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Abstract
In this paper, we establish dislocated quasi-b-metric spaces and introduce the
notions of Geraghty type dqb-cyclic-Banach contraction and dqb-cyclic-Kannan
mapping and derive the existence of fixed point theorems for such spaces. Our main
theorem extends and unifies existing results in the recent literature.

MSC: 47H05; 47H10; 47J25

Keywords: fixed points; dqb-cyclic-Banach contraction; dqb-cyclic-Kannan
mapping; b-metric spaces; quasi-b-metric spaces; b-metric-like spaces; dislocated
quasi-b-metric spaces

1 Introduction and preliminaries
Fixed point theory has been studied extensively, which can be seen from the works of
many authors [–]. Banach contraction principle was introduced in  by Banach []
as follows:

(i) Let (X, d) be a metric space and let T : X → X . Then T is called a Banach
contraction mapping if there exists k ∈ [, ) such that

d(Tx, Ty) ≤ kd(x, y)

for all x, y ∈ X .
The concept of Kannan mapping was introduced in  by Kannan [] as follows:
(ii) T is called a Kannan mapping if there exists r ∈ [, 

 ) such that

d(Tx, Ty) ≤ rd(x, Tx) + rd(y, Ty)

for all x, y ∈ X .
Now, we recall the definition of cyclic map. Let A and B be nonempty subsets of a metric

space (X, d) and T : A ∪ B → A ∪ B. T is called a cyclic map iff T(A) ⊆ B and T(B) ⊆ A.
In , Kirk et al. [] introduced cyclic contraction as follows:
(iii) A cyclic map T : A ∪ B → A ∪ B is said to be a cyclic contraction if there exists

a ∈ [, ) such that

d(Tx, Ty) ≤ ad(x, y)

for all x ∈ A and y ∈ B.
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In , Karapinar and Erhan [] introduced Kannan type cyclic contraction as follows:
(iv) A cyclic map T : A ∪ B → A ∪ B is called a Kannan type cyclic contraction if there

exists b ∈ [, 
 ) such that

d(Tx, Ty) ≤ bd(x, Tx) + bd(y, Ty)

for all x ∈ A and y ∈ B.
If (X, d) is a complete metric space, at least one of (i), (ii), (iii) and (iv) holds, then it

has a unique fixed point [–]. Next, we discuss the development of spaces. The con-
cept of quasi-metric spaces was introduced by Wilson [] in  as a generalization of
metric spaces, and in  Hitzler and Seda [] introduced dislocated metric spaces as
a generalization of metric spaces, [] generalized the result of Hitzler, Seda and Wilson
and introduced the concept of dislocated quasi-metric space. Włodarczyk et al. (see [–
]) created uniform spaces as this is the concept of metric spaces. In , Bakhtin []
introduced b-metric space as a generalization of metric space. Moreover, Czerwik []
made the results of Bakhtin known more in . Finally, many other generalized b-metric
spaces such as quasi-b-metric spaces [], b-metric-like spaces [] and quasi-b-metric-
like spaces [] were introduced.

We begin with the following definition as a recall from [, ].

Definition . [, , ] Let X be a nonempty set. Suppose that the mapping d : X ×X →
[,∞) satisfies the following conditions:

(d) d(x, x) =  for all x ∈ X ;
(d) d(x, y) = d(y, x) =  implies x = y for all x, y ∈ X ;
(d) d(x, y) = d(y, x) for all x, y ∈ X ;
(d) d(x, y) ≤ [d(x, z) + d(z, y)] for all x, y, z ∈ X .

If d satisfies conditions (d), (d) and (d), then d is called a quasi-metric on X. If d satis-
fies conditions (d), (d) and (d), then d is called a dislocated metric on X. If d satisfies
conditions (d)-(d), then d is called a metric on X.

In  the concept of dislocated quasi-metric spaces [], which is a new generalization
of quasi-b-metric spaces and dislocated b-metric spaces, was introduced. By Definition .,
if setting conditions (d) and (d) hold true, then d is called a dislocated quasi-metric on X.

Remark . It is obvious that metric spaces are quasi-metric spaces and dislocated metric
spaces, but the converse is not true.

In , Bakhtin [] introduced the concept of b-metric spaces and investigated some
fixed point theorems in such spaces.

Definition . [] Let X be a nonempty set. Suppose that the mapping b : X × X →
[,∞) such that the constant s ≥  satisfies the following conditions:

(b) b(x, y) = b(y, x) =  ⇔ x = y for all x, y ∈ X ;
(b) b(x, y) = b(y, x) for all x, y ∈ X ;
(b) b(x, y) ≤ s[b(x, z) + b(z, y)] for all x, y, z ∈ X .

The pair (X, b) is then called a b-metric space.
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Remark . It is obvious that metric spaces are b-metric spaces, but conversely this is not
true.

In , Shah and Hussain [] introduced the concept of quasi-b-metric spaces and
verified some fixed point theorems in quasi-b-metric spaces.

Definition . [] Let X be a nonempty set. Suppose that the mapping q : X × X →
[,∞) such that constant s ≥  satisfies the following conditions:

(q) q(x, y) = q(y, x) =  ⇔ x = y for all x, y ∈ X ;
(q) q(x, y) ≤ s[q(x, z) + q(z, y)] for all x, y, z ∈ X .

The pair (X, q) is then called a quasi-b-metric space.

Remark . It is obvious that b-metric spaces are quasi-b-metric spaces, but conversely
this is not true.

Recently, the concept of b-metric-like spaces, which is a new generalization of metric-
like spaces, was introduced by Alghamdi et al. [].

Definition . [] Let X be a nonempty set. Suppose that the mapping D : X × X →
[,∞) such that constant s ≥  satisfies the following conditions:

(D) D(x, y) =  ⇒ x = y for all x, y ∈ X ;
(D) D(x, y) = D(y, x) for all x, y ∈ X ;
(D) D(x, y) ≤ s[D(x, z) + D(z, y)] for all x, y, z ∈ X .

The pair (X, D) is then called a b-metric-like space (or a dislocated b-metric space).

Remark . It is obvious that b-metric spaces are b-metric-like spaces, but conversely
this is not true.

In this paper we introduce dislocated quasi-b-metric spaces which generalize quasi-b-
metric spaces and b-metric-like spaces, and we introduce the notions of Geraghty type
dqb-cyclic-Banach contraction and dqb-cyclic-Kannan mapping and derive the existence
of fixed point theorems for such spaces. Our main theorems extend and unify existing
results in the recent literature.

2 Main results
In this section, we begin with introducing the notion of dislocated quasi-b-metric space.

Definition . Let X be a nonempty set. Suppose that the mapping d : X × X → [,∞)
such that constant s ≥  satisfies the following conditions:

(d) d(x, y) = d(y, x) =  implies x = y for all x, y ∈ X ;
(d) d(x, y) ≤ s[d(x, z) + d(z, y)] for all x, y, z ∈ X .

The pair (X, d) is then called a dislocated quasi-b-metric space (or simply dqb-metric). The
number s is called the coefficient of (X, d).

Remark . It is obvious that b-metric spaces, quasi-b-metric spaces and b-metric-like
spaces are dislocated quasi-b-metric spaces, but the converse is not true.
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Example . Let X = R and let

d(x, y) = |x – y| +
|x|
n

+
|y|
m

,

where n, m ∈N \ {} with n �= m.
Then (X, d) is a dislocated quasi-b-metric space with the coefficient s = , but since

d(, ) �= , we have (X, b) is not a quasi-b-metric space, and since d(, ) �= d(, ), we have
(X, b) is not a b-metric-like space. And (X, b) is not a dislocated quasi-metric space. Indeed,
let x, y, z ∈ X. Suppose that d(x, y) = .

Then

|x – y| +
|x|
n

+
|y|
m

= .

It implies that |x – y| = , and so x = y.
Next, consider

d(x, y) = |x – y| +
|x|
n

+
|y|
m

≤ (|x – z| + |z – y|) +
|x|
n

+
|y|
m

≤ |x – z| + |x – z| · |z – y| + |z – y| +
|x|
n

+
|y|
m

≤ 
(|x – z| + |z – y|) +

|x|
n

+
|z|
m

+
|z|
n

+
|y|
m

≤ s
[
d(x, z) + d(z, y)

]
,

where s = ,

d
(
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)
=
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∣
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+ d
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,



)
,

where n, m > .

Example . [] Let X = {, , }, and let d : X × X →R
+ be defined by

d(x, y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

; x = y = ,

 ; x = , y = ,

; x = , y = ,

 ; otherwise.
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Then (X, d) is a dislocated quasi-b-metric space with the coefficient s = , but since d(, ) �=
, we have (X, b) is not a quasi-b-metric space, and since d(, ) �= d(, ), we have (X, b) is
not a b-metric-like space. It is obvious that (X, b) is not a dislocated quasi-metric space.

Example . Let X = R and let

d(x, y) = |x – y| + |x| + |y|.

Then (X, d) is a dislocated quasi-b-metric space with the coefficient s = , but since
d(, ) �= d(, ), we have (X, b) is not a b-metric-like space, since d(, ) �= , we have (X, b)
is not a quasi-b-metric space. It is obvious that (X, b) is not a dislocated quasi-metric space.

Example . Let X = R and let

d(x, y) = |x – y| + |x + y|.

Then (X, d) is a dislocated quasi-b-metric space with the coefficient s = , but since d(, ) �=
, we have (X, b) is not a quasi-b-metric space. It is obvious that (X, b) is not a dislocated
quasi-metric space.

We will introduce a dislocated quasi-b-convergent sequence, a Cauchy sequence and a
complete space according to Zoto et al. [].

Definition .
() A sequence ({xn}) in a dqb-metric space (X, d) dislocated quasi-b-converges (for

short, dqb-converges) to x ∈ X if

lim
n→∞ d(xn, x) =  = lim

n→∞ d(x, xn).

In this case x is called a dqb-limit of ({xn}), and we write (xn → x).
() A sequence ({xn}) in a dqb-metric space (X, d) is called Cauchy if

lim
n,m→∞ d(xn, xm) =  = lim

n,m→∞ d(xm, xn).

() A dqb-metric space (X, d) is complete if every Cauchy sequence in it is
dqb-convergent in X .

Next, we begin with introducing the concept of a dqb-cyclic-Banach contraction.

Definition . Let A and B be nonempty subsets of a dislocated quasi-b-metric space
(X, d). A cyclic map T : A ∪ B → A ∪ B is said to be a dqb-cyclic-Banach contraction if
there exists k ∈ [, ) such that

d(Tx, Ty) ≤ kd(x, y) (.)

for all x ∈ A, y ∈ B and s ≥  and sk ≤ .
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Now we prove our main results.

Theorem . Let A and B be nonempty subsets of a complete dislocated quasi-b-metric
space (X, d). Let T be a cyclic mapping that satisfies the condition of a dqb-cyclic-Banach
contraction. Then T has a unique fixed point in A ∩ B.

Proof Let x ∈ A(fix) and, using the contractive condition of the theorem, we have

d
(
Tx, Tx

)
= d

(
T(Tx), Tx

)

≤ kd(Tx, x)

and

d
(
Tx, Tx

)
= d

(
Tx, T(Tx)

)

≤ kd(x, Tx).

So,

d
(
Tx, Tx

) ≤ kα (.)

and

d
(
Tx, Tx

) ≤ kα, (.)

where α = max{d(Tx, x), d(x, Tx)}.
By using (.) and (.), we have d(Tx, Tx) ≤ kα, and d(Tx, Tx) ≤ kα.
For all n ∈ N, we get

d
(
Tn+x, Tnx

) ≤ knα

and

d
(
Tnx, Tn+x

) ≤ knα.

Let n, m ∈N with m > n, by using the triangular inequality, we have

d
(
Tmx, Tnx

) ≤ sm–nd
(
Tmx, Tm–x

)
+ sm–n–d

(
Tm–x, Tm–x

)
+ · · · + sd

(
Tn+x, Tnx

)

≤ (
sm–nkm– + sm–n–km– + sm–n–km– + · · · + skn+ + skn)α

=
(
(sk)m–nkn– + (sk)m–n–km– + (sk)m–n–kn– + · · ·
+ (sk)kn– + (sk)kn–)α

≤ (
kn– + kn– + kn– + · · · + kn– + kn–)α

=
(
kn–)(m – n + )α

≤ (
kn–)ξα

for some ξ > m – n + .
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Take n → ∞, we get d(Tmx, Tnx) → .
Similarly, let n, m ∈N with m > n, by using the triangular inequality, we have

d
(
Tnx, Tmx

)
=

(
kn–)ξα.

Take n → ∞, we get d(Tnx, Tmx) → . Thus Tnx is a Cauchy sequence.
Since (X, d) is complete, we have {Tnx} converges to some z ∈ X.
We note that {Tnx} is a sequence in A and {Tn–x} is a sequence in B in a way that both

sequences tend to the same limit z.
Since A and B are closed, we have z ∈ A ∩ B, and then A ∩ B �= ∅.
Now, we will show that Tz = z.
By using (.), consider

d
(
Tnx, Tz

)
= d

(
T

(
Tn–x

)
, Tz

)

≤ kd
(
Tn–x, z

)

≤ d
(
Tn–x, z

)
.

Taking limit as n → ∞ in the above inequality, we have

d(z, Tz) ≤ kd(z, Tz) ≤ d(z, Tz).

And so d(z, Tz) = kd(z, Tz), where  ≤ k < . This implies that d(z, Tz) = .
Similarly, considering form (.), we get

d
(
Tz, Tnx

)
= d

(
Tz, T

(
Tn–x

))

≤ kd
(
z, Tn–x

)

≤ d
(
z, Tn–x

)
.

Taking limit as n → ∞ in the above inequality, we have

d(Tz, z) ≤ kd(Tz, z) ≤ d(Tz, z).

And so d(Tz, z) = kd(Tz, z), where  ≤ k < . This implies that d(Tz, z) = .
Hence d(z, Tz) = d(Tz, z) = , this implies that Tz = z, that is, z is a fixed point of T .
Finally, to prove the uniqueness of a fixed point, let z∗ ∈ X be another fixed point of T

such that Tz∗ = z∗.
Then we have

d
(
z, z∗) = d

(
Tz, Tz∗) ≤ kd

(
z, z∗). (.)

On the other hand,

d
(
z∗, z

)
= d

(
Tz∗, Tz

) ≤ kd
(
z∗, z

)
. (.)

By forms (.) and (.), we obtain that d(z, z∗) = d(z∗, z) = , this implies that z∗ = z.
Therefore z is a unique fixed point of T . This completes the proof. �
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Example . Let X = [–, ] and T : A ∪ B → A ∪ B defined by Tx = –x
 . Suppose that

A = [–, ] and B = [, ]. Define the function d : X → [,∞) by

d(x, y) = |x – y| +
|x|


+
|y|


.

We see that d is a dislocated quasi-b-metric on X.
Now, let x ∈ A. Then – ≤ x ≤ . So,  ≤ –x

 ≤ 
 . Thus, Tx ∈ B.

On the other hand, let x ∈ B. Then  ≤ x ≤ . So, –
 ≤ –x

 ≤ . Thus, Tx ∈ A.
Hence the map T is cyclic on X because T(A) ⊂ B and T(B) ⊂ A.
Next, we consider

d(Tx, Ty) = |Tx – Ty| + |Tx| + |Ty|

=
∣
∣∣
∣
–x


–
–y


∣
∣∣
∣



+




∣
∣∣
∣
–x


∣
∣∣
∣ +




∣
∣∣
∣
–y


∣
∣∣
∣

=



|x – y| +




|x| +



|y|

≤ 


[
|x – y| +




|x| +



|y|
]

≤ kd(x, y),

so for 
 ≤ k < .

Thus T satisfies the dqb-cyclic-Banach contraction of Theorem . and  is the unique
fixed point of T .

Finally, we begin with introducing the concept of dqb-cyclic-Kannan mapping.

Definition . Let A and B be nonempty subsets of a dislocated quasi-b-metric space
(X, d). A cyclic map T : A ∪ B → A ∪ B is called a dqb-cyclic-Kannan mapping if there
exists r ∈ [, 

 ) such that

d(Tx, Ty) ≤ r
(
d(x, Tx) + d(x, Ty)

)
(.)

for all x ∈ A, y ∈ B and s ≥  and sr ≤ 
 .

In the next theorem, we will prove the fixed point theorem for a cyclic-Kannan mapping
in a dislocated quasi-b-metric space.

Theorem . Let A and B be nonempty subsets of a complete dislocated quasi-b-metric
space (X, d). Let T be a cyclic mapping that satisfies the condition of a dqb-cyclic-Kannan
mapping. Then T has a unique fixed point in A ∩ B.

Proof Let x ∈ A(fix) and, using the contractive condition of the theorem, we have

d
(
Tx, Tx

)
= d

(
Tx, T(Tx)

)

≤ rd(x, Tx) + rd
(
Tx, Tx

)
,
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so

d
(
Tx, Tx

) ≤ r
 – r

d(x, Tx). (.)

And from (.) we have

d
(
Tx, Tx

)
= d

(
T(Tx), Tx

)

≤ rd
(
Tx, Tx

)
+ rd(x, Tx)

≤ r
 – r

d(x, Tx) + rd(x, Tx)

≤
(

r
 – r

+
r

 – r

)
d(x, Tx)

≤ r
 – r

d(x, Tx),

so

d
(
Tx, Tx

) ≤ r
 – r

β , (.)

where β = d(x, Tx).
By using (.) and (.), we have

d
(
Tx, Tx

) ≤
(

r
 – r

)

β

and

d
(
Tx, Tx

) ≤
(

r
 – r

)

β .

For all n ∈N, we get

d
(
Tn+x, Tnx

) ≤
(

r
 – r

)n

β

and

d
(
Tnx, Tn+x

) ≤
(

r
 – r

)n

β .

Let n, m ∈N with m > n, by using the triangular inequality, we have

d
(
Tmx, Tnx

) ≤ sm–nd
(
Tmx, Tm–x

)
+ sm–n–d

(
Tm–x, Tm–x

)
+ · · · + sd

(
Tn+x, Tnx

)

≤ (
sm–nkm– + sm–n–km– + sm–n–km– + · · · + skn+ + skn)β

≤
((

r
 – r

)n–

+
(

r
 – r

)n–

+
(

r
 – r

)n–

+ · · ·

+
(

r
 – r

)n–

+
(

r
 – r

)n–)
β
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=
(

r
 – r

)n–

(m – n + )β

<
(

r
 – r

)n–

ξβ

for some ξ > m – n + . Take n → ∞, we get d(Tmx, Tnx) → .
Similarly, let n, m ∈N with m > n, by using the triangular inequality, we have

d
(
Tnx, Tmx

)
<

(
r

 – r

)n–

ξβ .

Take n → ∞, we get d(Tnx, Tmx) → . Thus Tnx is a Cauchy sequence.
Since (X, d) is complete, we have {(Tnx)} converges to some z ∈ X.
We note that {Tnx} is a sequence in A and {Tn–x} is a sequence in B in a way that both

sequences tend to the same limit z.
Since A and B are closed, we have z ∈ A ∩ B, and then A ∩ B �= ∅.
Now, we will show that Tz = z.
By using (.), consider

d
(
Tnx, Tz

)
= d

(
T

(
Tn–x

)
, Tz

)

≤ rd
(
Tn–x, Tnx

)
+ rd(z, Tz).

Taking limit as n → ∞ in the above inequality, we have

d(z, Tz) ≤ rd(z, Tz).

Since  ≤ r < 
 , we have d(z, Tz) = .

Similarly, considering form (.), we get

d
(
Tz, Tnx

)
= d

(
Tz, T

(
Tn–x

))

≤ rd(z, Tz) + rd
(
Tn–x, Tnx

)
.

Taking limit as n → ∞ in the above inequality, we have

d(Tz, z) ≤ rd(z, Tz).

Since d(z, Tz) = , we have d(z, Tz) = .
Hence d(z, Tz) = d(Tz, z) =  ⇒ Tz = z and z is a fixed point of T .
Finally, to prove the uniqueness of a fixed point, let z∗ ∈ X be another fixed point of T

such that Tz∗ = z∗.
Then we have d(z, z) = d(z∗, z∗) = , because by assumption

d
(
z, z∗) = d

(
Tz, Tz∗)

≤ rd(z, Tz) + rd
(
z∗, Tz∗)

= rd(z, z) + rd
(
z∗, z∗)

= . (.)
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On the other hand,

d
(
z∗, z

)
= d

(
Tz∗, Tz

)

≤ rd
(
z∗, Tz∗) + rd(z, Tz)

= rd
(
z∗, z∗) + rd(z, z)

= . (.)

By forms (.) and (.), we obtain that d(z, z∗) = d(z∗, z) =  ⇒ z∗ = z.
Therefore z is a unique fixed point of T . This completes the proof. �

Example . Let X = [–, ] and T : X → X defined by Tx = –x
 . Suppose that A = [–, ]

and B = [, ]. Define the function d : X → [,∞) by

d(x, y) = |x – y| + |x| + |y|.

We see that d is a dislocated quasi-b-metric on X.
Now, let x ∈ A. Then – ≤ x ≤ . So,  ≤ –x

 ≤ 
 . Thus, Tx ∈ B.

On the other hand, let x ∈ B. Then  ≤ x ≤ . So, –
 ≤ –x

 ≤ . Thus, Tx ∈ A.
Hence the map T is cyclic on X because T(A) ⊂ B and T(B) ⊂ A.
Next, we consider

d(Tx, Ty) = |Tx – Ty| + |Tx| + |Ty|

=
∣∣
∣∣
–x


–
–y


∣∣
∣∣



+ 
∣∣
∣∣
–x


∣∣
∣∣ + 

∣∣
∣∣
–y


∣∣
∣∣

=



|x – y| +



|x| +



|y|

≤ 


(|x| + |y|) +


|x| +



|y|

≤ 


|x| +



|y| +



|x| +



|y|

≤ 


([



|x| +



|x|
]

+
[




|y| +



|y|
])

=




([



|x| +



|x|
]

+
[




|y| +



|y|
])

=




([∣∣∣
∣x +




x
∣∣∣
∣



+ |x| + 
∣∣∣
∣




x
∣∣∣
∣

]
+

[∣∣∣
∣y +




y
∣∣∣
∣



+ |y| + 
∣∣∣
∣




y
∣∣∣
∣

])

=



([|x – Tx| + |x| + |Tx|] +

[|y – Ty| + |y| + |Ty|])

= r
(
d(x, Tx) + d(y, Ty)

)
,

so for 
 ≤ r < 

 .
Thus T satisfies the dqb-cyclic-Banach contraction of Theorem . and  is the unique

fixed point of T .
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