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Abstract
We introduce a new concept of generalized metric spaces for which we extend some
well-known fixed point results including Banach contraction principle, Ćirić’s fixed
point theorem, a fixed point result due to Ran and Reurings, and a fixed point result
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recover various topological spaces including standard metric spaces, b-metric spaces,
dislocated metric spaces, and modular spaces.
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1 Introduction
The concept of standard metric spaces is a fundamental tool in topology, functional anal-
ysis and nonlinear analysis. This structure has attracted a considerable attention from
mathematicians because of the development of the fixed point theory in standard met-
ric spaces.

In recent years, several generalizations of standard metric spaces have appeared. In ,
Czerwik [] introduced the concept of a b-metric space. Since then, several works have
dealt with fixed point theory in such spaces; see [–] and references therein. In , Hit-
zler and Seda [] introduced the notion of dislocated metric spaces in which self distance
of a point need not be equal to zero. Such spaces play a very important role in topology and
logical programming. For fixed point theory in dislocated metric spaces, see [–] and
references therein. The theory of modular spaces was initiated by Nakano [] in connec-
tion with the theory of order spaces and was redefined and generalized by Musielak and
Orlicz []. By defining a norm, particular Banach spaces of functions can be considered.
Metric fixed theory for these Banach spaces of functions has been widely studied. Even
though a metric is not defined, many problems in fixed point theory can be reformulated
in modular spaces (see [–] and references therein).

In this work, we present a new generalization of metric spaces that recovers a large class
of topological spaces including standard metric spaces, b-metric spaces, dislocated metric
spaces, and modular spaces. In such spaces, we establish new versions of some known fixed
point theorems in standard metric spaces including Banach contraction principle, Ćirić’s
fixed point theorem, a fixed point result due to Ran and Reurings, and a fixed point result
due to Nieto and Rodíguez-López.
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2 A generalized metric space
Let X be a nonempty set and D : X × X → [, +∞] be a given mapping. For every x ∈ X,
let us define the set

C(D, X, x) =
{
{xn} ⊂ X : lim

n→∞D(xn, x) = 
}

.

2.1 General definition
Definition . We say that D is a generalized metric on X if it satisfies the following
conditions:

(D) for every (x, y) ∈ X × X , we have

D(x, y) =  �⇒ x = y;

(D) for every (x, y) ∈ X × X , we have

D(x, y) = D(y, x);

(D) there exists C >  such that

if (x, y) ∈ X × X, {xn} ∈ C(D, X, x), then D(x, y) ≤ C lim sup
n→∞

D(xn, y).

In this case, we say the pair (X,D) is a generalized metric space.

Remark . Obviously, if the set C(D, X, x) is empty for every x ∈ X, then (X,D) is a
generalized metric space if and only if (D) and (D) are satisfied.

2.2 Topological concepts
Definition . Let (X,D) be a generalized metric space. Let {xn} be a sequence in X and
x ∈ X. We say that {xn} D-converges to x if

{xn} ∈ C(D, X, x).

Proposition . Let (X,D) be a generalized metric space. Let {xn} be a sequence in X and
(x, y) ∈ X × X. If {xn} D-converges to x and {xn} D-converges to y, then x = y.

Proof Using the property (D), we have

D(x, y) ≤ lim sup
n→∞

D(xn, y) = ,

which implies from the property (D) that x = y. �

Definition . Let (X,D) be a generalized metric space. Let {xn} be a sequence in X. We
say that {xn} is a D-Cauchy sequence if

lim
m,n→∞D(xn, xn+m) = .

Definition . Let (X,D) be a generalized metric space. It is said to be D-complete if
every Cauchy sequence in X is convergent to some element in X.



Jleli and Samet Fixed Point Theory and Applications  (2015) 2015:61 Page 3 of 14

2.3 Examples
In this part of the paper, we will see that this new concept of generalized metric spaces
recovers a large class of existing metrics in the literature.

.. Standard metric spaces
Recall that a standard metric on a nonempty set X is a mapping d : X × X → [, +∞)
satisfying the following conditions:

(d) for every (x, y) ∈ X × X , we have

d(x, y) =  ⇐⇒ x = y;

(d) for every (x, y) ∈ X × X , we have

d(x, y) = d(y, x);

(d) for every (x, y, z) ∈ X × X × X , we have

d(x, y) ≤ d(x, z) + d(z, y).

It is not difficult to observe that d satisfies all the conditions (D)-(D) with C = .

.. b-Metric spaces
In , Czerwik [] introduced the concept of b-metric spaces by relaxing the triangle
inequality as follows.

Definition . Let X be a nonempty set and d : X × X → [, +∞) be a given mapping.
We say that d is a b-metric on X if it satisfies the following conditions:

(b) for every (x, y) ∈ X × X , we have

d(x, y) =  ⇐⇒ x = y;

(b) for every (x, y) ∈ X × X , we have

d(x, y) = d(y, x);

(b) there exists s ≥  such that, for every (x, y, z) ∈ X × X × X , we have

d(x, y) ≤ s
[
d(x, z) + d(z, y)

]
.

In this case, (X, d) is said to be a b-metric space.

The concept of convergence in such spaces is similar to that of standard metric spaces.

Proposition . Any b-metric on X is a generalized metric on X .
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Proof Let d be a b-metric on X. We have just to proof that d satisfies the property (D).
Let x ∈ X and {xn} ∈ C(d, X, x). For every y ∈ X, by the property (b), we have

d(x, y) ≤ sd(x, xn) + sd(xn, y),

for every natural number n. Thus we have

d(x, y) ≤ s lim sup
n→∞

d(xn, y).

The property (D) is then satisfied with C = s. �

.. Hitzler-Seda metric spaces
Hitzler and Seda [] introduced the notion of dislocated metric spaces as follows.

Definition . Let X be a nonempty set and d : X × X → [, +∞) be a given mapping.
We say that d is a dislocated metric on X if it satisfies the following conditions:

(HS) for every (x, y) ∈ X × X , we have

d(x, y) =  �⇒ x = y;

(HS) for every (x, y) ∈ X × X , we have

d(x, y) = d(y, x);

(HS) for every (x, y, z) ∈ X × X × X , we have

d(x, y) ≤ d(x, z) + d(z, y).

In this case, (X, d) is said to be a dislocated metric space.

The motivation of defining this new notion is to get better results in logic programming
semantics.

The concept of convergence in such spaces is similar to that of standard metric spaces.
The following result can easily be established, so we omit its proof.

Proposition . Any dislocated metric on X is a generalized metric on X.

.. Modular spaces with the Fatou property
Let us recall briefly some basic concepts of modular spaces. For more details of modular
spaces, the reader is advised to consult [], and the references therein.

Definition . Let X be a linear space over R. A functional ρ : X → [, +∞] is said to be
modular if the following conditions hold:

(ρ) for every x ∈ X , we have

ρ(x) =  ⇐⇒ x = ;
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(ρ) for every x ∈ X , we have

ρ(–x) = ρ(x);

(ρ) for every (x, y) ∈ X × X , we have

ρ(αx + βy) ≤ ρ(x) + ρ(y),

whenever α,β ≥  and α + β = .

Definition . If ρ is a modular on X, then the set

Xρ =
{

x ∈ X : lim
λ→

ρ(λx) = 
}

is called a modular space.

The concept of convergence in such spaces is defined as follows.

Definition . Let (X,ρ) be a modular space.
(i) A sequence {xn}n∈N ⊂ Xρ is said to be ρ-convergent to x ∈ Xρ if

limn→∞ ρ(xn – x) = .
(ii) A sequence {xn}n∈N ⊂ Xρ is said to be ρ-Cauchy if limn,m→∞ ρ(xn – xn+m) = .

(iii) Xρ is said to be ρ-complete if any ρ-Cauchy sequence is ρ-convergent.

Definition . The modular ρ has the Fatou property if, for every y ∈ Xρ , we have

ρ(x – y) ≤ lim inf
n→∞ ρ(xn – y),

whenever {xn}n∈N ⊂ Xρ is ρ-convergent to x ∈ Xρ .

Let (X,ρ) be a modular space. Define the mapping Dρ : Xρ × Xρ → [, +∞] by

Dρ(x, y) = ρ(x – y),

for every (x, y) ∈ X × X.
We have the following result.

Proposition . If ρ has the Fatou property, then Dρ is a generalized metric on Xρ .

Proof We have just to proof that Dρ satisfies the property (D). Let x ∈ Xρ and {xn} ∈
C(Dρ , Xρ , x), which means that

lim
n→∞ρ(xn – x) = .

Using the Fatou property, for all y ∈ Xρ , we have

ρ(x – y) ≤ lim inf
n→∞ ρ(xn – y),
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which yields

Dρ(x, y) ≤ lim inf
n→∞ Dρ(xn, y) ≤ lim sup

n→∞
Dρ(xn, y).

Then (D) is satisfied with C =  and Dρ is a generalized metric on Xρ . �

The following result is immediate.

Proposition . Let ρ be a modular on X having the Fatou property. Then
(i) {xn} ⊂ Xρ is ρ-convergent to x ∈ Xρ if and only if {xn} is Dρ-convergent to x;

(ii) {xn} ⊂ Xρ is ρ-Cauchy if and only if {xn} is Dρ-Cauchy;
(iii) (Xρ ,ρ) is ρ-complete if and only if (Xρ , Dρ) is Dρ-complete.

3 The Banach contraction principle in a generalized metric space
In this section, we present an extension of the Banach contraction principle to the setting
of generalized metric spaces introduced previously.

Let (X,D) be a generalized metric space and f : X → X be a mapping.

Definition . Let k ∈ (, ). We say that f is a k-contraction if

D
(
f (x), f (y)

) ≤ kD(x, y), for every (x, y) ∈ X × X.

First, we have the following observation.

Proposition . Suppose that f is a k-contraction for some k ∈ (, ). Then any fixed point
ω ∈ X of f satisfies

D(ω,ω) < ∞ �⇒ D(ω,ω) = .

Proof Let ω ∈ X be a fixed point of f such that D(ω,ω) < ∞. Since f is a k-contraction, we
have

D(ω,ω) = D
(
f (ω), f (ω)

) ≤ kD(ω,ω),

which implies that D(ω,ω) =  since k ∈ (, ) and D(ω,ω) < ∞. �

For every x ∈ X, let

δ(D, f , x) = sup
{
D

(
f i(x), f j(x)

)
: i, j ∈N

}
.

We have the following extension of the Banach contraction principle.

Theorem . Suppose that the following conditions hold:
(i) (X,D) is complete;

(ii) f is a k-contraction for some k ∈ (, );
(iii) there exists x ∈ X such that δ(D, f , x) < ∞.
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Then {f n(x)} converges to ω ∈ X, a fixed point of f . Moreover, if ω′ ∈ X is another fixed
point of f such that D(ω,ω′) < ∞, then ω = ω′.

Proof Let n ∈N (n ≥ ). Since f is a k-contraction, for all i, j ∈N, we have

D
(
f n+i(x), f n+j(x)

) ≤ kD
(
f n–+i(x), f n–+j(x)

)
,

which implies that

δ
(
D, f , f n(x)

) ≤ kδ
(
D, f , f n–(x)

)
.

Then, for every n ∈N, we have

δ
(
D, f , f n(x)

) ≤ knδ(D, f , x).

Using the above inequality, for every n, m ∈ N, we have

D
(
f n(x), f n+m(x)

) ≤ δ
(
D, f , f n(x)

) ≤ knδ(D, f , x).

Since δ(D, f , x) < ∞ and k ∈ (, ), we obtain

lim
n,m→∞D

(
f n(x), f n+m(x)

)
= ,

which implies that {f n(x)} is a D-Cauchy sequence.
Since (X,D) is D-complete, there exists some ω ∈ X such that {f n(x)} is D-convergent

to ω.
On the other hand, since f is a k-contraction, for all n ∈N, we have

D
(
f n+(x), f (ω)

) ≤ kD
(
f n(x),ω

)
.

Letting n → ∞ in the above inequality, we get

lim
n→∞D

(
f n+(x), f (ω)

)
= .

Then {f n(x)} isD-convergent to f (ω). By the uniqueness of the limit (see Proposition .),
we get ω = f (ω), that is, ω is a fixed point of f .

Now, suppose that ω′ ∈ X is a fixed point of f such that D(ω,ω′) < ∞. Since f is a
k-contraction, we have

D
(
ω,ω′) = D

(
f (ω), f

(
ω′)) ≤ kD

(
ω,ω′),

which implies by the property (D) that ω = ω′. �

Observe that we can replace condition (iii) in Theorem . by

(iii)′ there exists x ∈ X such that sup{D(x, f r(x)) : r ∈ N} < ∞.
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In fact, since f is a k-contraction, we obtain easily that

δ(D, f , x) ≤ sup
{
D

(
x, f r(x)

)
: r ∈N

}
.

So condition (iii)′ implies condition (iii).
The following result (see Kirk and Shahzad []) is an immediate consequence of Propo-

sition . and Theorem ..

Corollary . Let (X, d) be a complete b-metric space and f : X → X be a mapping. Sup-
pose that for some k ∈ (, ), we have

d
(
f (x), f (y)

) ≤ kd(x, y), for every (x, y) ∈ X × X.

If there exists x ∈ X such that

sup
{

d
(
f i(x), f j(x)

)
: i, j ∈ N

}
< ∞,

then the sequence {f n(x)} converges to a fixed point of f . Moreover, f has one and only one
fixed point.

Note that in [], there is a better result than this given by Corollary ..
The next result is an immediate consequence of Proposition . and Theorem ..

Corollary . Let (X, d) be a complete dislocated metric space and f : X → X be a map-
ping. Suppose that for some k ∈ (, ), we have

d
(
f (x), f (y)

) ≤ kd(x, y), for every (x, y) ∈ X × X.

If there exists x ∈ X such that

sup
{

d
(
f i(x), f j(x)

)
: i, j ∈ N

}
< ∞,

then the sequence {f n(x)} converges to a fixed point of f . Moreover, f has one and only one
fixed point.

The following result is an immediate consequence of Proposition ., Proposition .,
and Theorem ..

Corollary . Let (Xρ ,ρ) be a complete modular space and f : X → X be a mapping. Sup-
pose that for some k ∈ (, ), we have

ρ
(
f (x) – f (y)

) ≤ kρ(x – y), for every (x, y) ∈ Xρ × Xρ .

Suppose also that ρ satisfies the Fatou property. If there exists x ∈ Xρ such that

sup
{
ρ
(
f i(x) – f j(x)

)
: i, j ∈N

}
< ∞,

then the sequence {f n(x)} ρ-converges to some ω ∈ Xρ , a fixed point of f . Moreover, if ω′ ∈
Xρ is another fixed point of f such that ρ(ω – ω′) < ∞, then ω = ω′.
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Observe that in Corollary ., no �-condition is supposed.

4 Ćirić’s quasicontraction in a generalized metric space
In this section, we extend Ćirić’s fixed point theorem for quasicontraction type mappings
[] in the setting of generalized metric spaces.

Let (X,D) be a generalized metric space and f : X → X be a mapping.

Definition . Let k ∈ (, ). We say that f is a k-quasicontraction if

D
(
f (x), f (y)

) ≤ k max
{
D(x, y),D(x, Tx),D(y, Ty),D(x, Ty),D(y, Tx)

}
,

for every (x, y) ∈ X × X.

Proposition . Suppose that f is a k-quasicontraction for some k ∈ (, ). Then any fixed
point ω ∈ X of f satisfies

D(ω,ω) < ∞ �⇒ D(ω,ω) = .

Proof Let ω ∈ X be a fixed point of f such thatD(ω,ω) < ∞. Since f is a k-quasicontraction,
we have

D(ω,ω) = D
(
f (ω), f (ω)

) ≤ kD(ω,ω).

Since k ∈ (, ), we get D(ω,ω) = . �

We have the following result.

Theorem . Suppose that the following conditions hold:
(i) (X,D) is complete;

(ii) f is a k-quasicontraction for some k ∈ (, );
(iii) there exists x ∈ X such that δ(D, f , x) < ∞.

Then {f n(x)} converges to some ω ∈ X. If D(x, f (ω)) < ∞ and D(ω, f (ω)) < ∞, then ω is a
fixed point of f . Moreover, if ω′ ∈ X is another fixed point of f such that D(ω,ω′) < ∞ and
D(ω′,ω′) < ∞, then ω = ω′.

Proof Let n ∈N (n ≥ ). Since f is a k-quasicontraction, for all i, j ∈N, we have

D
(
f n+i(x), f n+j(x)

) ≤ k max
{
D

(
f n–+i(x), f n–+j(x)

)
,D

(
f n–+i(x), f n+i(x)

)
,

D
(
f n–+i(x), f n+j(x)

)
,D

(
f n–+j(x), f n+j(x)

)
,

D
(
f n–+j(x), f n+i(x)

)}
,

which implies that

δ
(
D, f , f n(x)

) ≤ kδ
(
D, f , f n–(x)

)
.

Hence, for any n ≥ , we have

δ
(
D, f , f n(x)

) ≤ knδ(D, f , x).
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Using the above inequality, for every n, m ∈ N, we have

D
(
f n(x), f n+m(x)

) ≤ δ
(
D, f , f n(x)

) ≤ knδ(D, f , x).

Since δ(D, f , x) < ∞ and k ∈ (, ), we obtain

lim
n,m→∞D

(
f n(x), f n+m(x)

)
= ,

which implies that {f n(x)} is a D-Cauchy sequence.
Since (X,D) is D-complete, there exists some ω ∈ X such that {f n(x)} is D-convergent

to ω.
Now, we suppose that D(x, f (ω)) < ∞. Using the inequality

D
(
f n(x), f n+m(x)

) ≤ knδ(D, f , x), (.)

for every n, m ∈N, by the property (D), there exists some constant C >  such that

D
(
ω, f n(x)

) ≤ C lim sup
m→∞

D
(
f n(x), f n+m(x)

) ≤ Cknδ(D, f , x), (.)

for every n ∈N.
On the other hand, we have

D
(
f (x), f (ω)

) ≤ k max
{
D(x,ω),D

(
x, f (x)

)
,D

(
ω, f (ω)

)
,D

(
f (x),ω

)
,D

(
x, f (ω)

)}
.

Using (.) and (.), we get

D
(
f (x), f (ω)

) ≤ max
{

kCδ(D, f , x), kδ(D, f , x), kD
(
ω, f (ω)

)
, kD

(
x, f (ω)

)}
.

Again, using the above inequality, we have

D
(
f (x), f (ω)

) ≤ max
{

kCδ(D, f , x), kδ(D, f , x), kD
(
ω, f (ω)

)
, kD

(
x, f (ω)

)}
.

Continuing this process, by induction we get

D
(
f n(x), f (ω)

) ≤ max
{

knCδ(D, f , x), knδ(D, f , x), kD
(
ω, f (ω)

)
, knD

(
x, f (ω)

)}
,

for every n ≥ . Therefore, we have

lim sup
n→∞

D
(
f n(x), f (ω)

) ≤ kD
(
ω, f (ω)

)
,

since D(x, f (ω)) < ∞ and δ(D, f , x) < ∞. Using the property (D), we get

D
(
f (ω),ω

) ≤ lim sup
n→∞

D
(
f n(x), f (ω)

) ≤ kD
(
ω, f (ω)

)
,

which implies that D(f (ω),ω) =  since D(ω, f (ω)) < ∞ and k ∈ (, ). Then ω is a fixed
point of f . By Proposition ., we have D(ω,ω) = .
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Finally, suppose that ω′ ∈ X is another fixed point of f such that D(ω,ω′) < ∞ and
D(ω′,ω′) < ∞. By Proposition ., we have D(ω′,ω′) = . Since f is a k-quasicontraction,
we get

D
(
ω,ω′) = D

(
f (ω), f (ω)′

) ≤ kD
(
ω,ω′),

which implies that ω = ω′. �

As in the previous section, from Theorem ., we can obtain fixed point results
for Ćirić’s quasicontraction type mappings in various spaces including standard metric
spaces, b-metric spaces, dislocated metric spaces, and modular spaces.

5 Banach contraction principle in a generalized metric space with a partial
order

In this section, we extend the Banach contraction principle to the class of generalized
metric spaces with a partial order.

Let (X,D) be a generalized metric space and f : X → X be a mapping. Let � be a partial
order on X. We denote by E� the subset of X × X defined by

E� =
{

(x, y) ∈ X × X : x � y
}

.

Now, let us introduce some concepts.

Definition . We say that f is weak continuous if the following condition holds: if {xn} ⊂
X is D-convergent to x ∈ X, then there exists a subsequence {xnq} of {xn} such that {f (xnq )}
is D-convergent to f (x) (as q → ∞).

Definition . We say that f is �-monotone if the following condition holds:

(x, y) ∈ E� �⇒ (
f (x), f (y)

) ∈ E�.

Definition . We say that the pair (X,�) is D-regular if the following condition holds:
for every sequence {xn} ⊂ X satisfying (xn, xn+) ∈ E�, for every n large enough, if {xn} is
D-convergent to x ∈ X, then there exists a subsequence {xnq} of {xn} such that (xnq , x) ∈ E�,
for every q large enough.

Definition . We say that f is a weak k-contraction for some k ∈ (, ) if the following
condition holds:

(x, y) ∈ E� �⇒ D
(
f (x), f (y)

) ≤ kD(x, y).

Our first result holds under the weak continuity assumption.

Theorem . Suppose that the following conditions hold:
(i) (X,D) is complete;

(ii) f is weak continuous;
(iii) f is a weak k-contraction for some k ∈ (, );
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(iv) there exists x ∈ X such that δ(D, f , x) < ∞ and (x, f (x)) ∈ E�;
(v) f is �-monotone.

Then {f n(x)} converges to some ω ∈ X such that ω is a fixed point of f . Moreover, if
D(ω,ω) < ∞, then D(ω,ω) = .

Proof Since f is �-monotone and (x, f (x)) ∈ E�, then

(
f n(x), f n+(x)

) ∈ E�, for every n ∈N.

Since � is a partial order (so it is transitive), then

(p, q) ∈N×N, p ≤ q �⇒ f p(x) � f q(x).

Let n ∈ N (n ≥ ). Since f is a weak k-contraction and D is symmetric, for all i, j ∈ N, we
have

D
(
f n+i(x), f n+j(x)

) ≤ kD
(
f n–+i(x), f n–+j(x)

)
,

which implies that

δ
(
D, f , f n(x)

) ≤ kδ
(
D, f , f n–(x)

)
.

Then, for every n ∈N, we have

δ
(
D, f , f n(x)

) ≤ knδ(D, f , x).

Using the above inequality, for every n, m ∈ N, we have

D
(
f n(x), f n+m(x)

) ≤ δ
(
D, f , f n(x)

) ≤ knδ(D, f , x).

Since δ(D, f , x) < ∞ and k ∈ (, ), we obtain

lim
n,m→∞D

(
f n(x), f n+m(x)

)
= ,

which implies that {f n(x)} is a D-Cauchy sequence.
Since (X,D) is D-complete, there exists some ω ∈ X such that {f n(x)} is D-convergent

to ω. Since f is weak continuous, there exists a subsequence {f nq (x)} of {f n(x)} such that
{f nq+(x)} is D-convergent to f (ω) (as q → ∞). By the uniqueness of the limit, we get
ω = f (ω), that is, ω is a fixed point of f .

Suppose now that D(ω,ω) < ∞, since (ω,ω) ∈ E�, we have

D(ω,ω) = D
(
f (ω), f (ω)

) ≤ kD(ω,ω),

which implies that D(ω,ω) =  (since k ∈ (, )). �

Remark . Theorem . is an extension of Ran and Reurings fixed point result [] es-
tablished in the setting of metric spaces under the continuity of the mapping f .



Jleli and Samet Fixed Point Theory and Applications  (2015) 2015:61 Page 13 of 14

Now, we replace the weak continuity assumption by the D-regularity of the pair (X,�).
We have the following result.

Theorem . Suppose that the following conditions hold:
(i) (X,D) is complete;

(ii) (X,�) is D-regular;
(iii) f is a weak k-contraction for some k ∈ (, );
(iv) there exists x ∈ X such that δ(D, f , x) < ∞ and (x, f (x)) ∈ E�;
(v) f is �-monotone.

Then {f n(x)} converges to some ω ∈ X such that ω is a fixed point of f . Moreover, if
D(ω,ω) < ∞, then D(ω,ω) = .

Proof Following the proof of the previous theorem, we know that {f n(x)} isD-convergent
to some ω ∈ X and

(
f n(x), f n+(x)

) ∈ E�, for every n ∈N.

Since (X,�) is D-regular, there exists a subsequence {f nq (x)} of {f n(x)} such that
(f nq (x),ω) ∈ E�, for every q large enough. On the other hand, f is a weak k-contraction,
so we have

D
(
f nq+(x), f (ω)

) ≤ kD
(
f nq (x),ω

)
,

for every q large enough. Letting q → ∞ in the above inequality, we get

lim
q→∞D

(
f nq+(x), f (ω)

)
= ,

which implies that {f nq+(x)} is D-convergent to f (ω). By uniqueness of the limit, we get
f (ω) = ω.

Similar to the proof in the previous theorem, we have D(ω,ω) = . �

Remark . Theorem . is an extension of Nieto and Rodíguez-López fixed point result
([], Theorem ) established in the setting of metric spaces.
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