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Abstract
In this paper we present some coincidence point results for four mappings satisfying
generalized (ψ ,ϕ)-weakly contractive condition in the framework of ordered b-metric
spaces. Our results extend, generalize, unify, enrich, and complement recently results
of Nashine and Samet (Nonlinear Anal. 74:2201-2209, 2011) and Shatanawi and Samet
(Comput. Math. Appl. 62:3204-3214, 2011). As an application of our results, periodic
points of weakly contractive mappings are obtained. Also, an example is given to
support our results.
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1 Introduction
A self-mapping f on a metric space (X, d) is a contraction, if d(fx, fy) ≤ kd(x, y) for all x, y ∈
X, where k ∈ [, ).

The Banach contraction principle, which shows that every contractive mapping defined
on a complete metric space has a unique fixed point, is one of the famous theorems which
was generalized by many researchers in different ways [–] and [–].

A self-mapping f on X is a weak contraction, if d(fx, fy) ≤ d(x, y) – ϕ(d(x, y)) for all x, y ∈
X, where ϕ is an altering distance function.

The above concept was introduced by Alber and Guerre-Delabriere [] in the setup
of Hilbert spaces. Rhoades [] generalized the Banach contraction principle by consid-
ering this class of mappings in the setup of metric spaces and proved that every weakly
contractive mapping defined on a complete metric space has a unique fixed point.

Let f and g be two self-mappings on a nonempty set X. If x = fx = gx for some x in X,
then x is called a common fixed point of f and g .

Zhang and Song [] introduced the concept of a generalized ϕ-weak contractive map-
pings and proved the following common fixed point result.

Theorem  [] Let (X, d) be a complete metric space. If f , g : X → X are generalized
ϕ-weak contractive mappings, then there exists a unique point u ∈ X such that u = fu = gu.

For further work in this direction, we refer to [, , ] and [].
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Recently, many researchers have focused on different contractive conditions in complete
metric spaces endowed with a partial order and obtained many fixed point results in this
spaces. For more details of fixed point results, its applications, comparison of different
contractive conditions, and related results in ordered metric spaces we refer the reader to
[, , –] and the references mentioned therein.

The concept of a b-metric space was introduced by Czerwik in []. Since then, several
papers have been published on the fixed point theory of various classes of single-valued
and multi-valued operators in b-metric spaces (see also [–]).

In this paper, we prove some coincidence point results for nonlinear generalized (ψ ,ϕ)-
weakly contractive mappings in partially ordered b-metric spaces. Our results extend and
generalize the results in [] and [] from the context of ordered metric spaces to the
setting of ordered b-metric spaces.

2 Preliminaries
Definition  Let f and g be two self-maps on partially ordered set X. A pair (f , g) is said
to be:

(i) weakly increasing if fx � gfx and gx � fgx for all x ∈ X [],
(ii) partially weakly increasing if fx � gfx for all x ∈ X [].

Let X be a nonempty set and f : X → X be a given mapping. For every x ∈ X, let f –(x) =
{u ∈ X : fu = x}.

Definition  Let (X,�) be a partially ordered set and f , g, h : X → X are mappings such
that fX ⊆ hX and gX ⊆ hX. The ordered pair (f , g) is said to be:

(a) weakly increasing with respect to h if and only if for all x ∈ X , fx � gy for all
y ∈ h–(fx) and gx � fy for all y ∈ h–(gx) [],

(b) partially weakly increasing with respect to h if fx � gy for all y ∈ h–(fx) [].

Remark  In the above definition: (i) if f = g , we say that f is weakly increasing (partially
weakly increasing) with respect to h, (ii) if h = IX (the identity mapping on X), then the
above definition reduces to the weakly increasing (partially weakly increasing) mapping
(see [, ]).

Jungck in [] introduced the following definition.

Definition  [] Let (X, d) be a metric space and f , g : X → X. The pair (f , g) is said
to be compatible if limn→∞ d(fgxn, gfxn) = , whenever {xn} is a sequence in X such that
limn→∞ fxn = limn→∞ gxn = t for some t ∈ X.

Definition  [] Let f , g : X → X be given self-mappings on X. The pair (f , g) is said to be
weakly compatible if f and g commute at their coincidence points (i.e., fgx = gfx, whenever
fx = gx).

Definition  Let (X,�) be a partially ordered set and d be a metric on X. We say that
(X, d,�) is regular if the following conditions hold:

(i) if a nondecreasing sequence xn → x, then xn � x for all n,
(ii) if a nonincreasing sequence yn → y, then yn � y for all n.
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In [], Nashine and Samet, by considering a pair of altering distance functions (ψ ,ϕ),
established some coincidence point and common fixed point theorems for mappings sat-
isfying a generalized weakly contractive condition in an ordered complete metric space.
They proved the following theorem.

Theorem  ([], Theorem .) Let (X,�) be a partially ordered set and suppose that
there exists a metric d on X such that (X, d) is a complete metric space. Let T , R : X → X be
given mappings satisfying for every pair (x, y) ∈ X ×X such that Rx and Ry are comparable,

ψ
(
d(Tx, Ty)

) ≤ ψ
(
d(Rx, Ry)

)
– ϕ

(
d(Rx, Ry)

)
,

where ψ and ϕ are altering distance functions. We suppose the following hypotheses to
hold:

(i) T and R are continuous,
(ii) TX ⊆ RX ,

(iii) T is weakly increasing with respect to R,
(iv) the pair (T , R) is compatible.
Then T and R have a coincidence point, that is, there exists u ∈ X such that Ru = Tu.

Also, they showed that by replacing the continuity hypotheses on T and R with the reg-
ularity of (X, d,�) and omitting the compatibility of the pair (T , R), the above theorem is
still valid (see Theorem . of []).

Also, in [], Shatanawi and Samet studied common fixed point and coincidence point
for three self-mappings T , S, and R satisfying (ψ ,ϕ)-weakly contractive condition in an
ordered metric space (X, d), where S and T are weakly increasing with respect to R and
ψ , ϕ are altering distance functions. Their result generalizes Theorem .

Shatanawi and Samet proved the following result.

Theorem  Let (X,�) be a partially ordered set and suppose that there exists a metric d
on X such that (X, d) is a complete metric space. Let T , S, R : X → X be three mappings such
that for all x, y ∈ X for which Rx and Ry are comparable, we have

ψ
(
d(Tx, Sy)

) ≤ ψ
(
M(x, y)

)
– φ

(
M(x, y)

)
,

where

M(x, y) ∈
{

d(Rx, Ry),
d(Rx, Tx) + d(Ry, Sy)


,

d(Tx, Ry) + d(Rx, Sy)


}

and ψ and φ are altering distance functions. Assume that T , S, and R satisfy the following
hypotheses:

(i) T and S are weakly increasing with respect to R,
(ii) TX ⊆ RX , SX ⊆ RX , and R is continuous.

Let either
(iii) the pair (T , R) is compatible and T is continuous, or
(iv) the pair (S, R) is compatible and S is continuous.
Then T , S, and R have a coincidence point, that is, there exists u ∈ X such that Ru = Tu =

Su.
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Analogous to the work in [], Shatanawi and Samet proved the above result by replac-
ing the continuity hypotheses of T , S, and R with the regularity of X and omitting the
compatibility of the pair (T , R) and (S, R) (see Theorem . of []).

In [], Radenović et al. studied common fixed point for two mappings satisfying (ψ ,ϕ)-
weakly contractive condition, but without order. The difference is that they do not use the
maximum of the set, but its arbitrary element.

Consistent with [, ] and [], the following definitions and results will be needed
in the sequel.

Definition  [] Let X be a (nonempty) set and s ≥  be a given real number. A function
d : X × X →R

+ is a b-metric iff, for all x, y, z ∈ X, the following conditions are satisfied:

(b) d(x, y) =  iff x = y,
(b) d(x, y) = d(y, x),
(b) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space.

It should be noted that the class of b-metric spaces is effectively larger than the class of
metric spaces, since a b-metric is a metric, when s = .

The following example shows that in general a b-metric need not necessarily be a metric.
(see, also, [], p.).

Example  [] Let (X, d) be a metric space, and ρ(x, y) = (d(x, y))p, where p >  is a real
number. Then ρ is a b-metric with s = p–.

However, if (X, d) is a metric space, then (X,ρ) is not necessarily a metric space.
For example, if X = R is the set of real numbers and d(x, y) = |x – y| is the usual Euclidean

metric, then ρ(x, y) = (x – y) is a b-metric on R with s = , but not a metric on R.

The following example of a b-metric space is given in [].

Example  [] Let X be the set of Lebesgue measurable functions on [, ] such that
∫ 

 |f (x)| dx < ∞. Define D : X × X → [,∞) by D(f , g) =
∫ 

 |f (x) – g(x)| dx. As (
∫ 

 |f (x) –
g(x)| dx) 

 is a metric on X, from the previous example, D is a b-metric on X, with s = .

Khamsi [] also showed that each cone metric space over a normal cone has a b-metric
structure.

We also need the following definitions.

Definition  Let X be a nonempty set. Then (X, d,�) is called a partially ordered b-metric
space if and only if d is a b-metric on a partially ordered set (X,�).

Definition  [] Let (X, d) be a b-metric space. Then a sequence {xn} in X is called:
(a) b-convergent if and only if there exists x ∈ X such that d(xn, x) → , as n → +∞. In

this case, we write limn→∞ xn = x.
(b) b-Cauchy if and only if d(xn, xm) → , as n, m → +∞.

Proposition  (See Remark . in []) In a b-metric space (X, d) the following assertions
hold:
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(p) A b-convergent sequence has a unique limit.
(p) Each b-convergent sequence is b-Cauchy.
(p) In general, a b-metric is not continuous.

Also, recently, Hussain et al. have presented an example of a b-metric which is not con-
tinuous (see Example  in []).

Definition  [] The b-metric space (X, d) is b-complete if every b-Cauchy sequence in
X b-converges.

Definition  [] Let (X, d) be a b-metric space. If Y is a nonempty subset of X, then
the closure Y of Y is the set of limits of all b-convergent sequences of points in Y , i.e.,

Y =
{

x ∈ X : there exists a sequence {xn} in Y so that lim
n→∞ xn = x

}
.

Taking into account the above definition, we have the following concepts.

Definition  [] Let (X, d) be a b-metric space. Then a subset Y ⊂ X is called closed if
and only if for each sequence {xn} in Y , which b-converges to an element x, we have x ∈ Y
(i.e., Y = Y ).

Definition  Let (X, d) and (X ′, d′) be two b-metric spaces. Then a function f : X → X ′

is b-continuous at a point x ∈ X if and only if it is b-sequentially continuous at x, that is,
whenever {xn} is b-convergent to x, {f (xn)} is b-convergent to f (x).

Since in general a b-metric is not continuous, we need the following simple lemma about
the b-convergent sequences.

Lemma  [] Let (X, d) be a b-metric space with s ≥ , and suppose that {xn} and {yn} are
b-convergent to x, y, respectively. Then we have


s d(x, y) ≤ lim inf

n→∞ d(xn, yn) ≤ lim sup
n→∞

d(xn, yn) ≤ sd(x, y).

In particular, if x = y, then we have limn→∞ d(xn, yn) = . Moreover, for each z ∈ X, we have


s

d(x, z) ≤ lim inf
n→∞ d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z).

Motivated by the work in [, ] and [], we prove some coincidence point results for
nonlinear generalized (ψ ,ϕ)-weakly contractive mappings in partially ordered b-metric
spaces. Our results extend and generalize the results in [] and [] from the context of
ordered metric spaces to the setting of ordered b-metric spaces.

3 Main results
Let (X,�, d) be an ordered b-metric space and f , g, R, S : X → X be four self-mappings.
Throughout this paper, unless otherwise stated, let

M(x, y) ∈
{

d(Sx, Ry),
d(Sx, fx) + d(Ry, gy)

s
,

d(Sx, gy) + d(Ry, fx)
s

}

for all x, y ∈ X.
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Theorem  Let (X,�, d) be an ordered complete b-metric space. Let f , g, R, S : X → X be
four mappings such that f (X) ⊆ R(X) and g(X) ⊆ S(X). Suppose that for every x, y ∈ X with
comparable elements Sx, Ry, there exists M(x, y) such that

ψ
(
sd(fx, gy)

) ≤ ψ
(
M(x, y)

)
– ϕ

(
M(x, y)

)
, (.)

where ψ ,ϕ : [,∞) → [,∞) are altering distance functions. Let f , g , R, and S are contin-
uous, the pairs (f , S) and (g, R) are compatible and the pairs (f , g) and (g, f ) are partially
weakly increasing with respect to R and S, respectively. Then the pairs (f , S) and (g, R) have
a coincidence point z in X. Moreover, if Rz and Sz are comparable, then z is a coincidence
point of f , g , R, and S.

Proof Let x be an arbitrary point of X. Choose x ∈ X such that fx = Rx and x ∈ X such
that gx = Sx. This can be done as f (X) ⊆ R(X) and g(X) ⊆ S(X).

Continuing this way, construct a sequence {zn} defined by

zn+ = Rxn+ = fxn

and

zn+ = Sxn+ = gxn+

for all n ≥ .
As x ∈ R–(fx) and x ∈ S–(gx), and the pairs (f , g) and (g, f ) are partially weakly in-

creasing with respect to R and S, respectively, we have

Rx = fx � gx = Sx � fx = Rx.

Repeating this process, we obtain zn+ � zn+ for all n ≥ .
We will complete the proof in three steps.
Step I. We will prove that limk→∞ d(zk , zk+) = .
Define dk = d(zk , zk+). Suppose dk =  for some k. Then zk = zk+. In the case that

k = n, then zn = zn+ gives zn+ = zn+. Indeed,

ψ
(
sd(zn+, zn+)

)
= ψ

(
sd(fxn, gxn+)

)

≤ ψ
(
M(xn, xn+)

)
– ϕ

(
M(xn, xn+)

)
, (.)

where

M(xn, xn+) ∈
{

d(Sxn, Rxn+),

d(Sxn, fxn) + d(Rxn+, gxn+)
s

,

d(Sxn, gxn+) + d(Rxn+, fxn)
s

}

=
{

d(zn, zn+),
d(zn, zn+) + d(zn+, zn+)

s
,
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d(zn, zn+) + d(zn+, zn+)
s

}

=
{

,
d(zn+, zn+)

s
,

d(zn, zn+)
s

}
.

Taking M(xn, xn+) = d(zn+,zn+)
s , then from (.) we have

ψ
(
sd(zn+, zn+)

) ≤ ψ

(
d(zn+, zn+)

s

)
– ϕ

(
d(zn+, zn+)

s

)

≤ ψ
(
d(zn+, zn+)

)
– ϕ

(
d(zn+, zn+)

s

)

≤ ψ
(
sd(zn+, zn+)

)
– ϕ

(
d(zn+, zn+)

s

)
, (.)

which implies that ϕ( d(zn+,zn+)
s ) = , that is, zn = zn+ = zn+. Similarly, if k = n + ,

then zn+ = zn+ gives zn+ = zn+. Consequently, the sequence {zk} becomes constant
for k ≥ k and zk is a coincidence point of the pairs (f , S) and (g, R). To this aim, let k = n.
Since zn = zn+ = zn+,

zn = Sxn = zn+ = Rxn+ = fxn = zn+ = gxn+ = Sxn+.

This means that S(xn) = f (xn) and R(xn+) = g(xn+).
On the other hand, the pairs (f , S) and (g, R) are compatible. So, they are weakly

compatible. Hence, fS(xn) = Sf (xn) and gR(xn+) = Rg(xn+), or, equivalently, fzn =
Szn+ and gzn+ = Rzn+. Now, since zn = zn+ = zn+, we have fzn = Szn and gzn =
Rzn.

In the other case, when k = n + , similarly, one can show that zn+ is a coincidence
point of the pairs (f , S) and (g, R).

Note that, when M(xn, xn+) =  or, M(xn, xn+) = d(zn ,zn+)
s , the desired result is ob-

tained.
Now, suppose that

dk = d(zk , zk+) >  (.)

for each k. We claim that

d(zk+, zk+) ≤ d(zk , zk+) (.)

for each k = , , , . . . .
Let k = n and, for n ≥ , d(zn+, zn+) ≥ d(zn, zn+) > . Then, as Sxn � Rxn+, using

(.) we obtain

ψ
(
sd(zn+, zn+)

)
= ψ

(
sd(fxn, gxn+)

)

≤ ψ
(
M(xn, xn+)

)
– ϕ

(
M(xn, xn+)

)
, (.)
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where

M(xn, xn+) ∈
{

d(Sxn, Rxn+),
d(Sxn, fxn) + d(Rxn+, gxn+)

s
,

d(Sxn, gxn+) + d(Rxn+, fxn)
s

}

=
{

d(zn, zn+),
d(zn, zn+) + d(zn+, zn+)

s
,

d(zn, zn+) + d(zn+, zn+)
s

}
.

If

M(xn, xn+) =
d(zn, zn+) + d(zn+, zn+)

s
≤ d(zn+, zn+)

s
,

as d(zn+, zn+) ≥ d(zn, zn+), then from (.), we have

ψ
(
sd(zn+, zn+)

) ≤ ψ

(
d(zn, zn+) + d(zn+, zn+)

s

)

– ϕ

(
d(zn, zn+) + d(zn+, zn+)

s

)

≤ ψ
(
sd(zn+, zn+)

)
– ϕ

(
d(zn, zn+) + d(zn+, zn+)

s

)
, (.)

which implies that

ϕ

(
d(zn, zn+) + d(zn+, zn+)

s

)
≤ ,

this is possible only if d(zn ,zn+)+d(zn+,zn+)
s = , that is, d(zn, zn+) = , a contradiction to

(.). Hence, d(zn+, zn+) ≤ d(zn, zn+), for all n ≥ .
Therefore, (.) is proved for k = n.
Similarly, it can be shown that

d(zn+, zn+) ≤ d(zn+, zn+) (.)

for all n ≥ .
Analogously, in all cases, we see that {d(zk , zk+)} is a nondecreasing sequence of non-

negative real numbers. Therefore, there is an r ≥  such that

lim
k→∞

d(zk , zk+) = r. (.)

We know that

M(xn, xn+) ∈
{

d(Sxn, Rxn+),
d(Sxn, fxn) + d(Rxn+, gxn+)

s
,

d(Sxn, gxn+) + d(Rxn+, fxn)
s

}
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=
{

d(zn, zn+),
d(zn, zn+) + d(zn+, zn+)

s
,

d(zn, zn+) + d(zn+, zn+)
s

}
.

Substituting the values of M(xn, xn+) in (.) and then taking the limit as n → ∞ in (.),
we obtain r = . For instance, let

M(xn, xn+) =
d(zn, zn+) + d(zn+, zn+)

s .

So, we have

ψ
(
sd(zn+, zn+)

) ≤ ψ

(
d(zn, zn+) + d(zn+, zn+)

s

)

– ϕ

(
d(zn, zn+) + d(zn+, zn+)

s

)

= ψ

(
d(zn, zn+)

s

)
– ϕ

(
d(zn, zn+)

s

)

≤ ψ

(
d(zn, zn+) + d(zn+, zn+)

s

)
– ϕ

(
d(zn, zn+)

s

)
. (.)

Letting n → ∞ in (.), using (.) and the continuity of ψ and ϕ, we have

ϕ

(
lim

n→∞
d(zn, zn+)

s

)
= .

Hence, limn→∞ d(zn ,zn+)
s = , from our assumptions as regards ϕ.

Now, taking into account (.) and letting n → ∞, we find that ψ(sr) ≤ ψ() – ϕ().
Hence, r = . In general, for the other values of M(xn, xn+) we can show that

r = lim
k→∞

d(zk , zk+) = lim
n→∞ d(zn, zn+) = . (.)

Step II. We will show that {zn} is a b-Cauchy sequence in X. That is, for every ε > , there
exists k ∈N such that for all m, n ≥ k, d(zm, zn) < ε.

Assume to the contrary that there exists ε >  for which we can find subsequences
{zm(k)} and {zn(k)} of {zn} such that n(k) > m(k) ≥ k and

d(zm(k), zn(k)) ≥ ε, (.)

and n(k) is the smallest number such that the above condition holds; i.e.,

d(zm(k), zn(k)–) < ε. (.)

From the triangle inequality and (.) and (.), we have

ε ≤ d(zm(k), zn(k))

≤ s
[
d(zm(k), zn(k)–) + d(zn(k)–, zn(k))

]

< sε + sd(zn(k)–, zn(k)). (.)
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Taking the limit as k → ∞ in (.), from (.) we obtain

ε ≤ lim sup
k→∞

d(zm(k), zn(k)) ≤ sε. (.)

Using the triangle inequality again we have

d(zm(k), zn(k)) ≤ s
[
d(zm(k), zn(k)+) + d(zn(k)+, zn(k))

]

≤ s[d(zm(k), zn(k)) + d(zn(k), zn(k)+)
]

+ sd(zn(k), zn(k)+). (.)

Taking the limit as k → ∞ in (.) and using (.) and (.), we have

ε ≤ s lim sup
k→∞

d(zm(k), zn(k)+) ≤ sε,

or, equivalently,

ε

s
≤ lim sup

k→∞
d(zm(k), zn(k)+) ≤ sε. (.)

Using the triangle inequality again we have

d(zm(k)–, zn(k)+) ≤ s
[
d(zm(k)–, zm(k)) + d(zm(k), zn(k)+)

]

≤ sd(zm(k)–, zm(k)) + s[d(zm(k), zn(k)) + d(zn(k), zn(k)+)
]
. (.)

Letting k → ∞ in the above inequality, we have

lim sup
k→∞

d(zm(k)–, zn(k)+) ≤ sε. (.)

Using the triangle inequality again we have

ε ≤ d(zm(k), zn(k)) ≤ s
[
d(zm(k), zm(k)–) + d(zm(k)–, zn(k))

]

≤ sd(zm(k), zm(k)–) + s[d(zm(k)–, zn(k)+) + d(zn(k)+, zn(k))
]
. (.)

Letting k → ∞ in the above inequality, we have

lim sup
k→∞

d(zm(k)–, zn(k)+) ≥ ε

s . (.)

Also,

d(zm(k), zn(k))

≤ s
[
d(zm(k), zm(k)+) + d(zm(k)+, zn(k))

]

≤ sd(zm(k), zm(k)+) + s[d(zm(k)+, zn(k)+) + d(zn(k)+, zn(k))
]
. (.)

Letting k → ∞ and using (.) and (.), we have

ε

s ≤ lim sup
k→∞

d(zm(k)+, zn(k)+). (.)
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As Sxm(k) � Rxn(k)+, from (.), we have

ψ
(
sd(zm(k)+, zn(k)+)

)
= ψ

(
sd(fxm(k), gxn(k)+)

)

≤ ψ
(
M(xm(k), xn(k)+)

)
– ϕ

(
M(xm(k), xn(k)+)

)
, (.)

where

M(xm(k), xn(k)+) ∈
{

d(Sxm(k), Rxn(k)+),
d(Sxm(k), fxm(k)) + d(Rxn(k)+, gxn(k)+)

s
,

d(Sxm(k), gxn(k)+) + d(Rxn(k)+, fxm(k))
s

}

=
{

d(zm(k), zn(k)+),
d(zm(k), zm(k)–) + d(zn(k)+, zn(k))

s
,

d(zm(k), zn(k)) + d(zn(k)+, zm(k)–)
s

}
.

If

M(xm(k), xn(k)+) =
d(zm(k), zm(k)–) + d(zn(k)+, zn(k))

s
,

from (.), we get limk→∞ M(xm(k), xn(k)+) = . Hence, according to (.) we have
limk→∞ d(zm(k)+, zn(k)+) = , which contradicts (.).

If

M(xm(k), xn(k)+) =
d(zm(k), zn(k)) + d(zn(k)+, zm(k)–)

s ,

from (.), (.), and (.), we get

ε

s ≤ lim inf
k→∞

M(xm(k), xn(k)+) ≤ lim sup
k→∞

M(xm(k), xn(k)+) ≤ sε.

Taking the limit as k → ∞ in (.), we have

ψ(s · ε) ≤ ψ

(
s · ε

s

)

≤ ψ
(

s lim sup
k→∞

d(zm(k)+, zn(k)+)
)

≤ ψ
(

lim sup
k→∞

M(xm(k), xn(k)+)
)

– ϕ
(

lim inf
k→∞

M(xm(k), xn(k)+)
)

≤ ψ(sε) – ϕ

(
ε

s

)
, (.)

which implies that ϕ( ε

s ) ≤ , hence, ε = , a contradiction.
If

M(xm(k), xn(k)+) = d(zm(k), zn(k)+),
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from (.), by taking the limit as k → ∞ in (.), we have

ψ
(
s · ε) = ψ

(
s · ε

s

)

≤ ψ
(

s lim sup
k→∞

d(zm(k)+, zn(k)+)
)

≤ ψ
(

lim sup
k→∞

d(zm(k), zn(k)+)
)

– ϕ
(

lim inf
k→∞

d(zm(k), zn(k)+)
)

≤ ψ
(
sε

)
– ϕ

(
ε

s

)
,

which implies that ϕ( ε
s ) ≤ , hence, ε = , a contradiction.

Hence, {zn} is a b-Cauchy sequence.
Step III. We will show that f , g , R, and S have a coincidence point.
Since {zn} is a b-Cauchy sequence in the complete b-metric space X, there exists z ∈ X

such that

lim
n→∞ d(zn+, z) = lim

n→∞ d(Rxn+, z) = lim
n→∞ d(fxn, z) =  (.)

and

lim
n→∞ d(zn+, z) = lim

n→∞ d(Sxn+, z) = lim
n→∞ d(gxn+, z) = . (.)

Hence,

Sxn → z and fxn → z, as n → ∞. (.)

As (f , S) is compatible, so,

lim
n→∞ d(Sfxn, fSxn) = . (.)

Moreover, from limn→∞ d(fxn, z) = , limn→∞ d(Sxn, z) = , and the continuity of S and
f , we obtain,

lim
n→∞ d(Sfxn, Sz) =  = lim

n→∞ d(fSxn, fz). (.)

By the triangle inequality, we have

d(Sz, fz) ≤ s
[
d(Sz, Sfxn) + d(Sfxn, fz)

]

≤ sd(Sz, Sfxn) + s[d(Sfxn, fSxn) + d(fSxn, fz)
]
. (.)

Taking the limit as n → ∞ in (.), we obtain

d(Sz, fz) ≤ ,

which yields fz = Sz, that is, z is a coincidence point of f and S.
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Similarly, it can be proved that gz = Rz. Now, let Rz and Sz be comparable. By (.) we
have

ψ
(
sd(fz, gz)

) ≤ ψ
(
M(z, z)

)
– ϕ

(
M(z, z)

)
, (.)

where

M(z, z) ∈
{

d(Sz, Rz),
d(Sz, fz) + d(Rz, gz)

s
,

d(Sz, gz) + d(Rz, fz)
s

}

=
{

d(fz, gz), ,
d(fz, gz)

s

}
.

In all three cases (.) yields fz = gz = Sz = Rz. �

In the following theorem, we omit the continuity assumption of f , g , R, and S, and replace
the compatibility of the pairs (f , S) and (g, R) by weak compatibility of the pairs.

Theorem  Let (X,�, d) be a regular partially ordered b-metric space, f , g, R, S : X → X
be four mappings such that f (X) ⊆ R(X) and g(X) ⊆ S(X) and RX and SX are complete
subsets of X. Suppose that for comparable elements Sx, Ry ∈ X, we have

ψ
(
sd(fx, gy)

) ≤ ψ
(
M(x, y)

)
– ϕ

(
M(x, y)

)
, (.)

where ψ ,ϕ : [,∞) → [,∞) are altering distance functions. Then the pairs (f , S) and (g, R)
have a coincidence point z in X provided that the pairs (f , S) and (g, R) are weakly compat-
ible and the pairs (f , g) and (g, f ) are partially weakly increasing with respect to R and S,
respectively. Moreover, if Rz and Sz are comparable, then z ∈ X is a coincidence point of f ,
g , R, and S.

Proof Following the proof of Theorem , there exists z ∈ X such that

lim
k→∞

d(zk , z) = . (.)

Since R(X) is complete and {zn+} ⊆ R(X), therefore z ∈ R(X). Hence, there exists u ∈ X
such that z = Ru and

lim
n→∞ d(zn+, Ru) = lim

n→∞ d(Rxn+, Ru) = . (.)

Similarly, there exists v ∈ X such that z = Ru = Sv and

lim
n→∞ d(zn, Sv) = lim

n→∞ d(Sxn, Sv) = . (.)

We prove that v is a coincidence point of f and S.
Since Rxn+ → z = Sv, as n → ∞, from regularity of X, Rxn+ � Sv. Therefore, from

(.), we have

ψ
(
sd(fv, gxn+)

) ≤ ψ
(
M(v, xn+)

)
– ϕ

(
M(v, xn+)

)
, (.)
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where, from Lemma ,

M(v, xn+) ∈
{

d(Sv, Rxn+),
d(Sv, fv) + d(Rxn+, gxn+)

s
,

d(Sv, gxn+) + d(Rxn+, fv)
s

}

→
{

,
d(z, fv)

s
,

d(z, fv)
s

}
.

Taking the limit as n → ∞ in (.), using Lemma  and the continuity of ψ and ϕ, we can
obtain fv = z = Sv.

As f and S are weakly compatible, we have fz = fSv = Sfv = Sz. Thus, z is a coincidence
point of f and S.

Similarly it can be shown that z is a coincidence point of the pair (g, R).
The remaining part of the proof is done via similar arguments to Theorem . �

Taking S = R in Theorem , we obtain the following result.

Corollary  Let (X,�, d) be a partially ordered complete b-metric space and f , g, R : X →
X be three mappings such that f (X) ∪ g(X) ⊆ R(X) and R is continuous. Suppose that for
every x, y ∈ X with comparable elements Rx, Ry, we have

ψ
(
sd(fx, gy)

) ≤ ψ
(
M(x, y)

)
– ϕ

(
M(x, y)

)
, (.)

where

M(x, y) ∈
{

d(Rx, Ry),
d(Rx, fx) + d(Ry, gy)

s
,

d(Rx, gy) + d(Ry, fx)
s

}

and ψ ,ϕ : [,∞) → [,∞) are altering distance functions. Then f , g , and R have a coin-
cidence point in X provided that the pair (f , g) is weakly increasing with respect to R and
either

(a) the pair (f , R) is compatible and f is continuous, or
(b) the pair (g, R) is compatible and g is continuous.

Taking R = S and f = g in Theorem , we obtain the following coincidence point result.

Corollary  Let (X,�, d) be a partially ordered complete b-metric space and f , R : X → X
be two mappings such that f (X) ⊆ R(X). Suppose that for every x, y ∈ X for which Rx, Ry
are comparable, we have

ψ
(
sd(fx, fy)

) ≤ ψ
(
M(x, y)

)
– ϕ

(
M(x, y)

)
, (.)

where

M(x, y) ∈
{

d(Rx, Ry),
d(Rx, fx) + d(Ry, fy)

s
,

d(Rx, fy) + d(Ry, fx)
s

}
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and ψ ,ϕ : [,∞) → [,∞) are altering distance functions. Then the pair (f , R) has a coin-
cidence point in X provided that f and R are continuous, the pair (f , R) is compatible, and
f is weakly increasing with respect to R.

Example  Let X = [,∞) and d on X be given by d(x, y) = |x – y|, for all x, y ∈ X. We
define an ordering ‘�’ on X as follows:

x � y ⇐⇒ y ≤ x, ∀x, y ∈ X.

Define self-maps f , g , S, and R on X by

fx = sinh– x, Rx = sinh x,

gx = sinh–
(

x


)
, Sx = sinh x.

To prove that (f , g) is partially weakly increasing with respect to R, let x, y ∈ X be such
that y ∈ R–fx, that is, Ry = fx. By the definition of f and R, we have sinh– x = sinh y and
y = sinh–(sinh– x)

 . As sinh x ≥ (sinh– x), for all x ∈ X, therefore x ≥ sinh–(sinh– x), or,

fx = sinh– x ≥ sinh–
(




sinh–(sinh– x
)
)

= sinh–
(




y
)

= gy.

Therefore, fx � gy. Hence (f , g) is partially weakly increasing with respect to R.
To prove that (g, f ) is partially weakly increasing with respect to S, let x, y ∈ X be

such that y ∈ S–gx. This means that Sy = gx. Hence, we have sinh– x
 = sinh y and so,

y = sinh–(sinh– x
 )

 . As sinh x ≥ (sinh– x), for all x ∈ X, therefore x ≥ x
 ≥ sinh–(sinh– x

 ), or,
x
 ≥ sinh–(sinh– x

 )
 , so,

gx = sinh– x


≥ sinh–
(




sinh–
(

sinh– x


))
= sinh–(y) = fy.

Therefore, gx � fy.
Furthermore, fX = gX = SX = RX = [,∞) and the pairs (f , S) and (g, R) are compatible.

Indeed, let {xn} is a sequence in X such that limn→∞ d(t, fxn) = limn→∞ d(t, Sxn) = , for
some t ∈ X. Therefore, we have

lim
n→∞

∣∣sinh– xn – t
∣∣ = lim

n→∞| sinh xn – t| = .

Continuity of sinh– x and sinh x on X implies that

lim
n→∞|xn – sinh t| = lim

n→∞

∣
∣∣
∣xn –

sinh– t


∣
∣∣
∣ = ,

and the uniqueness of the limit gives sinh t = sinh– t
 . But,

sinh t =
sinh– t


⇐⇒ t = .
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So, we have t = . Since f and S are continuous, we have

lim
n→∞ d(fSxn, Sfxn) = lim

n→∞|fSxn – Sfxn| = .

Define ψ ,ϕ : [,∞) → [,∞) as ψ(t) = bt and ϕ(t) = (b – )t for all t ∈ [,∞), where  <
b ≤ 

 .
Using the mean value theorem for the functions sinh– x and sinh x on the intervals

[x, y
 ] ⊂ X and [x, y] ⊂ X, respectively, we have

ψ
(
d(fx, gy)

)
= b|fx – gy| = b

∣
∣∣
∣sinh– x – sinh–

(
y


)∣
∣∣
∣



≤ b
∣
∣∣∣x –

y


∣
∣∣∣



≤ b
|x – y|



≤ b


| sinh x – sinh y| ≤ |Sx – Ry|

= d(Sx, Ry) = ψ
(
d(Sx, Ry)

)
– ϕ

(
d(Sx, Ry)

)
.

Thus, (.) is satisfied for all x, y ∈ X and M(x, y) = d(Sx, Ry). Therefore, all the conditions
of Theorem  are satisfied. Moreover,  is a coincidence point of f , g , R, and S.

Corollary  Let (X,�, d) be a regular partially ordered b-metric space, f , g, R : X → X be
three mappings such that f (X) ⊆ R(X) and g(X) ⊆ R(X) and RX is a complete subset of X.
Suppose that for comparable elements Rx, Ry ∈ X, we have

ψ
(
sd(fx, gy)

) ≤ ψ
(
M(x, y)

)
– ϕ

(
M(x, y)

)
, (.)

where

M(x, y) ∈
{

d(Rx, Ry),
d(Rx, fx) + d(Ry, gy)

s
,

d(Rx, gy) + d(Ry, fx)
s

}

and ψ ,ϕ : [,∞) → [,∞) are altering distance functions. Then the pairs (f , R) and (g, R)
have a coincidence point z in X provided that the pair (f , g) is weakly increasing with respect
to R.

Corollary  Let (X,�, d) be a regular partially ordered b-metric space, f , R : X → X be
two mappings such that f (X) ⊆ R(X) and RX is a complete subset of X. Suppose that for
comparable elements Rx, Ry ∈ X, we have

ψ
(
sd(fx, fy)

) ≤ ψ
(
M(x, y)

)
– ϕ

(
M(x, y)

)
, (.)

where

M(x, y) ∈
{

d(Rx, Ry),
d(Rx, fx) + d(Ry, fy)

s
,

d(Rx, fy) + d(Ry, fx)
s

}

and ψ ,ϕ : [,∞) → [,∞) are altering distance functions. Then the pair (f , S) have a co-
incidence point z in X provided that f is weakly increasing with respect to R.
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Taking R = S = IX (the identity mapping on X) in Theorems  and , we obtain the fol-
lowing common fixed point result.

Corollary  Let (X,�, d) be a partially ordered complete b-metric space. Let f , g : X → X
be two mappings. Suppose that for every comparable elements x, y ∈ X,

ψ
(
sd(fx, gy)

) ≤ ψ
(
M(x, y)

)
– ϕ

(
M(x, y)

)
, (.)

where

M(x, y) ∈
{

d(x, y),
d(x, fx) + d(y, gy)

s
,

d(x, gy) + d(y, fx)
s

}

and ψ ,ϕ : [,∞) → [,∞) are altering distance functions. Then the pair (f , g) have a com-
mon fixed point z in X provided that the pair (f , g) is weakly increasing and either

(a) f or g is continuous, or
(b) X is regular.

Remark 
Theorem . of [] is a special case of Corollary .
Theorem . of [] is a special case of Corollary .
Corollary . of [] is a special case of Corollary .
Corollary . of [] is a special case of Corollary .
Theorem . of [] is a special case of Corollary .
Theorem . of [] is a special case of Corollary .
Corollary . of [] is a special case of Corollary  with R = IX .

4 Periodic point results
Let F(f ) = {x ∈ X : fx = x}, be the fixed point set of f .

Clearly, a fixed point of f is also a fixed point of f n for every n ∈ N; that is, F(f ) ⊂ F(f n).
However, the converse is false. For example, the mapping f : R →R, defined by fx = 

 – x
has the unique fixed point 

 , but every x ∈ R is a fixed point of f . If F(f ) = F(f n) for every
n ∈ N, then f is said to have property P. For more details, we refer the reader to [–]
and the references mentioned therein.

Taking f = g and ψ = I[,∞) (the identity mapping on [,∞)) in Corollary , we obtain
the following fixed point result.

Corollary  Let (X,�, d) be a partially ordered complete b-metric space. Let f : X → X be
a mapping. Suppose that for every comparable elements x, y ∈ X,

sd(fx, fy) ≤ M(x, y) – ϕ
(
M(x, y)

)
, (.)

where

M(x, y) ∈
{

d(x, y),
d(x, fx) + d(y, fy)

s
,

d(x, fy) + d(y, fx)
s

}

and ϕ : [,∞) → [,∞) is an altering distance function. Then f has a fixed point if f is
weakly increasing and either
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(a) f is continuous, or
(b) X is regular.

Theorem  Let X and f be as in Corollary . Then f has property P.

Proof From Corollary , F(f ) �= ∅. Let u ∈ F(f n) for some n > . We will show that u = fu.
We have f n–u � f nu, as f is weakly increasing. Using (.), we obtain

d(u, fu) = d
(
f nu, f n+u

)

= d
(
ff n–u, ff nu

)

≤ M(f n–u, f nu) – ϕ(M(f n–u, f nu))
s ,

where

M
(
f n–u, f nu

) ∈
{

d
(
f n–u, f nu

)
,

d(f n–u, f nu) + d(f nu, f n+u)
s

,

d(f n–u, f n+u) + d(f nu, f nu)
s

}
.

If M(f n–u, f nu) = d(f n–u, f nu), then we have

d(u, fu) ≤ d(f n–u, f nu) – ϕ(d(f n–u, f nu))
s .

Starting from d(f n–u, f nu), and repeating the above process, we get

d(u, fu) ≤ 
s

[
d
(
f n–u, f nu

)
– ϕ

(
d
(
f n–u, f nu

))]

≤
[


s

][
d
(
f n–u, f n–u

)
– ϕ

(
d
(
f n–u, f n–u

))]
–


s ϕ

(
d
(
f n–u, f nu

))

· · ·

≤
[


s

]n

d(u, fu) –
n–∑

i=

[

s

]i+

ϕ
(
d
(
f n–(i+)u, f n–(i)u

))

≤ d(u, fu) –
n–∑

i=

[

s

]i+

ϕ
(
d
(
f n–(i+)u, f n–(i)u

))
,

which from our assumptions as regards ϕ implies that

d
(
f n–(i+)u, f n–(i)u

)
= 

for all  ≤ i ≤ n – . Now, taking i = n – , we have u = fu.
Now, let

M
(
f n–u, f nu

)
=

d(f n–u, f nu) + d(f nu, f n+u)
s

.
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Using (.) we have

d(u, fu) = d
(
f nu, f n+u

)

= d
(
ff n–u, ff nu

)

≤ 
s

[
d(f n–u, f nu) + d(f nu, f n+u)

s
– ϕ

(
d(f n–u, f nu) + d(f nu, f n+u)

s

)]
,

that is,

d(u, fu) = d
(
f nu, f n+u

)

≤ s

s – 

[


s d
(
f n–u, f nu

)
–


s ϕ

(
d(f n–u, f nu) + d(f nu, f n+u)

s

)]
.

Repeating the above process, we get

d
(
f n–u, f nu

)

≤ s

s – 

[


s d
(
f n–u, f n–u

)
–


s ϕ

(
d(f n–u, f n–u) + d(f n–u, f nu)

s

)]
.

From the above inequalities, we have

d(u, fu) ≤
[


s – 

]n

d(u, fu)

–

s

n–∑

i=

[
s

s – 

]n–(i+)

ϕ

(
d(f n–(i+)u, f n–(i)u) + d(f n–(i)u, f n–(i–)u)

s

)

≤ d(u, fu)

–

s

n–∑

i=

[
s

s – 

]n–(i+)

ϕ

(
d(f n–(i+)u, f n–(i)u) + d(f n–(i)u, f n–(i–)u)

s

)
.

Therefore,


s

n–∑

i=

[
s

s – 

]n–(i+)

ϕ

(
d(f n–(i+)u, f n–(i)u) + d(f n–(i)u, f n–(i–)u)

s

)
= ,

which from our assumptions as regards ϕ implies that

d
(
f n–(i+)u, f n–(i)u

)
= d

(
f n–(i)u, f n–(i–)u

)
= 

for all  ≤ i ≤ n – . Now, taking i = n – , we have u = fu.
In the other case, the proof will be done in a similar way. �
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