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Abstract
An important class of fractal sets is given by the attractors of iterated function systems
which are defined as the fixed points of the associated fractal operators. In the study
of such an attractor, an important place is taken by the canonical projection between
the shift space associated with the system and the attractor. In this paper, by using
different fixed point theorems, we present the canonical projection as the fixed point
of a certain operator defined on the space of continuous functions from the shift
space on the metric space associated with the system.
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1 Introduction
It is well known that some important mathematical objects, such as Cantor set, Sierpin-
sky gasket and carpet, Menger cube and the graph of Weierstrass function, are fractal sets.
Most of them could be obtained as attractors of iterated function systems or of infinite it-
erated function systems (as in the case of Lipscomb’s space, see [–]), that is, they can be
seen as fixed points of the fractal operator associated to the corresponding (infinite) iter-
ated function system. For iterated function system we will use the abbreviation IFS and
for infinite iterated function system the abbreviation IIFS. The study of IFSs was initiated
by Moran [], clarified by Hutchinson [] and popularized by Barnsley [], and it has been
extended by a lot of other mathematicians. There are two main directions to extend the
notion of IFS and to study the attractors of such systems. The first one deals with gen-
eral types of IFSs such as IIFSs, graph-directed IFSs, multifunctions iterated systems (see
[]) and generalized IFSs (see [–]). The second one uses different types of fixed point
theorems to define the attractor of an IFS or IIFS (see []). As a recent example, see [].

The fixed point theorems are used not only in the definition of the attractor of an IFS, but
also for the study of its properties. For example, let us mention the case of the connectivity
of the attractor (see [, ]) and the very important concept associated with an IFS with
probabilities, namely that of Hutchinson measure. More precisely, Hutchinson [] proved
that given ϕ,ϕ, . . . ,ϕm contractions in a complete metric space X, there exists a unique
Borel measure μ satisfying the equation μ =

∑m
i= piμ ◦ ϕ–

i := MSμ, where p, p, . . . , pm
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are positive numbers such that
∑m

i= pi =  and S is the IFS (X, (ϕi)i∈{,,...,n}). Moreover, μ is
the fixed point of the operator MS in the topology of weak convergence within the space
M of Borel regular probability measures with bounded support.

The shift (or code) space of an IFS and the addresses of the points lying on the attractor
of the IFS are very good tools to get a more precise description of the invariant dynamics
of the IFS and to study the topological properties of the attractor of the IFS. The theory
of fractals tops (see []) provides a useful mapping from an IFS attractor into the associ-
ated code space, and it may be applied to assign colors to the IFS attractor via the method
introduced by Barnsley and Hutchinson (which they refer to as color-stealing) and to con-
struct homeomorphisms between attractors (roughly speaking, if the symbolic dynamic
systems associated with the tops of two IFSs are topologically conjugate, then the attrac-
tors of the IFSs are homeomorphic). Moreover, Barnsley [] proved that if two hyperbolic
IFS attractors are homeomorphic, then they have the same entropy.

In [] a generalization of the notion of the shift space associated to an IFS is presented.
More precisely, the shift space for IIFSs is presented and the relation between this space
and the attractor of the IIFS is described. A canonical projection (which turns out to be
continuous) from the shift space of an IIFS on its attractor is constructed.

In this paper we provide an alternative characterization of the above mentioned pro-
jection. More precisely, by using different fixed point theorems, we present the canoni-
cal projection between the shift space and the attractor of an IIFS as a fixed point of an
operator on the space of continuous functions from the shift space on the metric space
associated with the system.

The paper is organized in five sections. The second one contains some preliminaries
concerning fixed point theorems and classical results concerning IIFS, the third is dedi-
cated to the main results, the fourth deals with the case of ε-chainable metric spaces and
the last one contains some remarks and examples.

2 Preliminaries
For the very beginning we present some basic notations and definitions.

An increasing and right continuous function φ : [,∞) → [,∞) such that φ(r) < r for
every r >  is called comparison function.

Given a function f : X → X, f [n] denotes the function f ◦ f ◦ · · · ◦ f for n times.
For two metric spaces (X, d) and (X, d), C(X, X) denotes the set of continuous func-

tions from X into X and CB(X, X) is the set of continuous and bounded functions
from X into X. For a function f : X → X, Lip(f ) denotes its Lipschitz constant, that
is, Lip(f ) := supx,y∈X;x �=y

d(f (x),f (y))
d(x,y) .

Given a subset A of a metric space (X, d), by d(A) we understand the diameter of A, that
is, d(A) := supx,y∈A d(x, y).

For a metric space (X, d), by K(X) we denote the set of compact nonvoid subsets of X,
by B(X) the set of bounded closed and nonvoid subsets of X and, for a set J , by BJ (X) the
set of bounded, closed and nonvoid subsets of X having a dense subset with cardinal less
or equal to the cardinal of J .

Note that K(X), BJ (X) and B(X) can be seen as metric spaces with the Hausdorff-
Pompeiu distance h defined by

h(Y , Z) := max
{

sup
y∈Y

,
(

inf
z∈Z

d(y, z)
)

, sup
z∈Z

,
(

inf
y∈Y

d(y, z)
)}

.
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Recall that (K(X), h), (BJ (X), h) and (B(X), h) are complete metric spaces if (X, d) is such
and compact metric spaces if (X, d) is such.

Definition . Let (X, d) be a metric space. A family of continuous functions (fi)i∈I , where
fi : X → X, which is bounded (i.e., if Y ⊂ X is bounded, then

⋃
i∈I fi(Y ) is bounded) is

called an IIFS and it is denoted by S . If the set I is finite, we have an IFS. The function
FS : B(X) → B(X) defined by FS (Y ) =

⋃
i∈I fi(Y ) for every Y ∈ B(X) is called the fractal

operator associated with the IIFS S . If Y ∈ K(X) and I is finite, then FS (Y ) =
⋃

i∈I fi(Y ).

We remark that FS (K(X)) ⊂ K(X) if I is a finite set and FS (BI(X)) ⊂ BI(X) in general.
Now we recall some contractive conditions that are used in metric fixed point theorems.

These are the main contractive conditions which are inherited by the fractal operator from
the constitutive functions of the IFS or IIFS (as far as we know).

For a function f : X → X, where (X, d) is a metric space, we consider the following con-
tractive conditions:

(i) f is a contraction if there exists a ∈ [, ) such that d(f (x), f (y)) ≤ ad(x, y) for every
x, y ∈ X .

(ii) f is a φ-contraction if d(f (x), f (y)) ≤ φ(d(x, y)) for every x, y ∈ X , where φ is a
comparison function.

(iii) f is Meir-Keeler if for every ε >  there exists η >  such that for every x, y ∈ X with
the property that d(x, y) ≤ ε + η we have d(f (x), f (y)) < ε.

(iv) f is called contractive if d(f (x), f (y)) < d(x, y) for every x, y ∈ X , x �= y.
It is known (see [] for more details) that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv), and we have the

following theorem.

Theorem . (see []) If f : X → X is Meir-Keeler, where (X, d) is a complete metric space,
then there exists a unique fixed point x of f and the sequence (f [n](x))n is convergent to x

for every x ∈ X. If (X, d) is compact and f is contractive, then there exists a unique fixed
point x of f and the sequence (f [n](x))n is convergent to x for every x ∈ X.

Definition . The family of functions (fi)i∈I , where fi : X → X and (X, d) is a metric space,
is called uniform Meir-Keeler if for every ε >  there exist η >  and λ >  such that for
every x, y ∈ X with the property that d(x, y) ≤ ε + η we have d(fi(x), fi(y)) < ε – λ for every
i ∈ I .

Now we present some notations concerning the shift space of an IIFS.
The set IZ+ is denoted by � and the set I{,,...,n} by �n. For an IIFS S = (fi)i∈I , � is named

the shift or code space of the IIFS S . The elements of � can be written as infinite words
α = ααα · · · and the elements of �n as finite words α = αα · · ·αn. By �∗ we denote the
set of all finite words, namely �∗ =

⋃
n∈Z+ �n. � can be seen as a metric space with the dis-

tance d� defined by d�(α,α) =  and for α �= β , d�(α,β) = 
n where n is the natural number

having the property that αk = βk for k < n and αn �= βn, where α = ααα · · ·αnαn+ · · · and
β = βββ · · ·βnβn+ · · · . By αβ we understand the concatenation of the words α ∈ �∗

and β ∈ � ∪ �∗. τi denotes the function τi : � → � defined by τi(α) = iα and R denotes
the function R : � → � defined by R(ααα · · · ) = αα · · · . For α ∈ � ∪ �n and m ≤ n,
[α]m = αα · · ·αm. By |α| we denote the number of letters of α.
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We note that on (�, d�) the set of functions (τi)i∈I forms an IIFS, consisting of injective
functions with disjoint images.

On C(�, X) we consider the generalized metric d∞ (that is, d∞ : C(�, X) × C(�, X) →
[,∞]) defined by d∞(f , g) := supα∈� d(f (α), g(α)). Note that (C(�, X), d∞) is a complete
generalized metric space if (X, d) is a complete metric space and (CB(�, X), d∞) is a com-
plete metric space if (X, d) is so.

Let (X, d) be a metric space and S = (fi)i∈I be an IIFS on X. Then fαα···αn := fα ◦ fα ◦
· · · ◦ fαn and Yαα···αn := fαα···αn (Y ) for a set Y ⊂ X.

Theorem . (see [, ]) Let S = (fi)i∈I be an IIFS on the complete metric space (X, d).
If the family of functions (fi)i∈I is uniform Meir-Keeler or (X, d) is a compact metric space,
I is finite and all the functions fi are contractive, then there exists a unique set A = A(S)
such that FS (A) = A and h(F [n]

S (Y ), A) →  for every Y ∈ B(X). In addition, there exists a
unique continuous function πS : � → X such that πS ◦τi = fi ◦πS for every i ∈ I , πS (�) = A
and limn→∞ f[α]n (x) = πS (α) for every x ∈ X and α ∈ �. Moreover, the sequence (A[α]n )n≥

is decreasing, {πS (α)} =
⋂

n≥ A[α]n and limn→∞ supα∈�n d(Aα) = . In the particular case
when c := supi∈I Lip(fi) < , we have the following estimations of the speed of convergence
h(F [n]

S (Y ), A) ≤ cn

–c h(FS (Y ), Y ) for every Y ∈ B(X) and d(Aα) ≤ cnd(A) for every α ∈ �n.

Proof The existence of the set A(S) with the properties from the theorem was proved
in []. The function πS was defined in [] and its properties were proved there in the
particular case when c = supi∈I Lip(fi) < . In the general case, when the family of func-
tions (fi)i∈I is uniform Meir-Keeler, the proof is similar (quite identical) with the excep-
tion of the fact that limn→∞ supα∈�n d(Aα) = . We are going to prove here only this part.
Since for every α ∈ � and every natural number n we have A[α]n+ ⊂ A[α]n , it follows that
supα∈�n d(Aα) ≥ supα∈�n+ d(Aα). Therefore the sequence (supα∈�n d(Aα))n≥ is convergent
to a number l ≥ . If l > , since the family of functions (fi)i∈I is uniform Meir-Keeler, there
exist η >  and λ >  such that for every x, y ∈ X with the property that d(x, y) ≤ l + η we
have d(fi(x), fi(y)) < l –λ for all i ∈ I . Because limn→∞ supα∈�n d(Aα) = l, there exists nη such
that for every n ≥ nη we have supα∈�n d(Aα) < l +η. As a result, for every n ≥ nη +, we have
supα∈�n d(Aα) ≤ l – λ. This is in contradiction with the fact that limn→∞ supα∈�n d(Aα) = l.
Therefore limn→∞ supα∈�n d(Aα) = . �

Definition . The set A = A(S) from the above theorem is called the attractor of the IIFS
S = (fi)i∈I and the function πS : � → A from the above theorem is called the canonical
projection between the shift space of the IIFS and its attractor.

3 The main results
For an IIFS S = (fi)i∈I on the metric space (X, d), we consider the function HS : C(�, X) →
C(�, X) defined by

HS (f )(α) = f[α] ◦ f ◦ R(α)

for every f ∈ C(�, X) and α ∈ �.
We remark that HS is well defined. Indeed HS (f )|�i is continuous for every i ∈ I since

fi, f and R are continuous functions. As the sets �i, i ∈ I , are disjoint, open and closed, it
follows that HS (f ) is a continuous function.
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We also note that HS (CB(�, X)) ⊂ CB(�, X). Indeed, for a function f ∈ CB(�, X), f (�)
is bounded and HS (f )(�) = HS (f )(

⋃
i∈I �i) =

⋃
i∈I fi(f (�)). Taking into account that the

family of functions (fi)i∈I is bounded, we obtain the desired result.

Proposition . Let S = (fi)i∈I be an IIFS on the metric space (X, d). Then:
(i) If the family of functions (fi)i∈I is equal uniform continuous, then HS is continuous.

In particular, if I is finite, then HS is continuous.
(ii) We have Lip(HS ) ≤ supi∈I Lip(fi). In particular, if supi∈I Lip(fi) < , then HS is a

contraction. If fi are contractions and I is finite, then supi∈I Lip(fi) < .
(iii) If all fi are φ-contractions, where φ is a comparison function, then HS is a

φ-contraction.
(iv) If the family of functions (fi)i∈I is uniform Meir-Keeler, then HS is Meir-Keeler.
(v) If I is finite and all the functions fi are Meir-Keeler, then HS is Meir-Keeler.

(vi) If I is finite and all the functions fi are contractive, then HS is contractive.

Proof (i) Let ε >  be fixed. Then there exists δε >  such that d(fi(x), fi(y)) < ε for every
x, y ∈ X such that d(x, y) < δε and i ∈ I . We suppose that gn → g in (C(�, X), d∞). Con-
sequently, there exists nε such that d∞(gn, g) < δε for every n ≥ nε . Then d(HS (gn)(α),
HS (g)(α)) = d(f[α] ◦ gn ◦ R(α), f[α] ◦ g ◦ R(α)) < ε. It follows that d∞(HS (gn), HS (g)) ≤ ε

for every n ≥ nε .
(ii) We have

d∞
(
HS (f ), HS (g)

)
= sup

α∈�

d
(
HS (f )(α), HS (g)(α)

)

= sup
α∈�

d
(
f[α] ◦ f ◦ R(α), f[α] ◦ g ◦ R(α)

)

≤ sup
α∈�

Lip(f[α] )d
(
f ◦ R(α), g ◦ R(α)

)

≤ sup
α∈�

(
sup
i∈I

Lip(fi)
)

d
(
f ◦ R(α), g ◦ R(α)

)

=
(

sup
i∈I

Lip(fi)
)(

sup
α∈�

d
(
f ◦ R(α), g ◦ R(α)

))

=
(

sup
i∈I

Lip(fi)
)

sup
α∈�

d
(
f (α), g(α)

)
=

(
sup
i∈I

Lip(fi)
)

d∞(f , g).

(iii) We have

d∞
(
HS (f ), HS (g)

)
= sup

α∈�

d
(
HS (f )(α), HS (g)(α)

)

= sup
α∈�

d
(
f[α] ◦ f ◦ R(α), f[α] ◦ g ◦ R(α)

)

≤ sup
α∈�

φ
(
d
(
f ◦ R(α), g ◦ R(α)

))

≤ φ
(

sup
α∈�

d
(
f ◦ R(α), g ◦ R(α)

))
= φ

(
d∞(f , g)

)
.

(iv) Let ε >  be fixed. Then there exist η >  and λ >  such that for every x, y ∈ X with
the property that d(x, y) < ε + η we have d(fi(x), fi(y)) < ε – λ. We suppose that d∞(f , g) <
ε + η. Then d(f (α), g(α)) < ε + η for every α ∈ �. In particular d(f ◦ R(α), g ◦ R(α)) < ε + η
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for every α ∈ �. Therefore d(f[α] ◦ f ◦ R(α), f[α] ◦ g ◦ R(α)) = d(HS (f )(α), HS (g)(α)) < ε – λ

for every i ∈ I . It follows that d∞(HS (f ), HS (g)) = supα∈� d(HS (f )(α), HS (g)(α)) ≤ ε – λ <
ε – λ/, which gives the desired result.

(v) Let ε >  be fixed. Then there exists η >  such that for every x, y ∈ X with the property
that d(x, y) < ε +η we have d(fi(x), fi(y)) < ε for every i ∈ I . We suppose that d∞(f , g) < ε +η.
Then d(f (α), g(α)) < ε + η for every α ∈ � and d(fα ◦ f ◦ R(α), fα ◦ g ◦ R(α)) < ε for every
α ∈ � and i ∈ I . Since

d∞
(
HS (f ), HS (g)

)
= sup

α∈�

d
(
f[α] ◦ f ◦ R(α), f[α] ◦ g ◦ R(α)

)
,

I is finite and � is compact, there exists β ∈ � such that

d∞
(
HS (f ), HS (g)

)
= d

(
f[β] ◦ f ◦ R(β), f[β] ◦ g ◦ R(β)

)
.

It follows that d∞(HS (f ), HS (g)) < ε.
(vi) We have d∞(HS (f ), HS (g)) = supα∈� d(f[α] ◦ f ◦ R(α), f[α] ◦ g ◦ R(α)). Since I is finite

and � is compact, there exists β ∈ � such that d∞(HS (f ), HS (g)) = d(f[β] ◦ f ◦ R(β), f[β] ◦
g ◦ R(β)). Then

d∞
(
HS (f ), HS (g)

)
= d

(
f[β] ◦ f ◦ R(β), f[β] ◦ g ◦ R(β)

)

< d
(
f ◦ R(β), g ◦ R(β)

) ≤ d∞(f , g). �

Note that if all the functions fi are φ-contractions for a comparison function φ, then the
family of functions (fi)i∈I is uniform Meir-Keeler. We also remark that if supi∈I Lip(fi) < ,
then there exists a comparison function φ such that all fi are φ-contractions, namely φ(r) =
r supi∈I Lip(fi).

Theorem . Let S = (fi)i∈I be an IIFS on the complete metric space (X, d). Then there ex-
ists a unique fixed point π of HS and d∞(H [n]

S (f ),π) →  for every f ∈ CB(�, X) provided
that one of the following two conditions is fulfilled:

(i) the family of functions (fi)i∈I is uniform Meir-Keeler;
(ii) (X, d) is a compact metric space, I is finite and all fi are contractive.
Moreover, π ◦ τi = fi ◦π for every i ∈ I ; and consequently π = πS . In the particular case

when c := supi∈I Lip(fi) < , we have the following estimations of the speed of convergence:

d∞
(
H [n]

S (f ),π
) ≤ cn

 – c
d∞

(
HS (f ), f

)
.

Proof In the first case (the family of functions (fi)i∈I is uniform Meir-Keeler) the existence
of π results from Theorem ., Proposition . and the fact that the space (CB(�, X), d∞)
is complete. For the second case ((X, d) is a compact metric space, I is finite and all fi

are contractive), we remark that fi are φ-contractions for the comparison function φ(r) =
sup{d(fi(x), fi(y)) : i ∈ I and d(x, y) ≤ r}, and so this case results from the previous one.

From the fact that HS (π) = π we infer that π ◦ τi(α) = π(iα) = HS ◦π(iα) = fi(π(α))
for every α ∈ � and i ∈ I , i.e., π ◦ τi = fi ◦ π for every i ∈ I .

For α,β ∈ �, we have [α]nβ → α in (�, d�); and consequently π([α]nβ) → π(α). But
π([α]nβ) = π ◦τ[α]n (β) = f[α]n ◦π(β) and, from Theorem ., we infer that f[α]n ◦π(β) →
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πS (α). Therefore π = πS . The estimation of the speed of convergence comes from the
Banach contraction principle. �

Remarks . (i) We suppose that (X, d) is a complete metric space and S = (fi)i∈I is an IFS
(I is a finite set). Then we have

HS (f )(�) = HS

(

f
(⋃

i∈I

�i

))

=
⋃

i∈I

HS
(
f (�i)

)
=

⋃

i∈I

fi
(
f (�)

)

for every f ∈ C(�, X).
Since I is finite, it follows that � and f (�) are compact, and so

HS (f )(�) =
⋃

i∈I

fi
(
f (�)

)
=

⋃

i∈I

fi
(
f (�)

)
=

⋃

i∈I

fi
(
f (�)

)
= FS

(
f (�)

)
.

By induction one can prove that

H [n]
S (f )(�) = F [n]

S
(
f (�)

)

for every n ∈N.
(ii) If in addition fi are Meir-Keeler, then d∞(H [n]

S (f ),π) → , which implies that
h(H [n]

S (f )(�),π(�)) → . From the first part of the remark we obtain h(F [n]
S (f (�)),

π(�)) → . Since HS (π) = π, we have

FS
(
π(�)

)
= π(�).

(iii) Let M ∈ K(X). We suppose that I has at least two elements. In this case � is home-
omorphic with the Cantor set. It is known that there exists a continuous function fM

from � onto M. We have proved that FS (π(�)) = π(�) and that h(F [n]
S (M),π(�)) =

h(F [n]
S (fM(�)),π(�)) →  for every M ∈ K(X). If FS (M) = M for a set M ∈ K(X), then

h(M,π(�)) = h(F [n]
S (M),π(�)) → . It follows that M = π(�).

In this way, the first part of Theorem . implies the first part of Theorem ..
(iv) A similar result could be obtained when I is an infinite set with the differences that

HS (f )(�) = FS (f (�)), H [n]
S (f )(�) = F [n]

S (f (�)), the attractor is π(�) instead of π(�) and
the convergence is obtained for sets from BI(X).

4 The case of ε-chainable spaces
In this section we intend to obtain similar results as those from Theorem . when we
know that the contractive conditions are satisfied only for closed enough points. Since
the Meir-Keeler is the most general contractive condition (from the list from Section )
which assures the existence of the fixed point on an arbitrary complete metric space, we
will study only two cases, namely:

(i) ε-Meir-Keeler functions on arbitrary complete metric spaces, and
(ii) ε-contractive functions on compact metric spaces (see Definition .).
The corresponding fixed point result of Theorem . (Theorem .) requires for the ba-

sic space to satisfy certain conditions of ε-chainability (see Definition .), so we need to
have a similar property. In fact we need this property for the space CB(�, X). It is a natural
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question if CB(�, X) inherits this property from X. This happens if I is finite but does not
always happen if I is infinite (see Examples ., . and .). A similar fact happens for
K(X) and B(X). K(X) is always ε-chainable when X is so, but B(X) is not (see []). There-
fore we will use the notations of ε-chainable and uniform ε-chainable metric spaces. In
Proposition . it is proved that CB(�, X) is ε-chainable if I is finite and in Proposition .
the same conclusion is obtained for I infinite. The case when I is a finite set is straightfor-
ward, but the case when I is infinite, although it has a similar idea, requires a preparatory
result, namely Lemma ..

Definition . Let ε > . A metric space (X, d) is called ε-chainable if for every x, y ∈ X
there exists a chain x = x, x, . . . , xn = y such that d(xk , xk+) < ε for every k ∈ {, , . . . , n–},
and it is called uniform ε-chainable if for every M >  there exists a natural number nM

such that for every x, y ∈ X with the property that d(x, y) < M there exists a chain x =
x, x, . . . , xn = y such that d(xk , xk+) < ε for every k ∈ {, , . . . , n – } and n ≤ nM . A chain
x, x, . . . , xn such that d(xk , xk+) < ε for every k ∈ {, , . . . , n – } is called an ε-chain.

Proposition . If the metric space (X, d) is ε-chainable and I is finite, then the metric
space C(�, X) = CB(�, X) is ε-chainable.

Proof Let f , g ∈ C(�, X). Since � is a compact set, it follows that f and g are uniform
continuous functions. Hence there is a natural number m such that for every α ∈ �m and
β ,γ ∈ � we have d(f (αβ), f (αγ )) < ε and d(g(αβ), g(αγ )) < ε. Let f and g be defined by
f|�α = f (αβ) for every α ∈ �m and g|�α = g(αβ) for every α ∈ �m, where β is a fixed
element of �. We have d∞(f , f) < ε and d∞(g, g) < ε. Since (X, d) is ε-chainable, for every
α ∈ �m there exists an ε-chain xα

 = f (αβ) = f(αβ), xα
 , . . . , xα

nα = g(αβ) = g(αβ). Because I is
finite, we can suppose that nα = n for every α ∈ �m. We consider the functions fk ∈ C(�, X)
defined by fk|�α = xα

k for every α ∈ �m and remark that fn = g and f , f, f, . . . , fn, g is an
ε-chain between f and g . �

We give some examples which show that CB(�, X) could not be an ε-chainable met-
ric space for every ε > , although X is ε-chainable for every ε > . As usual, l denotes
the Hilbert space of sequences of real numbers x = (xn)n≥ such that

∑∞
n= x

n < ∞ en-
dowed with the norm ‖x‖ =

√∑∞
n= x

n. We denote by en the element (δn
m)m≥, where

δn
m =

{  if n = m,
 if n �= m and by d the distance associated with the norm ‖ ◦ ‖. For x, y ∈ l, [x, y]

is the set {tx + ( – t)y : t ∈ [, ]}. Let X =
⋃

n≥[en, en+] ⊂ l.

Example . With the above notations the metric space (X, d) is an ε-chainable metric
space for every ε > , but CB(�, X) is not an ε-chainable metric space for every ε ∈ (, √

 ).

Indeed, since (X, d) is an arcwise connected space it is also an ε-chainable metric space.
Let us consider the functions f , g ∈ CB(�, X) defined by f (α) = e and g(nα) = en for ev-
ery α ∈ � and n ∈ Z

+, where � = �(Z+) and Z
+ denotes the set of strict positive natural

numbers. If there exists an ε-chain in CB(�, X), f = f , f, . . . , fn = g , for an ε ∈ (, √
 ), then

for every m ∈ Z
+, f(mα) = f (mα) = e, f(mα), . . . , fn(mα) = g(mα) = em is an ε-chain with

n +  terms between e and em for every α ∈ � and m ∈ Z
+. Since for every l, k ∈ Z

+ such
that l +  < m we have

δ
(
[el, el+], [ek , ek+]

)
= inf

x∈[el ,el+],y∈[ek ,ek+]
d(x, y) ≥ √


,



Mihail Fixed Point Theory and Applications  (2015) 2015:75 Page 9 of 15

it follows that an ε-chain with ε ∈ (, √
 ) between e and em should have at least m – 

elements for every natural number m and this leads to a contradiction.

Example . We consider on the set of real numbers the distance dm defined by dm(x, y) =
min{|x – y|, m}, where m > . In a similar way as above, it can be seen that (R, dm) is an
ε-chainable metric space for every ε > , but CB(�(Z+), (R, dm)) is not an ε-chainable met-
ric space for every ε ∈ (, m).

Moreover, one can find an ε-chainable metric space for every ε > , (X, d), such that
CB(�(Z+), (X, d)) is not an ε-chainable metric space for every ε >  as we can see from the
following example.

Example . With the notations from Example . we consider the set Y = Re ∪
(
⋃

m,n≥[men, men+]) ⊂ l. The metric space (Y , d) is an ε-chainable metric space for
every ε > , but CB(�, Y ) is not an ε-chainable metric space for every ε > , where
� = �(Z+).

For the proof of the fact that CB(�, X) is an ε-chainable metric space when (X, d) is
uniform ε-chainable, we need the following result.

Lemma . Let I be a set and f , g ∈ C(�, X). Then there exists a set � ⊂ �∗ such that for
every α,β ∈ �, α �= β , we have:

(i) �α ∩ �β = ∅;
(ii)

⋃
α∈� �α = �;

(iii) max{supβ ,γ∈�,α∈� d(f (αβ), f (αγ )), supβ ,γ∈�,α∈� d(g(αβ), g(αγ ))} < ε.

Proof We define by induction, for n ≥ , the sets �n in the following way:

� =
{
�i : i ∈ I, max

{
sup

β ,γ∈�

d
(
f (iβ), f (iγ )

)
, sup
β ,γ∈�

d
(
g(iβ), g(iγ )

)}
< ε

}
.

We suppose that we have defined �k for k ∈ {, , . . . , n}. Then

�n+ =

{

�α : α ∈ �n+,�α ∩ �β = ∅ for every β ∈
n⋃

i=

�i and

max
{

sup
β ,γ∈�

d
(
f (αβ), f (αγ )

)
, sup
β ,γ∈�

d
(
g(αβ), g(αγ )

)}
< ε

}

.

We remark that �α ∩ �β = ∅ for every α,β ∈ �n, α �= β .
Let � =

⋃
n≥ �n. It is clear that for every α,β ∈ �, α �= β , we have

�α ∩ �β = ∅

and

max
{

sup
β ,γ∈�,α∈�

d
(
f (αβ), f (αγ )

)
, sup
β ,γ∈�,α∈�

d
(
g(αβ), g(αγ )

)}
< ε
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for every α ∈ �. We suppose by absurdum that
⋃

α∈� �α �= �. Then there exists x ∈ � \
⋃

α∈� �α . Since f and g are continuous functions, there exists α with a minimal number
of letters such that x ∈ �α and

max
{

sup
β ,γ∈�

d
(
f (αβ), f (αγ )

)
, sup
β ,γ∈�

d
(
g(αβ), g(αγ )

)}
< ε.

Let n be the number of letters from α. We will prove that α ∈ �n . If not, there exists
α ∈ �k such that k < n and �α ∩�α �= ∅. It results in [α]|α| = α, which contradicts the
fact that α is a word with a minimal number of letters such that

max
{

sup
β ,γ∈�

d
(
f (αβ), f (αγ )

)
, sup
β ,γ∈�

d
(
g(αβ), g(αγ )

)}
< ε. �

Proposition . If (X, d) is uniform ε-chainable, then CB(�, X) is ε′-chainable for every
ε′ > ε.

Proof Let f , g ∈ CB(�, X). Then there exists a set � ⊂ �∗ such that for every α,β ∈ �,
α �= β , we have �α ∩ �β = ∅,

⋃
α∈� �α = � and

max
{

sup
β ,γ∈�,α∈�

d
(
f (αβ), f (αγ )

)
, sup
β ,γ∈�,α∈�

d
(
g(αβ), g(αγ )

)}
< ε/.

Let f and g be defined by f|�α = f (αβ) for every α ∈ � and g|�α = g(αβ) for every
α ∈ �, where β is a fixed element of �. We have d∞(f , f) ≤ ε/ < ε and d∞(g, g) ≤ ε/ < ε.
We remark that f, g ∈ CB(�, X). Since (X, d) is ε-chainable for every α ∈ �, there ex-
ists an ε-chain xα

 = f (αβ) = f(αβ), xα
 , . . . , xα

nα = g(αβ) = g(αβ). Because (X, d) is uniform
ε-chainable, we can suppose that there exists n such that nα = n for every α ∈ �. We con-
sider the functions fk ∈ C(�, X) defined by fk|�α = xα

k for every α ∈ �. It can be seen that
fn = g, fk ∈ CB(�, X) and d(fk , fk+) ≤ ε. Then f , f, f, . . . , fn, g is an ε′-chain between f and
g for every ε′ > ε. �

As in Section  we consider some ε-contractive conditions which we will use in the
sequel.

Definition . Let (X, d) be a metric space, a function f : X → X and ε > .
(i) f is an (ε,φ)-contraction if d(f (x), f (y)) ≤ φ(d(x, y)) for every x, y ∈ X such that

d(x, y) < ε, where φ is a comparison function.
(ii) We say that f is an ε-Meir-Keeler function if for every ε′ ∈ (, ε) there exists η > 

such that for every x, y ∈ X with the property that d(x, y) ≤ ε′ + η we have
d(f (x), f (y)) < ε′. A family of functions (fi)i∈I , where fi : X → X , is called uniform
ε-Meir-Keeler if for every ε′ ∈ (, ε) there exist η >  and λ >  such that for every
x, y ∈ X with the property that d(x, y) ≤ ε′ + η we have d(fi(x), fi(y)) < ε′ – λ for every
i ∈ I .

(iii) f is called ε-contractive if d(f (x), f (y)) < d(x, y) for every x, y ∈ X such that
d(x, y) < ε and x �= y.

Theorem . has the following version for ε-Meir-Keeler functions.
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Theorem . (see []) Let (X, d) be a complete metric space, a function f : X → X and
ε > . If f is ε-Meir-Keeler and X is ε-chainable for some ε, then there exists a unique fixed
point x of f and the sequence (f [n](x))n is convergent to x for every x ∈ X. If (X, d) is
compact and ε-chainable and f is ε-contractive, then there exists a unique fixed point x

of f and the sequence (f [n](x))n is convergent to x for every x ∈ X.

We present now the version of Theorem . concerning the existence of the attractor
and the canonical projection for an IIFS for the case of ε-chainable metric spaces.

Theorem . (see [, ]) Let S = (fi)i∈I be an IIFS on the complete metric space
(X, d) and  < ε′ < ε. Then there exists a unique set A = A(S) such that FS (A) = A and
h(F [n]

S (Y ), A) →  for every Y ∈ B(X) provided that one of the following two conditions is
fulfilled:

(i) the family of functions (fi)i∈I is ε-uniform Meir-Keeler and (X, d) is uniform
ε′-chainable;

(ii) (X, d) is a compact ε′-chainable metric space, I is finite and all the functions fi are
ε-contractive.

In addition, there exists a unique continuous function πS : � → X such that πS ◦
τi = fi ◦ πS for every i ∈ I , πS (�) = A and limn→∞ f[α]n (x) = πS (α) for every x ∈ X
and α ∈ �. Moreover, the sequence (A[α]n )n≥ is decreasing, {πS (α)} =

⋂
n≥ A[α]n and

limn→∞ supα∈�n d(Aα) = .

Proof The existence of the set A(S) with the properties from the theorem was proved
in []. As in the case of Theorem ., the proof is almost as the proof of Theorem .
from [] with the exception of the fact that limn→∞ supα∈�n d(Aα) = . As in the proof of
Theorem ., the sequence (supα∈�n d(Aα))n≥ is decreasing; and therefore it is convergent
to a number l ≥ . We want to prove that l = . Let us suppose that l > . Since the metric
space (X, d) is uniform ε′-chainable, there exists a natural number N such that for every
x, y ∈ A there exists a chain x = x, x, . . . , xn = y with the properties that n +  ≤ N and
d(xi, xi+) < ε′ for every i ∈ {, , . . . , n – }. To a set B ⊂ A we associate the number

d̃(B) = sup
x,y∈A

inf

{ n–∑

k=

d(xk , xk+) : x = x, x, . . . , xn = y is an ε′-chain and n +  ≤ N

}

.

It is clear that d̃(A) ≤ Nε′, d̃(B) ≥ d(B) and d̃(B) ≥ d̃(fi(B)) for every set B ⊂ A and i ∈ I . It
follows that the sequence (supα∈�n d̃(Aα))n≥ is decreasing and it is convergent to a number
l̃ ≥ l > . Let us note that l̃

N ≤ d̃(A)
N ≤ ε′.

Since the family of functions (fi)i∈I is ε-uniform Meir-Keeler for every ε′′ ∈ (, ε), there
exist η >  and λ >  such that for every i ∈ I and every x, y ∈ X with the property that
d(x, y) ≤ ε′′ + η we have d(fi(x), fi(y)) < ε′′ – λ. As a result, for every ε′′ ∈ (, ε), there exist
δ >  and λ′ >  such that d(fi(x), fi(y)) < d(x, y)–λ′ for every i ∈ I and every x, y ∈ X with the
property that d(x, y) ∈ (ε′′ – δ, ε′′ + δ). To see this, we can take δ = min(λ/,η) and λ′ = λ/.
Indeed, if d(x, y) ∈ (ε′′ – δ, ε′′ + δ), then d(x, y) ≤ ε′′ + η and therefore

d
(
fi(x), fi(y)

)
< ε′′ – λ = ε′′ – λ/ – λ/ ≤ d(x, y) – λ/.

It follows that for every ε, ε ∈ (, ε) with ε < ε there exists a number λ >  such
that d(fi(x), fi(y)) < d(x, y) – λ for every x, y ∈ X with the property that d(x, y) ∈ [ε, ε]
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and every i ∈ I . In particular, there exists a number λ >  such that d(fi(x), fi(y)) <
d(x, y) – λ for every x, y ∈ X with the property that d(x, y) ∈ [ l̃

N+ , ε′] and every i ∈ I .
Since limn→∞ supα∈�n d̃(Aα) = l̃, there exists n such that for every n ≥ n we have
supα∈�n d̃(Aα) < l̃ + λ/.

Let us fix α ∈ �n , i ∈ I and x, y ∈ Aiα . Then there exist x̃, ỹ ∈ A such that fiα(x̃) = x and
fiα(ỹ) = y. Since fα(x̃), fα(ỹ) ∈ Aα and d̃(Aα) < l̃ + λ/, there exists an ε′-chain in X, namely
x, x, . . . , xn, such that n +  ≤ N , fα(x̃) = x, fα(ỹ) = xn and

∑n–
k= d(xk , xk+) < l̃ + λ/. We

have two cases as follows:
(i)

∑n–
k= d(xk , xk+) ≤ l̃ – l̃

N+ ;
(ii)

∑n–
k= d(xk , xk+) > l̃ – l̃

N+ .
In the first case, we have

n–∑

k=

d
(
fi(xk), fi(xk+)

) ≤
n–∑

k=

d(xk , xk+) ≤ l̃ –
l̃

N + 
.

In the second case, we note that there exists k ∈ {, , . . . , n – } such that d(xk , xk+) ≥

N (l̃ – l̃

N+ ) = l̃
N+ . Since d(xk , xk+) ∈ [ l̃

N+ , ε′], it follows that d(fi(xk ), fi(xk+)) < d(xk ,
xk+) – λ and

n–∑

k=

d
(
fi(xk), fi(xk+)

)
= d

(
fi(xk ), fi(xk+)

)
+

n–∑

k=;k �=k

d
(
fi(xk), fi(xk+)

)

≤ d(xk , xk+) – λ +
n–∑

k=;k �=k

d(xk , xk+)

= –λ +
n–∑

k=

d(xk , xk+) ≤ –λ + l̃ + λ/ = l̃ – λ/.

Therefore d̃(Aiα) ≤ l̃–max(λ/, l̃
N+ ) for every α ∈ �n , i ∈ I , which leads to the following

contradiction:

l̃ ≤ sup
α∈�n+

d̃(Aα) ≤ l̃ – max

(

λ/,
l̃

N + 

)

.

This ends the proof in the first case. The second case can be reduced to the first one in
a similar manner as we have done in the proof of Theorem .. �

The main result of this section is contained in the following.

Theorem . Let S = (fi)i∈I be an IIFS on the complete metric space (X, d) and ε > ε′ > .
Then there exists a unique fixed point π of HS and d∞(H [n]

S (f ),π) →  for every f ∈
CB(�, X) provided that one of the following two conditions is fulfilled:

(i) the family of functions (fi)i∈I is uniform ε-Meir-Keeler and X is uniform ε′-chainable;
(ii) (X, d) is a compact ε′-chainable metric space, I is a finite set and all the functions fi

are ε-contractive.
Moreover, π ◦ τi = fi ◦ π for every i ∈ I ; and consequently π = π .
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Proof We start with the first case (the family of functions (fi)i∈I is uniform ε-Meir-Keeler
and X is uniform ε′-chainable). Let us consider ε′′ ∈ (, ε). Then there exist η >  and λ > 
such that for every x, y ∈ X with the property that d(x, y) < ε+η we have d(fi(x), fi(y)) < ε–λ.
If f , g ∈ CB(�, X) have the property that d∞(f , g) < ε + η, then with the same argument as
in Proposition . point (iv) one can prove that d∞(HS (f ), HS (g)) < ε – λ/. This implies
that HS is ε-Meir-Keeler. (CB(�, X), d∞) is a complete metric space since (X, d) is so and
it is ε′-chainable from Proposition .. Therefore we can apply Theorem . to obtain the
desired result.

From the fact that HS (π) = π we infer that π ◦ τi(α) = π(iα) = HS ◦π(iα) = fi(π(α))
for every α ∈ � and i ∈ I , i.e., π ◦ τi = fi ◦ π for every i ∈ I .

For α,β ∈ �, we have [α]nβ → α in (�, d�); and consequently π([α]nβ) → π(α). But
π([α]nβ) = π ◦τ[α]n (β) = f[α]n ◦π(β), and from Theorem . we infer that f[α]n ◦π(β) →
πS (α). Therefore π = πS .

In the second case, namely (X, d) is a compact ε′-chainable metric space, I is a finite set
and all the functions fi are ε-contractive, we consider the function φ : [, ε) →R defined by
φ(r) = sup{d(fi(x), fi(y)) : i ∈ I and d(x, y) ≤ r}. φ is increasing, right continuous and φ(r) < r
for every r ∈ (, ε). If ε′′ ∈ (, ε′), there exists η >  such that ε′′ + η < ε and φ(r) < φ(ε′′)+ε′′


for every r ∈ [ε′′, ε′′ + η). It follows that φ(d(fi(x), fi(y))) ≤ ε′′ – ε′′–φ(ε′′)

 < ε′′ – ε′′–φ(ε′′)
 for

every r ∈ [, ε′′ + η). In this way the second case can be reduced to the first one. �

5 Remarks and examples
It is known that every bounded set of a metric space is the attractor of an IIFS containing
constant functions. We will compute the function HS for such an IIFS.

Example . Let (X, d) be a complete metric space and A ∈ B(X). For a ∈ X, fa will denote
the constant function with value a, that is, fa : X → X and fa(x) = a for every x ∈ X. Then A
is the attractor of the IIFSS = (X, (fa)a∈A). Also A is the attractor of the IIFSSB = (X, (fa)a∈B)
for any dense set B in A. If A is separable and B is a countable dense set in A, then A is the
attractor of the CIFS (countable IFS) SB = (X, (fa)a∈B). This happens, in particular, for any
compact set A. We have

HS(f )(α) = HS (f )(α) = f[α] ◦ f ◦ R(α) = [α].

We try now to compute the iterations of HS in a general case.

Remark . Let S = (fi)i∈I be an IIFS on the complete metric space (X, d) and α =
αα · · · ∈ �. Then

H []
S (f )(α) = HS

(
HS (f )

)
(α) = f[α] ◦ HS (f ) ◦ R(α)

= f[α] ◦ HS (f )
(
R(α)

)
= f[α] ◦ f[R(α)] ◦ f ◦ R[](α)

= fα ◦ fα ◦ f ◦ R[](α) = fαα ◦ f ◦ R[](α).

By induction it can be proved that H [n]
S (f )(α) = f[α]n ◦ f ◦ R[n](α).

In particular if the function f is constant, namely f (α) = b for b ∈ X, H [n]
S (f )(α) = f[α]n (b).

We consider now the case when (X,‖ · ‖) is a Banach space and S = (X, (fi)i∈I) is an IIFS
formed by affine transformations. That is, fi = Ai + bi, where Ai are linear and continuous
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operators Ai : X → X with ‖Ai‖ < c <  and bi ∈ X for every i ∈ I are such that the set
{bi : i ∈ I} is bounded. By induction one can see that

fii···in (x) = fi ◦ fi ◦ · · · ◦ fin (x) = Ai Ai · · ·Ain x +
n∑

i=

Ai Ai · · ·Aii– bi.

Therefore

H [n]
S (f )(α) = f[α]n ◦ f ◦ R[n](α) = Ai Ai · · ·Ain f ◦ R[n](α) +

n∑

i=

Ai Ai · · ·Aii– bi.

In particular, if the function f is constant, namely f (α) = b for b ∈ X,

H [n]
S (f )(α) = Ai Ai · · ·Ain b +

n∑

i=

Ai Ai · · ·Aii– bi.

From Theorem . it follows that πS (α) =
∑

i≥ Ai Ai · · ·Aii– bi, where πS is the canon-
ical projection. Then

d∞
(
H [n]

S (f ),πS
)

= sup
α∈�

∥
∥H [n]

S (f )(α) – πS (α)
∥
∥

= sup
α∈�

∥
∥
∥
∥Ai Ai · · ·Ain f ◦ R[n](α) –

∑

i≥n+

Ai Ai · · ·Aii– bi

∥
∥
∥
∥

≤ sup
α∈�

(

cn∥∥f (α)
∥
∥ +

cn

 – c
sup
i∈I

‖bi‖
)

= cn
(

sup
α∈�

∥
∥f (α)

∥
∥ +


 – c

sup
i∈I

‖bi‖
)

.

Example . Let I be a nonvoid set, j /∈ I , (X,‖ · ‖) be a Banach space and S = (X, (fi)i∈I∪{j})
be an IIFS formed by affine transformations such that fi are constant functions for i ∈ I
(fi(x) = bi) and fj is affine functions of the form fj(x) = ax + b, where a ∈ (–, ) and b ∈ X.
Then for an infinite word α = ii · · · im · · · , H [n]

S (f )(α) is b if i �= j, akbik+ +
∑k

i= ai–b if
i = i = · · · = ik = j, k ≤ n –  and ik+ �= j and anf ◦ R[n](α) +

∑n
i= ai–b if i = i = · · · = in = j.

Also πS (α) is b if i �= j, akbik+ +
∑k+

i= ai–b if i = i = · · · = ik = j and ik+ �= j and b
–a if

i = i = · · · = im = · · · = j. Then

∥
∥H [n]

S (f )(α) – πS (α)
∥
∥

=

⎧
⎪⎨

⎪⎩

 if there exists k < n such that ik �= j,
anf ◦ R[n](α) – akbik+ –

∑k
i=n+ ai–b if i = · · · = ik = j, k ≥ n and ik+ �= j,

anf ◦ R[n](α) –
∑

i≥n+ ai–b if i = i = · · · = im = · · · = j.

If f is a constant function with value d, then

∥
∥H [n]

S (f ) – πS
∥
∥ = sup

k≥n
|a|n

∥
∥
∥
∥
∥

d – b
k∑

i=n+

ai–n– – ak–nbik+

∥
∥
∥
∥
∥

.
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Example . (The Cantor set) Let (X,‖ · ‖) be a Banach space, b ∈ X \ {X} and an IFS
S = (X, (fi)i∈{–,}), where f–(x) = x–b

 and f(x) = x+b
 . The attractor of S is homeomorphic

with the Cantor set. Then, for an infinite word α = ii · · · im · · · , H [n]
S (f )(α) = f[α]n ◦ f ◦

R[n](α) = 
n f ◦R[n](α)+

∑n
i=

(–)ii i

i . If f is a constant function with value c, then H [n]
S (f )(α) =


n c +

∑n
i=

(–)ii i

i b.

It is an open problem to find contractive conditions which are inherited by some of the
operators FS , HS and MS from the constitutive functions of the IIFS S or contractive
conditions which assure us that some of the operators FS , HS and MS have a unique fixed
point. It is also an open problem to extend the above results to different generalizations of
IFSs (such as GIFSs).
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