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Abstract
The purpose of this paper is to study a viscosity iterative algorithm for finding a
common element of the set of solutions of a general variational inequality problem
for two inverse strongly accretive operators and the set of fixed points of a δ-strict
pseudocontraction in a real q-uniformly smooth Banach space. Some strong
convergence theorems are obtained under appropriate conditions. As an application,
we prove some strong convergence theorems for fixed point problems and
variational inequality problems or equilibrium problems in Hilbert spaces. These
results improve and extend the corresponding results announced by many others.
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1 Introduction
Let C be a subset of a real Banach space X and T be a mapping from C into itself. In what
follows, we use F(T) to denote the set of fixed points of T . Let X∗ be a dual space of X
and q >  be a real number. We recall that the generalized duality mapping Jq : X → X∗ is
defined by

Jq(x) =
{

x∗ ∈ X∗ :
〈
x, x∗〉 = ‖x‖q,

∥∥x∗∥∥ = ‖x‖q–}, ∀x ∈ X.

In particular, J = J is called a normalized duality mapping and Jq(x) = ‖x‖q–J(x) for x �= .
We know that Jq is single-valued if X is smooth, which is denoted by jq. Now we recall the
following definitions.

A mapping T : C → C is said to be L-Lipschitzian if there exists a constant L >  such
that

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ C. (.)

A mapping T : C → C is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C. (.)
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A mapping f : C → C is said to be a contraction if there exists a constant α ∈ (, ) such
that

∥∥f (x) – f (y)
∥∥ ≤ α‖x – y‖, ∀x, y ∈ C. (.)

We use �C to denote the collection of all contractions on C.
A mapping T : C → C is called a λ-strict pseudocontraction if there exists a constant

λ ∈ (, ) such that

〈
Tx – Ty, jq(x – y)

〉 ≤ ‖x – y‖q – λ
∥∥(I – T)x – (I – T)y

∥∥q (.)

for every x, y ∈ C and for some j(x – y) ∈ J(x – y).
A mapping A : C → X is said to be α-inverse-strongly accretive if there exist jq(x – y) ∈

Jq(x – y) and a constant α >  such that

〈
Ax – Ay, jq(x – y)

〉 ≥ α‖Ax – Ay‖q, ∀x, y ∈ C. (.)

In recent years, a variational inequality problem in Hilbert spaces and Banach spaces
has been studied by many authors, see [–] and the references therein.

Let C be a nonempty closed convex subset of a real Hilbert space H . The classical vari-
ational inequality problem is to find x∗ ∈ C such that

〈
Ax∗, x – x∗〉 ≥ , ∀x ∈ C. (.)

Recently, Ceng et al. [] considered the following general variational inequality problem
of finding (x∗, y∗) ∈ C × C such that

{
〈λAy∗ + x∗ – y∗, x – x∗〉 ≥ , ∀x ∈ C,
〈μBx∗ + y∗ – x∗, x – y∗〉 ≥ , ∀x ∈ C,

(.)

where λ >  and μ >  are two constants and A, B : C → H are two operators. In particu-
lar, if A = B and x∗ = y∗, then problem (.) reduces to the classical variational inequality
problem (.).

Let C be a nonempty closed convex subset of a smooth Banach space X and A : C →
X be an accretive operator. Aoyama et al. [] first considered the following generalized
variational inequality problem in Banach spaces which is finding a point x∗ ∈ C such that

〈
Ax∗, j

(
x – x∗)〉 ≥ , ∀x ∈ C. (.)

Very recently, Yao et al. [] considered the following problem of finding (x∗, y∗) ∈ C × C
such that

{
〈Ay∗ + x∗ – y∗, j(x – x∗)〉 ≥ , ∀x ∈ C,
〈Bx∗ + y∗ – x∗, j(x – y∗)〉 ≥ , ∀x ∈ C,

(.)

which is called the system of general variational inequalities in a real Banach space, where
A, B : C → X are two operators.
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For finding a common element of the set of solutions of problem (.) and the set of fixed
points of a nonexpansive mapping T , Ceng et al. [] introduced the following iterative
algorithm:

⎧
⎪⎨

⎪⎩

x = u ∈ C,
yn = QC(xn – μBxn),
xn+ = αnu + βnxn + γnTPC(yn – λAyn), n ≥ ,

(.)

and proved a strong convergence theorem under some suitable conditions.
Yao et al. [] studied the following iterative algorithm:

{
yn = QC(xn – Bxn),
xn+ = αnu + βnxn + γnQC(yn – Ayn), n ≥ ,

(.)

and proved that the sequence {xn} converges strongly to an element of the set of solutions
of problem (.) under appropriate conditions.

Let C be a nonempty closed convex subset of a real Banach space X. For given two
operators A, B : C → X, we consider the problem of finding (x∗, y∗) ∈ C × C such that

{
〈λAy∗ + x∗ – y∗, jq(x – x∗)〉 ≥ , ∀x ∈ C,
〈μBx∗ + y∗ – x∗, jq(x – y∗)〉 ≥ , ∀x ∈ C,

(.)

where λ >  and μ >  are two constants. When λ = μ =  and q = , problem (.) re-
duces to problem (.). When X is a Hilbert space, problem (.) becomes problem (.).
Therefore problem (.) contains (.) or (.) as a special case. We also note that problem
(.) was studied by Cai and Bu [] when q = .

In this paper, we introduce a viscosity iterative algorithm for finding a common element
of the set of solutions of a general variational inequality (.) and the set of fixed points of
a δ-strict pseudocontraction in a real q-uniformly smooth Banach space. Then we prove
some strong convergence theorems under suitable conditions. The results obtained in this
paper extend and improve the results of Ceng et al. [], Yao et al. [] and many others.

2 Preliminaries
A Banach space X is called uniformly smooth if ρX (t)

t →  as t → , where ρX : [,∞) →
[,∞) is the modulus of smoothness of X which is defined by

ρX(t) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x ∈ S(X),‖y‖ ≤ t

}
.

A Banach space X is said to be q-uniformly smooth if there exists a constant c >  such
that ρX(t) ≤ ctq. If X is q-uniformly smooth, then q ≤  and X is uniformly smooth.

Let C and D be two nonempty subsets of X such that C is nonempty closed convex and
D ⊂ C. We say that a mapping Q : C → D is sunny if Q(Qx + t(x – Qx)) = Qx, whenever
Qx + t(x – Qx) ∈ C for x ∈ C and t ≥ . A mapping Q : C → D is said to be a retraction if
Qx = x for any x ∈ D. Q is called a sunny nonexpansive retraction from C onto D if Q is a
retraction from C onto D and Q is sunny and nonexpansive. A retraction Q is said to be
orthogonal if for each x, x – Q(x) is normal to D in the sense of James [].
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We know that a projection mapping is a sunny nonexpansive retraction Q of X onto C
(see Bruck []). If X is a real smooth Banach space, then Q is an orthogonal projection of
X onto C if and only if

Q(x) ∈ C and
〈
Q(x) – x, jq

(
Q(x) – y

)〉 ≤ , ∀y ∈ C. (.)

In order to prove our main results, we need the following lemmas.

Lemma . ([], p.) Let q > , then the following inequality holds:

ab ≤ 
q

aq +
q – 

q
b

q
q–

for arbitrary positive real numbers a, b.

Lemma . ([]) Let X be a real q-uniformly smooth Banach space, then there exists a
constant Cq >  such that

‖x + y‖q ≤ ‖x‖q + q〈y, jqx〉 + Cq‖y‖q

for all x, y ∈ X. In particular, if X is a real -uniformly smooth Banach space, then there
exists a best smooth constant K >  such that

‖x + y‖ ≤ ‖x‖ + 〈y, jx〉 + ‖Ky‖

for all x, y ∈ X.

Lemma . ([]) Assume that {an} is a sequence of nonnegative real numbers such that
an+ ≤ ( – αn)an + δn, n ≥ , where {αn} is a sequence in (, ) and {δn} is a sequence in R

such that
(i)

∑∞
n= αn = ∞;

(ii) lim supn→∞
δn
αn

≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

Lemma . ([]) Let {xn} and {zn} be bounded sequences in a Banach space X, and let {βn}
be a sequence in [, ] which satisfies the condition  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Suppose xn+ = βnxn + ( –βn)zn, n ≥  and lim supn→∞(‖zn+ – zn‖–‖xn+ – xn‖) ≤ . Then
limn→∞ ‖zn – xn‖ = .

Lemma . ([]) Let C be a nonempty convex subset of a real q-uniformly smooth Banach
space X and T : C → C be a λ-strict pseudocontraction. For α ∈ (, ), we define Tαx =

( – α)x + αTx. Then, as α ∈ (,μ], μ = min {, { qλ

Cq
}


q– }, Tα : C → C is nonexpansive such

that F(Tα) = F(T).

Lemma . ([]) Let X be a q-uniformly smooth Banach space, C be a closed convex sub-
set of X, T : C → C be a nonexpansive mapping with F(T) �= ∅ and f ∈ �C with contractive
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constant α ∈ (, ). Then {xt} defined by xt = tf (xt)+(–t)Txt for t ∈ (, ) converges strongly
to a point in F(T). If we define Q : �C → F(T) by

Q(f ) := lim
t→

xt , f ∈ �C ,

then Q(f ) solves the following variational inequality:

〈
(I – f )Q(f ), jq

(
Q(f ) – p

)〉 ≤ , f ∈ �C , p ∈ F(T).

Lemma . ([]) Let C be a closed convex subset of a real q-uniformly smooth Banach
space X, and let T : C → C be a nonexpansive mapping with F(T) �= ∅. Assume that {xn} is a
bounded sequence such that xn – Txn →  as n → ∞. Let xt = tf (xt) + ( – t)Txt , ∀t ∈ (, ),
where f ∈ �C with contractive constant α ∈ (, ). Assume that Q(f ) := limt→ xt exists.
Then

lim sup
n→∞

〈
(f – I)Q(f ), jq

(
xn – Q(f )

)〉 ≤ .

Lemma . Let X be a q-uniformly smooth Banach space. Let C be a nonempty closed
convex subset of X, and let S : C → C be a nonexpansive mapping and T : C → C be a
δ-strict pseudocontraction such that F(S) ∩ F(T) �= ∅. Let W be a mapping from C into

itself defined by Wx = [( –α)I +αT]Sx for any x ∈ C, where α ∈ (,μ), μ = min {, { qδ

Cq
}


q– }.

Then F(W ) = F(S) ∩ F(T).

Proof First we show that F(S) ∩ F(T) ⊆ F(W ). Indeed, for any x ∈ F(S) ∩ F(T), we have

[
( – α)I + αT

]
Sx =

[
( – α)I + αT

]
x = ( – α)x + αx = x,

which implies that x ∈ F(W ). Hence F(S) ∩ F(T) ⊆ F(W ) holds. Next we prove that
F(W ) ⊆ F(S) ∩ F(T). For any x ∈ F(W ) and y ∈ F(S) ∩ F(T), it follows from Lemma .
that

‖x – y‖q

=
∥∥[

( – α)I + αT
]
Sx – y

∥∥q

=
∥∥Sx – y + α(TSx – Sx)

∥∥q

≤ ‖Sx – y‖q + qα
〈
TSx – Sx, jq(Sx – y)

〉
+ Cqα

q‖TSx – Sx‖q

= ‖Sx – y‖q + qα
〈
TSx – y, jq(Sx – y)

〉
+ qα

〈
y – Sx, jq(Sx – y)

〉
+ Cqα

q‖TSx – Sx‖q

≤ ‖x – y‖q + qα
(‖Sx – y‖q – δ‖TSx – Sx‖q) – qα‖Sx – y‖q + Cqα

q‖TSx – Sx‖q

= ‖x – y‖q –
(
qαδ – Cqα

q)‖TSx – Sx‖q,

which implies that

(
qαδ – Cqα

q)‖TSx – Sx‖q ≤ .
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Therefore we obtain

TSx = Sx. (.)

It follows that

x =
[
( – α)I + αT

]
Sx = ( – α)Sx + αSx = Sx. (.)

This implies that x ∈ F(S). By (.) and (.), we have x = Sx = TSx = Tx, and hence x ∈
F(T). So x ∈ F(S) ∩ F(T). Consequently, F(W ) ⊆ F(S) ∩ F(T) also holds. This proof is
complete. �

Lemma . Let C be a nonempty closed convex subset of a real q-uniformly smooth Banach
space X. Let the mapping A : C → X be α-inverse-strongly accretive. Then we have

∥∥(I – λA)x – (I – λA)y
∥∥q ≤ ‖x – y‖q +

(
Cqλ

q– – qα
)
λ‖Ax – Ay‖q,

where λ > . In particular, if λ ≤ ( qα

Cq
)


q– , then I – λA is nonexpansive.

Proof For all x, y ∈ C, we have by Lemma .

∥∥(I – λA)x – (I – λA)y
∥∥q =

∥∥x – y – λ(Ax – Ay)
∥∥q

≤ ‖x – y‖q – qλ
〈
Ax – Ay, jq(x – y)

〉
+ Cqλ

q‖Ax – Ay‖q

≤ ‖x – y‖q – qλα‖Ax – Ay‖q + Cqλ
q‖Ax – Ay‖q

= ‖x – y‖q +
(
Cqλ

q– – qα
)
λ‖Ax – Ay‖q.

Therefore when λ ≤ ( qα

Cq
)


q– , we have that I – λA is nonexpansive. �

Lemma . Let C be a nonempty closed convex subset of a real q-uniformly smooth
Banach space X. Let PC be a sunny nonexpansive retraction from X onto C. Let the map-
ping A : C → X be α-inverse-strongly accretive, and let B : C → X be β-inverse-strongly
accretive. Let G : C → C be a mapping defined by

G(x) = PC
[
PC(x – μBx) – λAPC(x – μBx)

]
, ∀x ∈ C.

If  < λ ≤ ( qα

Cq
)


q– and  < μ ≤ ( qβ

Cq
)


q– , then G : C → C is nonexpansive.

Proof For all x, y ∈ C, it follows from Lemma . that

∥∥G(x) – G(y)
∥∥

=
∥∥PC

[
PC(x – μBx) – λAPC(y – μBy)

]
– PC

[
PC(y – μBy) – λAPC(y – μBy)

]∥∥

≤ ∥∥(I – λA)PC(I – μB)x – (I – λA)PC(I – μB)y
∥∥

≤ ∥∥PC(I – μB)x – PC(I – μB)y
∥∥
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≤ ∥∥(I – μB)x – (I – μB)y
∥∥

≤ ‖x – y‖,

which implies that G is nonexpansive. �

Lemma . ([]) Let C be a nonempty closed convex subset of a real q-uniformly smooth
Banach space X. Let PC be a sunny nonexpansive retraction from X onto C. Let A, B : C → X
be two nonlinear mappings. For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of problem (.) if and
only if x∗ = PC(y∗ – λAy∗), where y∗ = PC(x∗ – μBx∗).

3 Main results
Theorem . Let C be a closed convex subset of a real q-uniformly smooth Banach space
X (q > ) which is also a sunny nonexpansive retraction of X. Let the mapping A : C → X be
α-inverse-strongly accretive, and let B : C → X be β-inverse-strongly accretive. Let f ∈ �C

with the coefficient  < η <  and T : C → C be a δ-strict pseudocontraction such that F :=
F(G) ∩ F(T) �= ∅, where G is defined by Lemma .. For given x ∈ C, let {xn} be a sequence
generated by

⎧
⎪⎨

⎪⎩

yn = QC(xn – μBxn),
zn = QC(yn – λAyn),
xn+ = αnf (xn) + βnxn + γnTθ zn, n ≥ ,

(.)

where QC is a sunny nonexpansive retraction of X onto C,  < λ ≤ ( qα

Cq
)


q– ,  < μ ≤ ( qβ

Cq
)


q–

and Tθ : C → C is a mapping defined by Tθ x = ( – θ )x + θTx, where θ ∈ (,ρ), ρ =

min {, { qδ

Cq
}


q– }. Suppose that {αn}, {βn} and {γn} are sequences in [, ] satisfying the fol-

lowing conditions:
(i) αn + βn + γn = ;

(ii) limn→∞ αn = ,
∑∞

n= αn = ∞;
(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .

Then {xn} converges strongly to Q(f ), where Q(f ) ∈ F solves the following variational in-
equality:

〈
(I – f )Q(f ), jq

(
Q(f ) – p

)〉 ≤ , f ∈ �C , p ∈ F .

Proof First we prove that {xn} is bounded. Let W : C → C be a mapping defined by Wx =
Tθ Gx for all x ∈ C. By Lemma ., we have F(W ) = F(G)∩F(T). It follows from Lemma .
that Tα is nonexpansive, then W is also nonexpansive. We can rewrite (.) as

xn+ = αnf (xn) + βnxn + γnWxn. (.)

Take p ∈ F , by (.), we have

‖xn+ – p‖ =
∥∥αn

(
f (xn) – p

)
+ βn(xn – p) + γn(Wxn – p)

∥∥

≤ αn
∥∥f (xn) – p

∥∥ + βn‖xn – p‖ + γn‖Wxn – p‖
≤ αn

∥∥f (xn) – f (p)
∥∥ + αn

∥∥f (p) – p
∥∥ + βn‖xn – p‖ + γn‖Wxn – p‖
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≤ αnη‖xn – p‖ + αn
∥∥f (p) – p

∥∥ + βn‖xn – p‖ + γn‖xn – p‖

=
[
 – αn( – η)

]‖xn – p‖ + αn( – η)
‖f (p) – p‖

 – η

≤ max

{
‖x – p‖,

‖f (p) – p‖
 – η

}

by induction. This implies that {xn} is bounded.
Next we show that limn→∞ ‖xn+ – xn‖ = . Put xn+ = βnxn + ( – βn)ln, then we have

ln+ – ln =
xn+ – βn+xn+

 – βn+
–

xn+ – βnxn

 – βn

=
αn+f (xn+) + γn+Wxn+

 – βn+
–

αnf (xn) + γnWxn

 – βn

=
αn+

 – βn+

(
f (xn+) – Wxn+

)
–

αn

 – βn

(
f (xn) – Wxn

)
+ Wxn+ – Wxn,

which implies

‖ln+ – ln‖ ≤ αn+

 – βn+

∥∥f (xn+) – Wxn+
∥∥

+
αn

 – βn

∥∥f (xn) – Wxn
∥∥ + ‖Wxn+ – Wxn‖

≤ αn+

 – βn+

(∥∥f (xn+)
∥∥ + ‖Wxn+‖

)

+
αn

 – βn

(∥∥f (xn)
∥∥ + ‖Wxn‖

)
+ ‖xn+ – xn‖.

It follows that

‖ln+ – ln‖ – ‖xn+ – xn‖ ≤ αn+

 – βn+

(∥∥f (xn+)
∥∥ + ‖Wxn+‖

)
+

αn

 – βn

(∥∥f (xn)
∥∥ + ‖Wxn‖

)
.

By condition (ii), we have that

lim sup
n→∞

(‖ln+ – ln‖ – ‖xn+ – xn‖
) ≤ .

By Lemma ., we obtain limn→∞ ‖ln – xn‖ = . Therefore,

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – βn)‖ln – xn‖ = . (.)

Again using (.), we have

‖xn+ – xn‖ =
∥∥αn

(
f (xn) – xn

)
+ γn(Wxn – xn)

∥∥

≥ γn‖Wxn – xn‖ – αn
∥∥f (xn) – xn

∥∥,

which implies

‖Wxn – xn‖ ≤ 
γn

[
αn

∥∥f (xn) – xn
∥∥ + ‖xn+ – xn‖

]
.
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By conditions (i)-(iii) and (.), we have

lim
n→∞‖Wxn – xn‖ = . (.)

Let Q(f ) = limn→∞ xt and xt be the unique fixed point of the contraction Tt : C → C
given by

Ttx = tf (x) + ( – t)Wx, t ∈ (, ).

In view of Lemma ., we obtain Q(f ) ∈ F(W ) = F which solves the following variational
inequality:

〈
(I – f )Q(f ), jq

(
Q(f ) – p

)〉 ≤ , ∀p ∈ F .

By Lemma . and (.), we get

lim sup
n→∞

〈
f (z) – z, jq(xn – z)

〉 ≤ , (.)

where z = Q(f ).
Finally we prove that xn → z as n → ∞. In fact, by Lemma ., we have

‖xn+ – z‖q

= αn
〈
f (xn) – z, jq(xn+ – z)

〉
+ βn

〈
xn – z, jq(xn+ – z)

〉
+ γn

〈
Wxn – z, jq(xn+ – z)

〉

= αn
〈
f (xn) – f (z), jq(xn+ – z)

〉
+ αn

〈
f (z) – z, jq(xn+ – z)

〉
+ βn

〈
xn – z, jq(xn+ – z)

〉

+ γn
〈
Wxn – z, jq(xn+ – z)

〉

≤ αnη‖xn – z‖‖xn+ – z‖q– + βn‖xn – z‖‖xn+ – z‖q– + γn‖xn – z‖‖xn+ – z‖q–

+ αn
〈
f (z) – z, jq(xn+ – z)

〉

=
[
 – αn( – η)

]‖xn – z‖‖xn+ – z‖q– + αn
〈
f (z) – z, jq(xn+ – z)

〉

≤ [
 – αn( – η)

]( 
q
‖xn – z‖q +

q – 
q

‖xn+ – z‖q
)

+ αn
〈
f (z) – z, jq(xn+ – z)

〉
,

which implies

‖xn+ – z‖q ≤ [
 – αn( – η)

]‖xn – z‖q + αn( – η)
q〈f (z) – z, jq(xn+ – z)〉

 – η
. (.)

Applying Lemma . to (.), we obtain that xn → z as n → ∞. This completes the
proof. �

Corollary . Let C be a closed convex subset of a real -uniformly smooth Banach space
X which is also a sunny nonexpansive retraction of X. Let the mapping A : C → X be
α-inverse-strongly accretive, and let B : C → X be β-inverse-strongly accretive. Let f ∈ �C

with the coefficient  < η <  and T : C → C be a δ-strict pseudocontraction such that
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F := F(G) ∩ F(T) �= ∅, where G is defined by Lemma .. For given x ∈ C, let {xn} be a
sequence generated by

⎧
⎪⎨

⎪⎩

yn = QC(xn – μBxn),
zn = QC(yn – λAyn),
xn+ = αnf (xn) + βnxn + γnTθ zn, n ≥ ,

(.)

where QC is a sunny nonexpansive retraction of X onto C,  < λ ≤ α

K ,  < μ ≤ β

K and
Tθ : C → C is a mapping defined by Tθ x = ( – θ )x + θTx, θ ∈ (,ρ), ρ = min {, δ

K }, where
K is the -uniformly smooth constant. Suppose that {αn}, {βn} and {γn} are sequences in
[, ] satisfying the following conditions:

(i) αn + βn + γn = ;
(ii) limn→∞ αn = ,

∑∞
n= αn = ∞;

(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Then {xn} converges strongly to Q(f ), where Q(f ) ∈ F solves the variational inequality

〈
(I – f )Q(f ), j

(
Q(f ) – p

)〉 ≤ , f ∈ �C , p ∈ F .

Proof Take q =  in Theorem ., we obtain the desired result by Theorem .. �

Corollary . Let C be a closed convex subset of a real Hilbert space H . Let the mapping A :
C → H be α-inverse-strongly accretive, and let B : C → H be β-inverse-strongly accretive.
Let f ∈ �C with the coefficient  < η <  and T : C → C be a δ-strict pseudocontraction
such that F := F(G) ∩ F(T) �= ∅, where G is defined by Lemma .. For given x ∈ C, let {xn}
be a sequence generated by

⎧
⎪⎨

⎪⎩

yn = PC(xn – μBxn),
zn = PC(yn – λAyn),
xn+ = αnf (xn) + βnxn + γnTθ zn, n ≥ ,

(.)

where  < λ ≤ α,  < μ ≤ β and Tθ : C → C is a mapping defined by Tθ x = ( – θ )x + θTx,
where θ ∈ (,ρ), ρ = min {, δ}. Suppose that {αn}, {βn} and {γn} are sequences in [, ]
satisfying the following conditions:

(i) αn + βn + γn = ;
(ii) limn→∞ αn = ,

∑∞
n= αn = ∞;

(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Then {xn} converges strongly to Q(f ), where Q(f ) ∈ F solves the variational inequality

〈
(I – f )Q(f ), Q(f ) – p

〉 ≤ , f ∈ �C , p ∈ F .

Proof We note that if X is a Hilbert space, then H is -uniformly smooth and Cq = ,
therefore we obtain the desired result by Theorem .. �

Remark . Theorem . extends and improves Theorem . of Ceng et al. [] in the
following aspects.

(i) From a Hilbert space to a more general q-uniformly smooth Banach space.
(ii) From a nonexpansive mapping to a more general strict pseudocontraction.
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(iii) From variational inequality problem (.) to more general variational inequality
problem (.).

(iv) u is replaced by f (xn), where f is a contractive mapping.
(v) The proof method of Theorem . is more simple than the ones of Ceng et al. []

because we do not need to use the relaxed extragradient method. In fact, in the
course of proof of Theorem ., Lemma . plays an important role. By using
Lemma ., we can transform our iterative algorithm (.) into more
uncomplicated form (.). In this way, we simplify the proof of Theorem ..

4 Applications
(I) Application to variational inequality problems for two strict pseudocontractive map-
pings in Hilbert space.

Definition . A mapping T : C → C is said to be a k-strict pseudocontractive mapping
if there exists k ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C. (.)

Let T : C → C be k-strict pseudocontractive, we define a mapping A = I – T : C → H ,
then A is a –k

 -inverse-strongly accretive mapping. In fact, from (.) we have

∥∥(I – T)x – (I – T)y
∥∥ ≤ ‖x – y‖ + k‖Ax – Ay‖.

On the other hand,

∥∥(I – T)x – (I – T)y
∥∥ = ‖x – y‖ – 〈x – y, Ax – Ay〉 + ‖Ax – Ay‖.

Hence we have

〈x – y, Ax – Ay〉 ≥  – k


‖Ax – Ay‖. (.)

This shows that A is a –k
 -inverse-strongly accretive mapping.

Theorem . Let C be a closed convex subset of a real Hilbert space H . Let T, T : C → C
be a k-strict pseudocontractive mapping and a k-strict pseudocontractive mapping, re-
spectively. Let f ∈ �C with the coefficient  < η <  and T : C → C be a δ-strict pseudo-
contraction such that F := F(G) ∩ F(T) �= ∅, where G is defined by Lemma .. For given
x ∈ C, let {xn} be a sequence generated by

⎧
⎪⎨

⎪⎩

yn = ( – μ)xn + μTxn,
zn = ( – λ)yn + λTyn,
xn+ = αnf (xn) + βnxn + γnTθ zn, n ≥ ,

(.)

where  < λ ≤  – k,  < μ ≤  – k and Tθ : C → C is a mapping defined by Tθ x = ( –
θ )x + θTx, where θ ∈ (,ρ), ρ = min {, δ}. Suppose that {αn}, {βn} and {γn} are sequences
in [, ] satisfying the following conditions:
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(i) αn + βn + γn = ;
(ii) limn→∞ αn = ,

∑∞
n= αn = ∞;

(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Then {xn} converges strongly to Q(f ), where Q(f ) ∈ F solves the following variational in-
equality:

〈
(I – f )Q(f ), Q(f ) – p

〉 ≤ , f ∈ �C , p ∈ F .

Proof Taking A = I – T : C → H and B = I – T : C → H , from (.) we know that A :
C → H is α-inverse-strongly accretive with α = –k

 and B : C → H is β-inverse-strongly
monotone with β = –k

 . On the other hand, we have

zn = PC(yn – λAyn) = PC
(
( – λ)yn + λTyn

)
= ( – λ)yn + λTyn ∈ C

and

yn = PC(xn – μBxn) = PC
(
( – μ)xn + μTxn

)
= ( – μ)xn + μTxn ∈ C.

The conclusion of Theorem . can be obtained from Theorem . immediately. �

(II) Application to equilibrium problems.
Let φ : C × C → R be a bifunction, where R is a set of real numbers. The equilibrium

problem for the function φ is to find a point x ∈ C such that

φ(x, y) ≥  for all y ∈ C. (.)

The set of solutions of (.) is denoted by EP(φ).
For solving the equilibrium problem, we assume that the bifunction φ satisfies the fol-

lowing conditions (see []):
(A) φ(x, x) =  for all x ∈ C;
(A) φ is monotone, i.e., φ(x, y) + φ(y, x) ≤  for any x, y ∈ C;
(A) φ is upper-hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t→+

φ
(
tz + ( – t)x, y

) ≤ φ(x, y);

(A) φ(x, ·) is convex and weakly lower semicontinuous for each x ∈ C.

Lemma . ([]) Let C be a nonempty closed convex subset of H , and let φ be a bifunction
of C × C into R satisfying (A)-(A). Let r >  and x ∈ H . Then there exists z ∈ C such that

φ(z, y) +

r
〈y – z, z – x〉 ≥  for all y ∈ C.

Lemma . ([]) Assume that φ : C × C → R satisfies (A)-(A). For r >  and x ∈ H ,
define a mapping Tr : H → C as follows:

Tr(x) =
{

z ∈ C : φ(z, y) +

r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
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for all z ∈ H . Then the following hold:
() Tr is single-valued;
() Tr is firmly nonexpansive, i.e., for any x, y ∈ H , ‖Trx – Try‖ ≤ 〈Trx – Try, x – y〉.

This implies that ‖Trx – Try‖ ≤ ‖x – y‖, ∀x, y ∈ H , i.e., Tr is nonexpansive;
() F(Tr) = EP(φ), ∀r > ;
() EP(φ) is a closed and convex set.

Combining Lemma . and the proof of Theorem ., we obtain the following result.

Theorem . Let C be a closed convex subset of a real q-uniformly smooth Banach space
X (q > ) which is also a sunny nonexpansive retraction of X. Let f ∈ �C with the coefficient
 < η <  and T , S : C → C be a δ-strict pseudocontraction and a nonexpansive mapping,
respectively, such that F := F(S)∩F(T) �= ∅. For given x ∈ C, let {xn} be a sequence generated
by

xn+ = αnf (xn) + βnxn + γnTθ Sxn, n ≥ , (.)

where Tθ : C → C is a mapping defined by Tθ x = ( – θ )x + θTx, where θ ∈ (,ρ), ρ =

min {, { qδ

Cq
}


q– }. Suppose that {αn}, {βn} and {γn} are sequences in [, ] satisfying the fol-

lowing conditions:
(i) αn + βn + γn = ;

(ii) limn→∞ αn = ,
∑∞

n= αn = ∞;
(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .

Then {xn} converges strongly to Q(f ), where Q(f ) ∈ F solves the following variational in-
equality:

〈
(I – f )Q(f ), jq

(
Q(f ) – p

)〉 ≤ , f ∈ �C , p ∈ F .

Using Theorem ., we can obtain the following strong convergence theorem for the
fixed point problem of a strict pseudocontraction and the equilibrium problem in a Hilbert
space.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
� : C × C → R be a bifunction satisfying conditions (A)-(A). Let T : C → C a δ-strict
pseudocontraction such that F = F(T) ∩ EP(�) �= ∅. Let f : C → C be an η-contraction with
η ∈ (, ). Suppose that {αn}, {βn} and {γn} are three real sequences in (, ) satisfying the
following conditions:

(i) αn + βn + γn = ;
(ii) limn→∞ αn = ,

∑∞
n= αn = ∞;

(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
For any x ∈ C, let {xn} be a sequence generated by

{
un ∈ C such that �(un, y) + 

r 〈y – un, un – xn〉 ≥ , ∀y ∈ C,
xn+ = αnf (xn) + βnxn + γnTθ un, n ≥ ,

(.)

where Tθ : C → C is a mapping defined by Tθ x = ( – θ )x + θTx, where θ ∈ (,ρ), ρ =
min {, δ}. Then {xn} converges strongly to z, where z ∈ F solves the following variational



Cai Fixed Point Theory and Applications  (2015) 2015:67 Page 14 of 14

inequality:

〈
(I – f )z, jq(z – p)

〉 ≤ , f ∈ �C , p ∈ F .

Proof By Lemma ., we know that Tr is nonexpansive and F(Tr) = EP(φ). Hence we ob-
tain the desired result by Theorem .. This proof is complete. �
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