every n ∈N, the function αn : [, +∞) → [, ) given by

αn(τ ) =

⎧
⎨

⎩

e– min{τ ,}–
– min{τ ,} if τ > ,


 if τ = ,

is such that αn(tm) →  implies tm → , as m → +∞. Thus, by an application of Theo-
rem . with A = B = X, we see that f has a fixed point x∗ ∈ X, that is, x∗ ∈ C([, +∞),Rn)
is a solution of (). �
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11. Chiş, A, Precup, R: Continuation theory for general contractions in gauge spaces. Fixed Point Theory Appl. 2004(3),

173-185 (2004)
12. Agarwal, RP, O’Regan, D: Fixed-point theorems for multivalued maps with closed values on complete gauge spaces.

Appl. Math. Lett. 14, 831-836 (2001)
13. Cherichi, M, Samet, B: Fixed point theorems on ordered gauge spaces with applications to nonlinear integral

equations. Fixed Point Theory Appl. 2012, Article ID 13 (2012)
14. Cherichi, M, Samet, B, Vetro, C: Fixed point theorems in complete gauge spaces and applications to second order

nonlinear initial value problems. J. Funct. Spaces Appl. 2013, Article ID 293101 (2013)
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