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Abstract
The purpose of this paper is to introduce some basic definitions about fixed point and
best proximity point in two classes of probabilistic metric spaces and to prove
contraction mapping principle and relevant best proximity point theorems. The first
class is the so-called S-probabilistic metric spaces. In S-probabilistic metric spaces, the
generalized contraction mapping principle and generalized best proximity point
theorems have been proved by authors. These results improve and extend the recent
results of Su and Zhang (Fixed Point Theory Appl. 2014:170, 2014). The second class is
the so-called Menger probabilistic metric spaces. In Menger probabilistic metric
spaces, the contraction mapping principle and relevant best proximity point
theorems have been proved by authors. These results also improve and extend the
results of many authors. In order to get the results of this paper, some new methods
have been used. Meanwhile some error estimate inequalities have been established.
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1 Introduction and preliminaries
Probabilistic metric spaces were introduced in  by Menger []. In such spaces, the no-
tion of distance between two points x and y is replaced by a distribution function Fx,y(t).
Thus one thinks of the distance between points as being probabilistic with Fx,y(t) repre-
senting the probability that the distance between x and y is less than t. Sehgal, in his PhD
thesis [], extended the notion of a contraction mapping to the setting of Menger proba-
bilistic metric spaces. For example, a mapping T is a probabilistic contraction if T is such
that for some constant  < k < , the probability that the distance between image points
Tx and Ty is less than kt is at least as large as the probability that the distance between x
and y is less than t.

In , Sehgal and Bharucha-Reid proved the following result.

Theorem . (Sehgal and Bharucha-Reid []) Let (E, F ,�) be a complete Menger proba-
bilistic metric space for which the triangular norm � is continuous and satisfies �(a, b) =
min(a, b). If T is a mapping of E into itself such that for some  < k <  and all x, y ∈ E,

FTx,Ty(t) ≥ Fx,y

(
t
k

)
, ∀t > , (.)
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then T has a unique fixed point x∗ in E, and for any given x ∈ X, Tnx converges
to x∗.

The mapping T satisfying (.) is called a k-probabilistic contraction or a Sehgal con-
traction []. The fixed point theorem obtained by Sehgal and Bharucha-Reid is a general-
ization of the classical Banach contraction principle and is further investigated by many
authors [, –]. Some results in this theory have found their applications to control the-
ory, system theory and optimization problems.

Next we recall some well-known definitions and results in the theory of probabilistic
metric spaces which are used later in this paper. For more details, we refer the reader
to [].

Definition . A triangular norm (shorter �-norm) is a binary operation � on [, ]
which satisfies the following conditions:

(a) � is associative and commutative;
(b) � is continuous;
(c) �(a, ) = a for all a ∈ [, ];
(d) �(a, b) ≤ �(c, d) whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [, ].

The following are the three basic �-norms:
�(a, b) = max(a + b – , );
�(a, b) = a · b;
�(a, b) = min(a, b).

It is easy to check that the above three �-norms have the following relations:

�(a, b) ≤ �(a, b) ≤ �(a, b)

for any a, b ∈ [, ].

Definition . A function F(t) : (–∞, +∞) → [, ] is called a distribution function if it is
non-decreasing and left-continuous with limt→–∞ F(t) = . If in addition F() = , then F
is called a distance distribution function.

Definition . A distance distribution function F satisfying limt→+∞ F(t) =  is called a
Menger distance distribution function. The set of all Menger distance distribution func-
tions is denoted by D+. A special Menger distance distribution function is given by

H(t) =

⎧⎨
⎩

, t ≤ ,

, t > .

Definition . A probabilistic metric space is a pair (E, F), where E is a nonempty set, F
is a mapping from E × E into D+ such that, if Fx,y denotes the value of F at the pair (x, y),
the following conditions hold:

(PM-) Fx,y(t) = H(t) if and only if x = y;
(PM-) Fx,y(t) = Fy,x(t) for all x, y ∈ E and t ∈ (–∞, +∞);
(PM-) Fx,z(t) = , Fz,y(s) =  implies Fx,y(t + s) = 

for all x, y, z ∈ E and –∞ < t < +∞.
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Definition . A Menger probabilistic metric space (abbreviated, Menger PM space) is a
triple (E, F ,�), where E is a nonempty set, � is a continuous t-norm and F is a mapping
from E × E into D+ such that, if Fx,y denotes the value of F at the pair (x, y), the following
conditions hold:

(MPM-) Fx,y(t) = H(t) if and only if x = y;
(MPM-) Fx,y(t) = Fy,x(t) for all x, y ∈ E and t ∈ (–∞, +∞);
(MPM-) Fx,y(t + s) ≥ �(Fx,z(t), Fz,y(s)) for all x, y, z ∈ E and t > , s > .

In , authors gave a new definition of probabilistic metric space, the so-called S-prob-
abilistic metric space. This definition reflects more probabilistic meaning and probabilistic
background. In this definition, the triangle inequality changed to a new form.

Definition . ([]) An S-probabilistic metric space is a pair (E, F), where E is a
nonempty set, F is a mapping from E × E into D+ such that, if Fx,y denotes the value
of F at the pair (x, y), the following conditions hold:

(SPM-) Fx,y(t) = H(t) if and only if x = y;
(SPM-) Fx,y(t) = Fy,x(t) for all x, y ∈ E and t ∈ (–∞, +∞);
(SPM-) Fx,y(t) ≥ Fx,z(t) ∗ Fz,y(t), ∀x, y, z ∈ E, where Fx,z(t) ∗ Fz,y(t) is the convolution

between Fx,z(t) and Fz,y(t) defined by

Fx,z(t) ∗ Fz,y(t) =
∫ +∞


Fx,z(t – u) dFz,y(u).

Example ([]) Let X be a nonempty set, S be a measurable space which consists of some
metrics on the X, (�, P) be a complete probabilistic measure space and f : � → S be a
measurable mapping. It is easy to think that S is a random metric on the X, of course,
(X, S) is a random metric space. The following expression of distribution functions Fx,y(t),
Fx,z(t) and Fz,y(t) is reasonable:

Fx,y(t) = P
{

f –{d ∈ S; d(x, y) < t
}}

and

Fx,z(t) = P
{

f –{d ∈ S; d(x, z) < t
}}

,

and

Fz,y(t) = P
{

f –{d ∈ S; d(z, y) < t
}}

for all x, y, z ∈ X. Since

P
{

f –{d ∈ S; d(x, y) < t
}} ≥ P

{
f –{d ∈ S; d(x, z) + d(z, y) < t

}}

and it follows from probabilistic theory that

P
{

f –{d ∈ S; d(x, z) + d(z, y) < t
}}

= Fx,z(t) ∗ Fz,y(t).
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Therefore

Fx,y(t) ≥ Fx,z(t) ∗ Fz,y(t), ∀x, y, z ∈ X.

In addition, the conditions (SPM-) and (SPM-) are obvious.

In this paper, both the Menger probabilistic metric spaces and S-probabilistic metric
spaces are included in the probabilistic metric spaces.

On the other hand, several problems can be changed as equations of the form Tx = x,
where T is a given self-mapping defined on a subset of a metric space, a normed linear
space, a topological vector space or some suitable space. However, if T is a non-self map-
ping from A to B, then the aforementioned equation does not necessarily admit a so-
lution. In this case, it is contemplated to find an approximate solution x in A such that
the error d(x, Tx) is minimum, where d is the distance function. In view of the fact that
d(x, Tx) is at least d(A, B), a best proximity point theorem guarantees the global minimiza-
tion of d(x, Tx) by the requirement that an approximate solution x satisfies the condition
d(x, Tx) = d(A, B). Such optimal approximate solutions are called best proximity points of
the mapping T . Interestingly, best proximity point theorems also serve as a natural gen-
eralization of fixed point theorems, for a best proximity point becomes a fixed point if the
mapping under consideration is a self-mapping. Research on best proximity point is an
important topic in the nonlinear functional analysis and applications (see [–]).

Let A, B be two nonempty subsets of a complete metric space and consider a mapping
T : A → B. The best proximity point problem is whether we can find an element x ∈ A
such that d(x, Tx) = min{d(x, Tx) : x ∈ A}. Since d(x, Tx) ≥ d(A, B) for any x ∈ A, in fact,
the optimal solution to this problem is the one for which the value d(A, B) is attained.

Let A, B be two nonempty subsets of a metric space (X, d). We denote by A and B the
following sets:

A =
{

x ∈ A : d(x, y) = d(A, B) for some y ∈ B
}

,

B =
{

y ∈ B : d(x, y) = d(A, B) for some x ∈ A
}

,

where d(A, B) = inf{d(x, y) : x ∈ A and y ∈ B}.
It is interesting to notice that A and B are contained in the boundaries of A and B,

respectively, provided A and B are closed subsets of a normed linear space such that
d(A, B) >  [].

In order to study the best proximity point problems, we need the following notations.

Definition . ([]) Let (A, B) be a pair of nonempty subsets of a metric space (X, d) with
A 
= ∅. Then the pair (A, B) is said to have the P-property if and only if, for any x, x ∈ A

and y, y ∈ B,

{
d(x, y) = d(A, B),
d(x, y) = d(A, B)

⇒ d(x, x) = d(y, y).

In [], the authors prove that any pair (A, B) of nonempty closed convex subsets of a
real Hilbert space H satisfies the P-property.
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In [, ], P-property was weakened to weak P-property. And an example that satisfies
P-property but not weak P-property can be found there.

Definition . ([, ]) Let (A, B) be a pair of nonempty subsets of a metric space (X, d)
with A 
= ∅. Then the pair (A, B) is said to have the weak P-property if and only if, for any
x, x ∈ A and y, y ∈ B,

{
d(x, y) = d(A, B),
d(x, y) = d(A, B)

⇒ d(x, x) ≤ d(y, y).

Recently, many best proximity point problems with applications have been discussed
and some best proximity point theorems have been proved. For more details, we refer the
reader to [].

In , authors established some definitions and basic concepts of best proximity point
in the framework of probabilistic metric spaces.

Definition . ([]) Let (E, F) be a probabilistic metric space, A, B ⊂ E be two nonempty
sets. Let

FA,B(t) = sup
x∈A,y∈B

Fx,y(t), ∀t ∈ (–∞, +∞),

which is said to be the probabilistic distance of A, B.

Example ([]) Let X be a nonempty set and d, d be two metrics defined on X with the
probabilities p = ., p = ., respectively. Assume that

d(x, y) ≤ d(x, y), ∀x, y ∈ X.

For any x, y ∈ X, Table  is a discrete random variable with the distribution function

Fx,y(t) =

⎧⎪⎪⎨
⎪⎪⎩

, t ≤ d(x, y),
., d(x, y) < t ≤ d(x, y),
, d(x, y) < t.

Let A, B be two nonempty sets of X, Table  is also a discrete random variable with the
distribution function

FA,B(t) =

⎧⎪⎪⎨
⎪⎪⎩

, t ≤ d(A, B),
., d(A, B) < t ≤ d(A, B),
, d(A, B) < t,

Table 1 The random variable d(x, y)

d1(x, y) d2(x, y)

0.5 0.5

Table 2 The random variable d(A, B)

d1(A, B) d2(A, B)

0.5 0.5



Su et al. Fixed Point Theory and Applications  (2015) 2015:76 Page 6 of 20

where

di(A, B) = inf
x∈A,y∈B

di(x, y), i = , .

It is easy to see that

FA,B(t) = sup
x∈A,y∈B

Fx,y(t), ∀t ∈ (–∞, +∞).

Definition . ([]) Let (E, F) be a probabilistic metric space, A, B ⊂ E be two nonempty
subsets and T : A → B be a mapping. We say that x∗ ∈ A is the best proximity point of the
mapping T if the following equality holds:

Fx∗ ,Tx∗ (t) = FA,B(t), ∀t ∈ (–∞, +∞).

Example ([]) Let X be a nonempty set and d, d be two metrics defined on X with
the probabilities p = ., p = ., respectively. Let A, B be two nonempty sets of X and
T : A → B be a mapping. Assume

d(x, y) ≤ d(x, y), ∀x, y ∈ X.

If there exists a point x∗ ∈ A such that

d
(
x∗, Tx∗) = d(A, B),

d
(
x∗, Tx∗) = d(A, B),

then Table  is a discrete random variable with the distribution function

Fx∗ ,Tx∗ (t) =

⎧⎪⎪⎨
⎪⎪⎩

, t ≤ d(x∗, Tx∗),

., d(x∗, Tx∗) < t ≤ d(x∗, Tx∗),

, d(x∗, Tx∗) < t.

It is obvious that Fx∗ ,Tx∗ (t) = FA,B(t).

It is clear that the notion of fixed point coincided with the notion of best proximity
point when the underlying mapping is a self-mapping. Let (E, F) be a probabilistic met-
ric space. Suppose that A ⊂ E and B ⊂ E are nonempty subsets. We define the following
sets:

A =
{

x ∈ A : Fx,y(t) = FA,B(t) for some y ∈ B
}

,

B =
{

y ∈ A : Fx,y(t) = FA,B(t) for some x ∈ A
}

.

Table 3 The random variable d(x∗, Tx∗)

d1(x∗, Tx∗) d2(x∗, Tx∗)

0.5 0.5
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Definition . ([]) Let (A, B) be a pair of nonempty subsets of a probabilistic metric
space (E, F) with A 
= ∅. Then the pair (A, B) is said to have the P-property if and only if
for any x, x ∈ A and y, y ∈ B,

Fx,y (t) = FA,B(t), Fx,y (t) = FA,B(t) ⇒ Fx,x (t) = Fy,y (t).

Definition . ([]) Let (A, B) be a pair of nonempty subsets of a probabilistic metric
space (E, F) with A 
= ∅. Then the pair (A, B) is said to have the weak P-property if and
only if for any x, x ∈ A and y, y ∈ B,

Fx,y (t) = FA,B(t), Fx,y (t) = FA,B(t) ⇒ Fx,x (t) ≥ Fy,y (t).

Definition . ([]) Let (E, F) be a probabilistic metric space.
() A sequence {xn} in E is said to converge to x ∈ E if for any given ε >  and λ > ,

there must exist a positive integer N = N(ε,λ) such that Fxn ,x(ε) >  – λ whenever
n > N .

() A sequence {xn} in E is called a Cauchy sequence if for any ε >  and λ > , there
must exist a positive integer N = N(ε,λ) such that Fxn ,xm (ε) >  – λ, whenever
n, m > N .

() (E, F ,�) is said to be complete if each Cauchy sequence in E converges to some
point in E.

We denote by xn → x that {xn} converges to x. It is easy to see that xn → x if and only if
Fxn ,x(t) → H(t) for any given t ∈ (–∞, +∞) as n → ∞.

The purpose of this paper is to introduce some basic definitions about fixed point and
best proximity point in two classes of probabilistic metric spaces and to prove contrac-
tion mapping principle and relevant best proximity point theorems. The first class is the
so-called S-probabilistic metric spaces. In S-probabilistic metric spaces, the generalized
contraction mapping principle and generalized best proximity point theorems have been
proved by authors. These results improve and extend the recent results of Su and Zhang
[]. The second class is the so-called Menger probabilistic metric spaces. In Menger prob-
abilistic metric spaces, the contraction mapping principle and relevant best proximity
point theorems have been proved by authors. These results also improve and extend the
results of many authors. In order to get the results of this paper, some new methods have
been used. Meanwhile some error estimate inequalities have been established.

2 Contraction mapping principle in S-probabilistic metric spaces
Let (E, F) be an S-probabilistic metric space. For any x, y ∈ E, we define

dF (x, y) =
∫ +∞


t dFx,y(t).

Since t is a continuous function and Fx,y is a bounded variation function, so the above
integral is well defined. In fact, the above integral is just the mathematical expectation of
Fx,y(t). Throughout this paper we assume that

dF (x, y) =
∫ +∞


t dFx,y(t) < +∞, ∀x, y ∈ E

for all probabilistic metric spaces (E, F) presented in this paper.
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Theorem . Let (E, F) be an S-probabilistic metric space. For any x, y ∈ E, we define

dF (x, y) =
∫ +∞


t dFx,y(t).

Then dF (x, y) is a metric on E.

Proof Since Fx,y(t) = H(t) (∀t ∈ R) if and only if x = y. And

∫ +∞


t dH(t) = ,

we know that the condition dF (x, y) =  ⇔ x = y holds. The condition dF (x, y) = dF (y, x),
for all x, y ∈ E, is obvious. Next we prove the triangle inequality. For any x, y, z ∈ E, from
(SPM-) we have

Fx,y(t) ≥
∫ +∞


Fx,z(t – u) dFz,y(u) = Fx,z(t) ∗ Fz,y(t).

By using probabilistic theory we know that

∫ +∞


t dFx,y(t) ≤

∫ +∞


t dFx,z(t) +

∫ +∞


t dFz,y(t),

which implies that

dF (x, y) ≤ dF (x, z) + dF (z, y).

This completes the proof. �

Now we prove the following generalized contraction mapping principle in the S-prob-
abilistic metric spaces which is a generalized form of the result in [].

Theorem . Let (E, F) be a complete S-probabilistic metric space. Let T : E → E be a
mapping satisfying the following condition:

FTx,Ty
(
ψ(t)

) ≥ Fx,y
(
φ(t)

)
, ∀x, y ∈ E,∀t ∈ R = (–∞, +∞), (.)

where ψ(t), φ(t) are two functions which satisfy
() ψ(t), φ(t) are strictly monotone increasing and continuous;
() ψ(t) < φ(t) for all t > ;
() ψ() = φ().

Then T has a unique fixed point x∗ ∈ E and for any given x ∈ E the iterative sequence
xn+ = Txn converges to x∗.

Proof By using probabilistic theory we know that for all x, y ∈ E,

ψ–
(∫ +∞


t dFTx,Ty(t)

)
=

∫ +∞


ψ–(t) dFTx,Ty(t) =

∫ +∞


t dFTx,Ty

(
ψ(t)

)
,

φ–
(∫ +∞


t dFx,y(t)

)
=

∫ +∞


φ–(t) dFx,y(t) =

∫ +∞


t dFx,y

(
φ(t)

)
,
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which together with (.) implies that

ψ–(dF (Tx, Ty)
) ≤ φ–(dF (x, y)

)
(.)

for all x, y ∈ E.
For any given x ∈ X, define an iterative sequence as follows:

x = Tx, x = Tx, . . . , xn+ = Txn, . . . .

Then, for each integer n ≥ , from (.) we get

ψ–(dF (xn+, xn)
)

= ψ–(dF (Txn, Txn–)
) ≤ φ–(dF (xn, xn–)

)
. (.)

Using condition () we have

dF (xn+, xn) ≤ dF (xn, xn–)

for all n ≥ . Hence the sequence d(xn+, xn) is decreasing, and consequently there exists
r ≥  such that

dF (xn+, xn) → r

as n → ∞. By using conditions () and () we know r = .
In what follows, we show that {xn} is a Cauchy sequence in the metric space (E, dF ).

Suppose that {xn} is not a Cauchy sequence. Then there exists ε >  for which we can find
subsequences {xnk }, {xmk } with nk > mk > k such that

dF (xnk , xmk ) ≥ ε (.)

for all k ≥ . Further, corresponding to mk we can choose nk in such a way that it is the
smallest integer with nk > mk satisfying (.). Then

dF (xnk –, xmk ) < ε. (.)

From (.) and (.), we have

ε ≤ dF (xnk , xmk ) ≤ dF (xnk , xnk –) + dF (xnk –, xmk ) < dF (xnk , xnk –) + ε.

Letting k → ∞, we get

lim
k→∞

dF (xnk , xmk ) = ε. (.)

By using the triangular inequality we have

dF (xnk , xmk ) ≤ dF (xnk , xnk –) + dF (xnk –, xmk –) + dF (xmk –, xmk ),

dF (xnk –, xmk –) ≤ dF (xnk –, xnk ) + dF (xnk , xmk ) + dF (xmk , xmk –).



Su et al. Fixed Point Theory and Applications  (2015) 2015:76 Page 10 of 20

Letting k → ∞ in the above two inequalities and applying (.), we have

lim
k→∞

dF (xnk –, xmk –) = ε.

Since

ψ
(
dF (xnk , xmk )

) ≤ φ
(
dF (xnk –, xmk –)

)
,

by using condition () we know ε = , this is a contradiction. This shows that {xn} is a
Cauchy sequence in the metric space (E, dF ).

We prove that the sequence {xn} is also a Cauchy sequence in an S-probabilistic space
(E, F), that is, we need to prove

lim
n→∞ Fxn ,xn+m (t) = H(t). (.)

If not, there must exist the numbers t > ,  < λ <  and subsequences {nk}, {mk} of {n}
such that Fxnk ,xnk +mk

(t) ≤ λ for all k ≥ . In this case, we have

dF (xnk , xnk +mk ) =
∫ +∞


t dFxnk ,xnk +mk

(t)

=
∫ t


t dFxnk ,xnk +mk

(t)

+
∫ +∞

t

t dFxnk ,xnk +mk
(t)

≥
∫ +∞

t

t dFxnk ,xnk +mk
(t)

≥ t
(
 – Fxnk ,xnk +mk

(t)
)

≥ t( – λ) > .

This is a contradiction.
From (.) we know that {xn} is a Cauchy sequence in a complete S-probabilistic metric

space (E, F). Hence there exists a point x∗ ∈ E such that {xn} converges to x∗ in the meaning
of

lim
n→∞ Fxn ,x∗ (t) = H(t), ∀t ≥ .

Therefore

lim
n→∞ Fxn ,Tx∗

(
ψ(t)

) ≥ lim
n→∞ Fxn–,x∗

(
φ(t)

)
= H(t), ∀t ≥ ,

which implies that

lim
n→∞ Fxn ,Tx∗ (t) = H(t), ∀t ≥ .
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We claim that x∗ is a fixed point of T . In fact, for any t > , it follows from condition
(SPM-) that

Fx∗ ,Tx∗ (t) ≥
∫ +∞


Fx∗ ,xn (t – u) dFxn ,Tx∗ (u)

≥
∫ t




Fx∗ ,xn (t – u) dFxn ,Tx∗ (u)

= Fx∗ ,xn

(
t


)(
Fxn ,Tx∗

(
t


)
– 

)
→ 

as n → ∞, which implies Fx∗ ,Tx∗ (t) = H(t) and hence x∗ = Tx∗. The x∗ is a fixed point of T .
If there exists another fixed point x∗∗ of T , we observe

Fx∗ ,x∗∗ (t) = FTx∗ ,Tx∗∗ (t) ≥ Fx∗ ,x∗∗
(

t
h

)
,

which implies Fx∗ ,x∗∗ (t) = H(t), ∀t ∈ R, and hence x∗ = x∗∗. Then the fixed point of T is
unique. Meanwhile, for any given x, the iterative sequence xn = Tnx converges to x∗.
This completes the proof. �

Theorem . Let (E, F ,�) be a complete Menger probabilistic metric space. Assume

�
(

Fx,z

(
t


)
, Fz,y

(
t


))
≥

∫ +∞


Fx,z(t – u) dFz,y(u) (.)

for all x, y, z ∈ E, t > . Let T : E → E be a mapping satisfying the following conditions:

FTx,Ty
(
ψ(t)

) ≥ Fx,y
(
φ(t)

)
, ∀x, y ∈ E,∀t ∈ R = (–∞, +∞), (.)

where ψ(t), φ(t) are two functions which satisfy
() ψ(t), φ(t) are strictly monotone increasing and continuous;
() ψ(t) < φ(t) for all t > ;
() ψ() = φ().

Then T has a unique fixed point x∗ ∈ E and for any given x ∈ E the iterative sequence
xn+ = Txn converges to x∗.

Proof From (.) we know that (E, F ,�) is an S-probabilistic metric space. This together
with (.), by using Theorem ., proves the conclusion. �

3 Best proximity point theorems in S-probabilistic spaces
We first define the notion of P-operator P : B → A, which is very useful for the proof of
the theorem. From the definitions of A and B, we know that for any given y ∈ B, there
exists an element x ∈ A such that Fx,y(t) = FA,B(t). Because (A, B) has the weak P-property,
so such x is unique. We denote by x = Py the P-operator from B into A.

Theorem . Let (E, F) be a complete S-probabilistic metric space. Let (A, B) be a pair of
nonempty subsets in E and A be a nonempty closed subset. Suppose that (A, B) satisfies the
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weak P-property. Let T : A → B be a mapping satisfying the following condition:

FTx,Ty
(
ψ(t)

) ≥ Fx,y
(
φ(t)

)
, ∀x, y ∈ E,∀t ∈ R = (–∞, +∞),

where ψ(t), φ(t) are two functions which satisfy
() ψ(t), φ(t) are strictly monotone increasing and continuous;
() ψ(t) < φ(t) for all t > ;
() ψ() = φ().

Assume that T(A) ⊂ B. Then T has a unique best proximity point x∗ ∈ A and for any
given x ∈ E the iterative sequence xn+ = PTxn converges to x∗.

Proof Since the pair (A, B) has the weak P-property, so we have

FPTx,PTx

(
ψ(t)

) ≥ FTx,Tx

(
ψ(t)

) ≥ Fx,x

(
φ(t)

)
, ∀t > 

for any x, x ∈ A. This shows that PT : A → A is a contraction from a complete S-prob-
abilistic metric subspace A into itself. Using Theorem ., we know that PT has a unique
fixed point x∗ and for any given x ∈ E the iterative sequence xn+ = PTxn converges to x∗.
Since PTx∗ = x∗ if and only if Fx∗ ,Tx∗ (t) = FA,B(t), so the point x∗ is the unique best proximity
point of T : A → B. This completes the proof. �

Theorem . Let (E, F ,�) be a complete Menger probabilistic metric space. Assume that

�
(

Fx,z

(
t


)
, Fz,y

(
t


))
≥

∫ +∞


Fx,z(t – u) dFz,y(u) (.)

for all x, y, z ∈ E, t > . Let (A, B) be a pair of nonempty subsets in E and A be a nonempty
closed subset. Suppose that (A, B) satisfies the weak P-property. Let T : A → B be a mapping
satisfying the following condition:

FTx,Ty
(
ψ(t)

) ≥ Fx,y
(
φ(t)

)
, ∀x, y ∈ E,∀t ∈ R = (–∞, +∞),

where ψ(t), φ(t) are two functions which satisfy
() ψ(t), φ(t) are strictly monotone increasing and continuous;
() ψ(t) < φ(t) for all t > ;
() ψ() = φ().

Assume that T(A) ⊂ B. Then T has a unique best proximity point x∗ ∈ A and for any
given x ∈ E the iterative sequence xn+ = PTxn converges to x∗.

Proof From (.) we know that (E, F ,�) is an S-probabilistic metric space. By using The-
orem ., the conclusion is proved. �

4 Contraction mapping principle in Menger probabilistic metric spaces
Let (E, F ,�) be a Menger probabilistic metric space. For any x, y ∈ E, we define

dF (x, y) =
∫ +∞


t dFx,y(t).
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Since t is a continuous function and Fx,y is a bounded variation functions, so the above
integral is well defined. In fact, the above integer is just the mathematical expectation of
Fx,y(t). Throughout this paper we assume that

dF (x, y) =
∫ +∞


t dFx,y(t) < +∞, ∀x, y ∈ E

for all Menger probabilistic metric spaces (E, F ,�).
In , Czerwik [] presented a notable generalization of the classical Banach fixed

point theorem in the so-called b-metric spaces.

Definition . Let E be a nonempty set and s >  be a given real number. A function
d : E × E → R+ is called a b-metric provided that, for all x, y, z ∈ E,

(BM-) d(x, y) =  if and only if x = y;
(BM-) d(x, y) = d(y, x);
(BM-) d(x; y) ≤ s(d(x, z) + d(z, y)).

(E, d) is called a b-metric space with coefficient s.

The notions of topology including the convergence, completeness and Cauchy sequence
are similar to those of metric spaces. Now, we are in a position to present the interesting
result of our paper as follows.

Theorem . Let (E, F ,�) be a Menger probabilistic metric space, where �(a, b) =
max{a + b – , }. For any x, y ∈ E, define

dF (x, y) =
∫ +∞


t dFx,y(t).

Then dF (x, y) is a b-metric with s =  on E.

Proof Since Fx,y(t) = H(t) (∀t ∈ R) if and only if x = y, and

∫ +∞


t dH(t) = .

We know that condition (BM-) holds and condition (BM-) is obvious. Next we prove
condition (BM-). For any x, y, z ∈ E, from (PM-)

Fx,y(t) ≥ �

(
Fx,z

(
t


)
, Fz,y

(
t


))
, ∀t ∈ R = (–∞, +∞),

by using the property of Lebesgue-Stieltjes integral we have

dF (x, y) =
∫ +∞


t dFx,y(t) ≤

∫ +∞


t d�

(
Fx,z

(
t


)
, Fz,y

(
t


))

=
∫ +∞


t d max

(
Fx,z

(
t


)
+ Fz,y

(
t


)
– , 

)

=
∫ +∞


t d

(
Fx,z

(
t


)
+ Fz,y

(
t


))
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=
∫ +∞


t dFx,z

(
t


)
+

∫ +∞


t dFz,y

(
t


)

= 
∫ +∞



t


dFx,z

(
t


)
+ 

∫ +∞



t


dFz,y

(
t


)

= 
∫ +∞


u dFx,z(u) + 

∫ +∞


u dFz,y(u)

= dF (x, z) + dF (z, y).

This completes the proof. �

Theorem . Let (E, F ,�) be a complete Menger probabilistic metric space, where
�(a, b) = max{a + b – , }. Let T : E → E be a mapping satisfying the following condi-
tion:

FTx,Ty(t) ≥ Fx,y

(
t
h

)
, ∀x, y ∈ E,∀t ∈ R = (–∞, +∞), (.)

where  < h <  is a constant. Then T has a unique fixed point x∗ ∈ E and for any given x ∈
E the iterative sequence xn+ = Txn converges to x∗. Further, the error estimate inequality

∫ +∞


t dFTnx,x∗ (t) ≤ hL[ n

L ]

 – hL max
≤i<L

∫ +∞


t dFTix,Ti+x (t)

holds for some positive integer L provided hL < 
 .

Proof For any x, y ∈ E, from (.), by using the property of Lebesgue-Stieltjes integral we
have

dF (Tx, Ty) =
∫ +∞


t dFTx,Ty(t)

≤
∫ +∞


t dFx,y

(
t
h

)
= h

∫ +∞



t
h

dFx,y

(
t
h

)

= h
∫ +∞


u dFx,y(u) = hdF (x, y).

Further, for any positive integer l, we have

dF
(
Tlx, Tly

) ≤ hdF
(
Tl–x, Tl–y

) ≤ hdF
(
Tl–x, Tl–y

) ≤ · · · ≤ hldF (x, y).

Choose a sufficiently large integer L such that hL < 
 , then

dF
(
TLx, TLy

) ≤ hLdF (x, y) = gdF (x, y), ∀x, y ∈ E,

where g = hL and  < g < 
 . For any given x ∈ E, define xn+ = TLxn for all n = , , , . . . .

Observe that

dF (xn, xn+m) ≤ dF (xn, xn+) + dF (xn+, xn+m)

≤ dF (xn, xn+) + dF (xn+, xn+)
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+ dF (xn+, xn+m)

≤ (
gn + gn+ + gn+ + · · · + mgn+m–)dF (x, x). (.)

Since  < g < 
 , we have

(
gn + gn+ + gn+ + · · · + mgn+m–)dF (x, x) → 

as n → ∞. Hence
∫ +∞


t dFxn ,xn+m (t) = dF (xn, xn+m) → 

as n → ∞. We claim that

lim
n→∞ Fxn ,xn+m = H(t). (.)

If not, there exist numbers t > ,  < λ <  and two subsequences {nk}, {mk} of {n} such
that Fxnk ,xnk +mk

(t) ≤ λ for all k ≥ . In this case, we have

dF (xnk , xnk +mk ) =
∫ +∞


t dFxnk ,xnk +mk

(t)

=
∫ t


t dFxnk ,xnk +mk

(t) +
∫ +∞

t

t dFxnk ,xnk +mk
(t)

≥
∫ +∞

t

t dFxnk ,xnk +mk
(t) ≥ t

(
 – Fxnk ,xnk +mk

(t)
)

≥ t( – λ) > .

This is a contradiction. From (.) we know that {xn} is a Cauchy sequence in a complete
Menger probabilistic metric space (E, F ,�). Hence there exists a point x∗ ∈ E such that
{xn} converges to x∗ in the meaning of

lim
n→∞ Fxn ,x∗ = H(t).

We claim that x∗ is a fixed point of TL. In fact, for any t ∈ R, it follows from condition
(PM-) and the property of �-norm that

Fx∗ ,TLx∗ (t) ≥ �

(
Fx∗ ,xn

(
t


)
, Fxn ,TLx∗

(
t


))

= �

(
Fx∗ ,xn

(
t


)
, FTLxn–,TLx∗

(
t


))

≥ �

(
Fx∗ ,xn

(
t


)
, Fxn–,x∗

(
t

g

))
→ H(t)

as n → ∞, which implies Fx∗ ,TLx∗ (t) = H(t) and hence x∗ = TLx∗. The x∗ is a fixed point
of TL. If there exists another fixed point x∗∗ of TL, we observe that

Fx∗ ,x∗∗ (t) = FTLx∗ ,TLx∗∗ (t) ≥ Fx∗ ,x∗∗
(

t
g

)
,
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which implies Fx∗ ,x∗∗ (t) = H(t), ∀t ∈ R, i.e., x∗ = x∗∗. Hence the fixed point of TL is unique.
On the other hand, it follows from x∗ = TLx∗ that Tx∗ = TL(Tx∗), by the uniqueness we
know x∗ = Tx∗. Then x∗ is the unique fixed point of T . Now we prove that, for any given
x, the iterative sequence xn = Tnx converges to x∗. Observe that any positive integer n
can be expressed as n = mL + i, where m, i are some positive integers and  ≤ i < L. In this
case, Tnx = TmLTix → x∗. Finally, we prove the error estimate formula. Let m → ∞ in
inequality (.), we get

dF
(
xn, x∗) ≤ gn

 – g
dF (x, x). (.)

Since xn = TnLx for all n ≥ , the above inequality (.) can be rewritten as follows:

dF
(
TnLx, x∗) ≤ gn

 – g
dF (x, x).

Because any positive integer n can be expressed as n = mL + i, where m, i are some positive
integers and  ≤ i < L, we can get the following inequality:

dF
(
Tnx, x∗) = dF

(
TmLTix, x∗) ≤ gm

 – g
dF

(
Tix, Ti+x

)
,

where m = [ n
L ] and i = , , , . . . , L – . Finally we can get the error estimate formula

dF
(
Tnx, x∗) ≤ g[ n

L ]

 – g
max
≤i<L

(
dF

(
Tix, Ti+x

))

=
hL[ n

L ]

 – hL max
≤i<L

(
dF

(
Tix, Ti+x

))

=
hL[ n

L ]

 – hL max
≤i<L

∫ +∞


t dFTix,Ti+x (t).

That is,
∫ +∞


t dFTnx,x∗ (t) ≤ hL[ n

L ]

 – hL max
≤i<L

∫ +∞


t dFTix,Ti+x (t).

This completes the proof. �

Theorem . Let (E, F ,�) be a complete Menger probabilistic metric space. Assume
�(a, b) ≥ �(a, b) = max{a + b – , }. Let T : E → E be a mapping satisfying the follow-
ing condition:

FTx,Ty(t) ≥ Fx,y

(
t
h

)
, ∀x, y ∈ E,∀t ∈ R = (–∞, +∞),

where  < h <  is a constant. Then T has a unique fixed point x∗ ∈ E and for any given x ∈
E the iterative sequence xn+ = Txn converges to x∗. Further, the error estimate inequality

∫ +∞


t dFTnx,x∗ (t) ≤ hL[ n

L ]

 – hL max
≤i<L

∫ +∞


t dFTix,Ti+x (t)

holds for some positive integer L provided hL < 
 .
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Proof Since �(a, b) ≥ �(a, b) = max{a + b – , }, if (E, F ,�) is a complete Menger proba-
bilistic metric space, so is (E, F ,�). By using Theorem ., we get the conclusion of The-
orem .. This completes the proof. �

Corollary . (Sehgal and Bharucha-Reid [], ) Let (E, F , min) be a complete Menger
probabilistic metric space. Let T : E → E be a mapping satisfying the following condition:

FTx,Ty(t) ≥ Fx,y

(
t
h

)
, ∀x, y ∈ E,∀t ∈ R = (–∞, +∞),

where  < h <  is a constant. Then T has a unique fixed point x∗ ∈ E and for any given x ∈
E the iterative sequence xn+ = Txn converges to x∗. Further, the error estimate inequality

∫ +∞


t dFTnx,x∗ (t) ≤ hL[ n

L ]

 – hL max
≤i<L

∫ +∞


t dFTix,Ti+x (t)

holds for some positive integer L provided hL < 
 .

5 Best proximity point theorems in Menger probabilistic metric spaces
We first define the notion of P-operator P : B → A, which is useful for our best proximity
point theorem. From the definitions of A and B, we know that for any given y ∈ B, there
exists an element x ∈ A such that Fx,y(t) = FA,B(t). Because (A, B) has the weak P-property,
so such x is unique. We denote by x = Py the P-operator from B into A.

Theorem . Let (E, F ,�) be a complete Menger probabilistic metric space, where
�(a, b) = max{a + b – , }. Let (A, B) be a pair of nonempty subsets in E and A be a
nonempty closed subset. Suppose that (A, B) satisfies the weak P-property. Let T : A → B
be a mapping satisfying the following condition:

FTx,Ty(t) ≥ Fx,y

(
t
h

)
, ∀x, y ∈ A,∀t ∈ R = (–∞, +∞),

where  < h <  is a constant. Assume T(A) ⊂ B. Then T has a unique best proximity
point x∗ ∈ A and for any given x ∈ E the iterative sequence xn+ = PTxn converges to x∗.
Further, the error estimate inequality

∫ +∞


t dF(PT)nx,x∗ (t) ≤ hL[ n

L ]

 – hL max
≤i<L

∫ +∞


t dF(PT)ix,(PT)i+x (t)

holds for some positive integer L provided hL < 
 .

Proof Since the pair (A, B) has the weak P-property, we have

FPTx,PTx (t) ≥ FTx,Tx (t) ≥ Fx,x

(
t
h

)
, ∀t ∈ R = (–∞, +∞)

for any x, x ∈ A. This shows that PT : A → A is a contraction from a complete Menger
probabilistic metric subspace A into itself. Using Theorem ., we know that PT has a
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unique fixed point x∗ and for any given x ∈ E the iterative sequence xn+ = PTxn converges
to x∗. Further, the error estimate inequality

∫ +∞


t dF(PT)nx,x∗ (t) ≤ hL[ n

L ]

 – hL max
≤i<L

∫ +∞


t dF(PT)ix,(PT)i+x (t)

holds for some positive integer L provided hL < 
 . Since PTx∗ = x∗ if and only if Fx∗ ,Tx∗ (t) =

FA,B(t), so the point x∗ is the unique best proximity point of T : A → B. This completes the
proof. �

Theorem . Let (E, F ,�) be a complete Menger probabilistic metric space. Assume
�(a, b) ≥ �(a, b) = max{a+b–, }. Let (A, B) be a pair of nonempty subsets in E and A be
a nonempty closed subset. Suppose that (A, B) satisfies the weak P-property. Let T : A → B
be a mapping satisfying the following condition:

FTx,Ty(t) ≥ Fx,y

(
t
h

)
, ∀x, y ∈ A,∀t ∈ R = (–∞, +∞),

where  < h <  is a constant. Assume T(A) ⊂ B. Then T has a unique best proximity
point x∗ ∈ A and for any given x ∈ E the iterative sequence xn+ = PTxn converges to x∗.
Further, the error estimate inequality

∫ +∞


t dF(PT)nx,x∗ (t) ≤ hL[ n

L ]

 – hL max
≤i<L

∫ +∞


t dF(PT)ix,(PT)i+x (t)

holds for some positive integer L provided hL < 
 .

Proof Because �(a, b) ≥ �(a, b) = max{a + b – , }, by using Theorem ., we can get the
conclusion of Theorem .. This completes the proof. �

Corollary . Let (E, F , min) be a complete Menger probabilistic metric space. Let (A, B)
be a pair of nonempty subsets in E and A be a nonempty closed subset. Suppose that (A, B)
satisfies the weak P-property. Let T : A → B be a mapping satisfying the following condition:

FTx,Ty(t) ≥ Fx,y

(
t
h

)
, ∀x, y ∈ A,∀t ∈ R = (–∞, +∞),

where  < h <  is a constant. Assume that T(A) ⊂ B. Then T has a unique best proximity
point x∗ ∈ A and for any given x ∈ E the iterative sequence xn+ = PTxn converges to x∗.
Further, the error estimate inequality

∫ +∞


t dF(PT)nx,x∗ (t) ≤ hL[ n

L ]

 – hL max
≤i<L

∫ +∞


t dF(PT)ix,(PT)i+x (t)

holds for some positive integer L provided hL < 
 .

Corollary . Let (E, F ,�) be a complete Menger probabilistic metric space, where
�(a, b) = a · b. Let (A, B) be a pair of nonempty subsets in E and A be a nonempty closed
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subset. Suppose that (A, B) satisfies the weak P-property. Let T : A → B be a mapping sat-
isfying the following condition:

FTx,Ty(t) ≥ Fx,y

(
t
h

)
, ∀x, y ∈ A,∀t ∈ R = (–∞, +∞),

where  < h <  is a constant. Assume that T(A) ⊂ B. Then T has a unique best proximity
point x∗ ∈ A and for any given x ∈ E the iterative sequence xn+ = PTxn converges to x∗.
Further, the error estimate inequality

∫ +∞


t dF(PT)nx,x∗ (t) ≤ hL[ n

L ]

 – hL max
≤i<L

∫ +∞


t dF(PT)ix,(PT)i+x (t)

holds for some positive integer L provided hL < 
 .

Remark The research for probabilistic metric spaces (probabilistic normed spaces) and
relevant fixed point theory is an important topic. Many relevant results have been given
by some authors. However, the profound relationship with the probabilistic theory has not
been studied closely. The S-probabilistic metric spaces and relevant probabilistic methods
will play an important role in the theory and applications.
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