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Abstract
In this paper, we establish the structure of Menger PbM-spaces as a generalization of
Menger PM-spaces. We present some fixed point theorems for a new class of
contractive mappings in the framework of Menger PbM-spaces. We also provide
examples to illustrate the results presented herein. Then we utilize our main result to
obtain the existence and uniqueness of a solution for a Volterra type integral
equation.
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1 Introduction and preliminaries
The concept of a Menger probabilistic metric space (briefly, Menger PM-space) was initi-
ated by Menger []. The idea of Menger was to use a distribution function instead of a non-
negative number for the value of a metric. The notion of a probabilistic metric space cor-
responds to the situation when we do not know exactly the distance between two points.
Thus, one thinks of the distance between two points x and y as being probabilistic with
Fx,y(t) representing the probability that the distance between x and y is less than t.

In , Sehgal and Bharucha-Reid [] obtained a generalization of the Banach con-
traction principle on a complete Menger PM-space, which is a milestone in developing
fixed point theory in a Menger PM-space. After that, Schweizer and Sklar [] studied the
properties of Menger PM-spaces and gave some basic results on these spaces.

In recent times, the study on existence of fixed points for mappings satisfying general-
ized contractive type conditions in Menger PM-spaces has attracted much attention (see
[–]). This study was initiated by Ćirić in []; more details in []. Also a nice overview of
this research can be found in the book of Hadžić and Pap [].

On the other hand, the notion of a b-metric space was studied by Czerwik [, ] and
many fixed point results were obtained for single and multivalued mappings by Czerwik
and many other authors (see [–] and references cited therein).

In this paper, motivated by [, ], we establish the structure of Menger PbM-spaces and
obtain fixed point results for classes of mappings that extend the notion of generalized
β-type contractive mappings introduced by Gopal et al. [] in Menger PbM-spaces. We
also give some examples to show that our fixed point theorems for the new type of con-
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tractive mappings are independent. Then we use our main results to obtain the existence
and uniqueness of a solution for a Volterra type integral equation.

In the following, we provide some notations, definitions and auxiliary facts will be used
later in this paper. Throughout this paper, R+ denotes the set of nonnegative real numbers.

Definition . [, ] Let X be a nonempty set, and let the functional d : X × X → [,∞)
satisfy:

(b) d(x, y) =  if and only if x = y,
(b) d(x, y) = d(y, x) for all x, y ∈ X ,
(b) there exists a real number s ≥  such that d(x, z) ≤ s[d(x, y) + d(y, z)] for all

x, y, z ∈ X .
Then d is called a b-metric on X and a pair (X, d) is called a b-metric space with coeffi-
cient s.

Definition . [] Let (X, d) be a b-metric space. Then a sequence {xn} in X is called:
(i) convergent if and only if there exists x ∈ X such that d(xn, x) →  as n → ∞; in this

case, we write limn→∞xn = x;
(ii) Cauchy if and only if d(xn, xm) →  as m, n → ∞. The b-metric space (X, d) is

complete if every Cauchy sequence in X converges in X .

Remark . [] Notice that in a b-metric space (X, d) the following assertions hold:
(i) a convergent sequence has a unique limit;

(ii) each convergent sequence is Cauchy;
(iii) (X, d–→) is an L-space (see [, ]);
(iv) in general, a b-metric is not continuous;
(v) in general, a b-metric does not induce a topology on X .

Example . [] Let X = [,∞) and define d : X × X → [,∞) as

d(x, y) = |x – y| for all x, y ∈ X.

Then (X, d) is a complete b-metric space with coefficient s =  > , but it is not a usual
metric space.

Definition . [] Let (X, d) and (X ′, d′) be two b-metric spaces with coefficient s and s′,
respectively. A mapping T : X → X ′ is called continuous if for each sequence {xn} in X,
which converges to x ∈ X with respect to d, then {Txn} converges to Tx with respect to d′.

We recall the following definitions in the class of Menger PM-spaces.

Definition . [] A binary operation T : [, ] × [, ] → [, ] is a continuous t-norm if
the following conditions hold:

(i) T is commutative and associative,
(ii) T is continuous,

(iii) T(a, ) = a for all a ∈ [, ],
(iv) T(a, b) ≤ T(c, d) whenever a ≤ c and b ≤ d, for a, b, c, d ∈ [, ].
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The following are three basic continuous t-norms:
() The minimum t-norm, say TM , defined by TM(a, b) = min{a, b}.
() The product t-norm, say TP , defined by TP(a, b) = ab.
() The Lukasiewicz t-norm, say TL, defined by TL(a, b) = max{a + b – , }.

These t-norms are related in the following way: TL ≤ TP ≤ TM .

Definition . [] A function F : (–∞, +∞) → [, ] is called a distribution function if it
is non-decreasing and left-continuous with limt→–∞F(t) = . If in addition F() = , then
F is called a distance distribution function.

Definition . [] A distance distribution function F satisfying limt→+∞F(t) =  is called
a Menger distance distribution function. The set of all Menger distance distribution func-
tions is denoted by D+. A special Menger distance distribution function is given by

H(t) =

⎧
⎨

⎩

, t ≤ ,

, t > .

Definition . [] A Menger probabilistic metric space (briefly, Menger PM-space) is a
triple (X, F , T) where X is a nonempty set, T is a continuous t-norm, and F is a mapping
from X × X into D+ such that, if Fx,y denotes the value of F at the pair (x, y), the following
conditions hold:

(PM) Fx,y(t) = H(t) if and only if x = y,
(PM) Fx,y(t) = Fy,x(t),
(PM) Fx,y(t + s) ≥ T(Fx,z(t), Fz,y(s)) for all x, y, z ∈ X and s, t ≥ .

Definition . [] Let (X, F , T) be a Menger PM-space. Then:
(i) A sequence {xn} in X is said to be convergent to x in X if, for every ε >  and λ > 

there exists a positive integer N such that Fxn ,x(ε) >  – λ, whenever n ≥ N .
(ii) A sequence {xn} in X is called a Cauchy sequence if, for every ε >  and λ >  there

exists a positive integer N such that Fxn ,xm (ε) >  – λ, whenever n, m ≥ N .
(iii) A Menger PM-space is said to be complete if every Cauchy sequence in X is

convergent to a point in X .

According to [], the (ε,λ)-topology in a Menger PM-space (X, F , T) is introduced by
the family of neighborhoods Nx of a point x ∈ X given by Nx = {Nx(ε,λ) : ε > ,λ ∈ (, )},
where Nx(ε,λ) = {y ∈ X : Fx,y(ε) >  – λ}.

The (ε,λ)-topology is a Hausdorff topology. In this topology a function f is continuous
in x ∈ X if and only if f (xn) → f (x), for every sequence xn → x.

Example . [] Let (X, d) be a metric space. Define a mapping F : X × X →D+ by

F(x, y)(t) = Fx,y(t) = H
(
t – d(x, y)

)
, ∀x, y ∈ X, t ∈R.

Then (X, F , TM) is a Menger PM-space induced by (X, d). If (X, d) is complete, then
(X, F , TM) is complete.



Hasanvand and Khanehgir Fixed Point Theory and Applications  (2015) 2015:81 Page 4 of 18

Definition . [] A function φ : R+ → R
+ is said to be a �-function if it satisfies the

following conditions:
(i) φ(t) =  if and only if t = ,

(ii) φ(t) is strictly monotone increasing and φ(t) → ∞ as t → ∞,
(iii) φ is left-continuous in (,∞),
(iv) φ is continuous at .

In the sequel, the class of all �-functions will be denoted by �.
We conclude this section recalling the following fixed point theorem of Gopal et al., see

[]. Before this, we quote some definitions.

Definition . [] Let (X, F , T) be a Menger PM-space and f : X → X be a given map-
ping. We say that f is a generalized β-type contractive mapping if there exists a function
β : X × X × (,∞) → (,∞) such that

β(x, y, t)Ffx,fy
(
φ(t)

) ≥ min

{

Fx,y

(

φ

(
t
c

))

, Fx,fx

(

φ

(
t
c

))

, Fy,fy

(

φ

(
t
c

))

,

Fx,fy

(

φ

(
t
c

))

, Fy,fx

(

φ

(
t
c

))}

,

for all x, y ∈ X and for all t > , where φ ∈ � and c ∈ (, ).

Definition . [] Let (X, F , T) be a Menger PM-space, f : X → X be a given mapping
and β : X × X × (,∞) → (,∞) be a function. We say that f is β-admissible if

x, y ∈ X, for all t > , β(x, y, t) ≤  ⇒ β(fx, fy, t) ≤ .

Theorem . [] Let (X, F , T) be a complete Menger PM-space with continuous t-norm T
which satisfies T(a, a) ≥ a with a ∈ [, ]. Let f : X → X be a generalized β-type contractive
mapping satisfying the following conditions:

(i) f is β-admissible,
(ii) there exists x ∈ X such that β(x, fx, t) ≤  for all t > ,

(iii) if {xn} is a sequence in X such that β(xn, xn+, t) ≤  for all n ∈ N and for all t > 
and xn → x as n → ∞, then β(xn, x, t) ≤  for all n ∈N and for all t > .

Then f has a fixed point.

We denote by Fix(f ) the set of fixed points of f . Consider the following condition:
(J) For all u, v ∈ Fix(f ) and for all t >  there exists z ∈ X such that β(z, fz, t) ≤  with

β(u, z, t) ≤  and β(v, z, t) ≤ .

Theorem . [] Adding condition (J) to the hypotheses of Theorem ., we find that f
has a unique fixed point.

2 Main results
In this section, we introduce the notion of a Menger PbM-space and describe some of its
properties.
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Definition . A Menger probabilistic b-metric space (briefly, Menger PbM-space) with
coefficient α is a triple (X, F , T) where X is a nonempty set, T is a continuous t-norm,
F is a mapping from X × X into D+ (for x, y ∈ X, we denote F(x, y) by Fx,y), and α is a real
number in (, ] such that the following conditions hold:

(PbM) Fx,y(t) = H(t) for all t ∈R, if and only if x = y,
(PbM) Fx,y(t) = Fy,x(t) for all x, y ∈ X and t ∈ R,
(PbM) Fx,y(t + s) ≥ T(Fx,z(αt), Fz,y(αs)) for all x, y, z ∈ X , and t, s ≥ .

It should be noted that the class of Menger PbM-spaces is larger than the class of Menger
PM-spaces, since a Menger PbM-space is a Menger PM-space when α = .

Definition . Let (X, F , T) be a Menger PbM-space. Then a sequence {xn} in X is called:
(i) convergent to x in X (often denoted by xn → x) if for any given ε >  and λ ∈ (, ),

there exists a positive integer N = N(ε,λ) such that Fxn ,x(ε) >  – λ whenever n ≥ N ,
which is equivalent to limn→∞Fxn ,x(t) =  for all t > ;

(ii) Cauchy if for any given ε >  and λ ∈ (, ), there exists a positive integer N = N(ε,λ)
such that Fxn ,xm (ε) >  – λ whenever n, m ≥ N .

The Menger PbM-space (X, F , T) is said to be complete if every Cauchy sequence in X is
convergent in X.

Remark . In a Menger PbM-space (X, F , T) the following assertions hold:
(i) a convergent sequence has a unique limit,

(ii) in general, a Menger PbM-space is not a topological space.

In the following we present examples which show that introducing a Menger PbM-space
instead of Menger PM-space is meaningful.

Example . Let X = R
+. Define F : X × X →D+ by

Fx,y(t) =

⎧
⎨

⎩

t
t+|x–y| , if t > ,

, if t ≤ ,

for all x, y ∈ X. It is easy to show that (X, F , TM) is a complete Menger PbM-space with
α = 

 . However, it is not a Menger PM-space. We show that (PM) does not hold. To
prove this, let x = , y = , z = , t = , and t = . Then Fx,y(t + t) = 

 , Fx,z(t) = 
 , and

Fz,y(t) = 
 , hence Fx,y(t + t) = 

 �

 = TM(Fx,z(t), Fz,y(t)).

Example . Let (X, d) be a b-metric space with coefficient s ≥ . Define a mapping F :
X × X → D+ as in Example .. Then (X, F , TM) is a Menger PbM-space with α = 

s . We
know that t + t – d(x, y) ≥ t – sd(x, z) + t – sd(z, y), for each x, y, z ∈ X, t, t ∈ R, and
hence by the properties of H, we get

H
(
t + t – d(x, y)

) ≥ H
(
t – sd(x, z) + t – sd(z, y)

)

≥ min
{
H

(
t – sd(x, z)

)
,H

(
t – sd(z, y)

)}

= min

{

H
(

t

s
– d(x, z)

)

,H
(

t

s
– d(z, y)

)}

.
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It gives (PbM). Furthermore, a straightforward computation shows that if (X, d) is com-
plete, then (X, F , TM) is complete.

Now assume that (X, d) is as in Example .. Then by the above comment, (X, F , TM)
is a complete Menger PbM-space with α = 

 . We claim that (X, F , TM) is not a Menger
PM-space. Indeed, (PM) does not hold. To see this, let x = , y = , z = 

 , t = 
 ,

and t = 
 . Then Fx,y(t + t) =  and Fx,z(t) = Fz,y(t) = , hence Fx,y(t + t) =  �  =

TM(Fx,z(t), Fz,y(t)).

Note that the above examples are Menger PbM-spaces (but are not Menger PM-spaces)
if TM substitutes with TP or TL.

The following result is used in our next considerations. It is a generalization of [],
Lemma . in Menger PbM-spaces.

Lemma . Let (X, F , T) be a Menger PbM-space with coefficient α. Then the func-
tion F is a lower semi-continuous function of points, i.e., for every fixed t >  and every
two convergent sequences {xn}, {yn} in X such that xn → x and yn → y it follows that
limn→∞ inf Fxn ,yn (t) = Fx,y(t).

Proof Let t >  and ε >  be given. Since Fx,y is left-continuous at t so there exists δ such
that  < δ < t and Fx,y(t) – Fx,y(t – δ) < ε. Suppose h is an arbitrary fixed real number
with  < h < δ, then Fx,y(t) – Fx,y(t – h) < ε. Using again left-continuity of Fx,y at t – δ,
there exists δ >  such that Fx,y(t – δ) – Fx,y(t – δ) < ε. By repeating this argument we can
find k ∈ N, δi, δi+ >  (i = , . . . , k) in which Fx,y(t – δi) – Fx,y(t – δi+) < ε and αt – αh ∈
(t – δk , t – δk+). We deduce that

Fx,y(t) – Fx,y
(
αt – αh

)
=

(
Fx,y(t) – Fx,y(t – δ)

)
+

(
Fx,y(t – δ) – Fx,y(t – δ)

)
+ · · ·

+
(
Fx,y(t – δk) – Fx,y

(
αt – αh

))

< (k + )ε. ()

Set Fx,y(αt – αh) = a. Taking into account continuity of T and T(a, ) = a, there is a real
number l in (, ), fulfills

T(a, l) > a –
ε


and T

(

a –
ε


, l

)

> a –
ε


. ()

On the other hand, since xn → x and yn → y, there exists an integer Mh,l such that

Fxn ,x
(
αh

)
> l and Fyn ,y(αh) > l, ()

whenever n > Mh,l . Now, by (PbM)

Fxn ,yn (t) ≥ T
(
Fxn ,y(αt – αh), Fy,yn (αh)

)
()

and

Fxn ,y(αt – αh) ≥ T
(
Fxn ,x

(
αh

)
, Fx,y

(
αt – αh

))
. ()



Hasanvand and Khanehgir Fixed Point Theory and Applications  (2015) 2015:81 Page 7 of 18

From (), (), and (), we obtain

Fxn ,y(αt – αh) ≥ T(a, l) > a –
ε


. ()

Thus, on combining (), (), (), (), and (), we get

Fxn ,yn (t) ≥ T
(

a –
ε


, l

)

> a –
ε


> Fx,y(t) –

(k + )ε


.

This completes the proof. �

3 Generalized β-γ -type contractive mappings
In this section, we generalize the results obtained by Gopal et al. [] for the wider class of
generalized β-γ -type contractive mappings in Menger PbM-spaces.

Definition . Let (X, F , T) be a Menger PbM-space with coefficient α and f : X → X be
a given mapping. We say that f is a generalized β-γ -type contractive mapping of degree k
(k ∈N), if there exist two functions β : X × X × (,∞) → (,∞) and γ : X × X × (,∞) →
(,∞) such that

β
(
x, y,αkt

)
Ffx,fy

(
αkφ(t)

) ≥ γ

(

fx, fy,αk– t
c

)

min

{

Fx,y

(

αk–φ

(
t
c

))

,

Fx,fx

(

αk–φ

(
t
c

))

, Fy,fy

(

αk–φ

(
t
c

))

,

Fx,fy

(

αk–φ

(
t
c

))

, Fy,fx

(

αk–φ

(
t
c

))}

, ()

for all x, y ∈ X and for all t > , where φ ∈ � and c ∈ (, ). Further, the mapping f is called
a generalized β-γ -type contractive mapping if it is a generalized β-γ -type contractive
mapping of degree k for each k ∈N.

Definition . Let (X, F , T) be a Menger PbM-space, f : X → X be a mapping, and β :
X × X × (,∞) → (,∞) and γ : X × X × (,∞) → (,∞) be two functions. We say that
f is (β ,γ )-admissible if x, y ∈ X, for all t > , β(x, y, t) ≤  ⇒ β(fx, fy, t) ≤  and γ (x, y, t) ≥
 ⇒ γ (fx, fy, t) ≥ .

Imitating the proof of [], Lemma ., we can easily obtain the following lemma.

Lemma . Let (X, F , T) be a Menger PbM-space with coefficient α. Let φ be a �-function.
Then the following statement holds:

If for x, y ∈ X , c ∈ (, ), and k ∈N we have Fx,y(αkφ(t)) ≥ Fx,y(αk–φ( t
c )) for all t > ,

then x = y.

Our first main result is the following.

Theorem . Let (X, F , T) be a complete Menger PbM-space with coefficient α, which sat-
isfies T(a, a) ≥ a with a ∈ [, ]. Let f : X → X be a generalized β-γ -type contractive map-
ping satisfying the following conditions:

(i) f is (β ,γ )-admissible,
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(ii) there exists x ∈ X such that β(x, fx, t) ≤  and γ (x, fx, t) ≥  for all t > ,
(iii) if {xn} is a sequence in X such that β(xn–, xn, t) ≤  and γ (xn, xn+, t) ≥  for all

n ∈N, and for all t >  and xn → x as n → ∞, then β(xn–, x, t) ≤  and
γ (xn, fx, t) ≥  for all n ∈N and for all t > .

Then f has a fixed point.

Proof Since T(a, a) ≥ a for all a ∈ [, ], T ≥ TM . Let x ∈ X be such that (ii) holds and
define a sequence {xn} in X so that xn+ = fxn, for all n = , , . . . . We suppose xn+ 
= xn for
all n = , , . . . , otherwise f has trivially a fixed point. From (i), (ii), and by induction, we
get β(xn–, xn, t) ≤  and γ (xn, xn+, t) ≥  for all n ∈N and all t > . Taking into account the
continuity of φ at zero, we can find r >  such that t > φ(r) and therefore we have

Fxn ,xn+ (t) ≥ β
(
xn–, xn,αkr

)
Ffxn–,fxn

(
αkφ(r)

)

≥ γ

(

xn, xn+,αk– r
c

)

min

{

Fxn–,fxn–

(

αk–φ

(
r
c

))

, Fxn–,xn

(

αk–φ

(
r
c

))

,

Fxn ,fxn

(

αk–φ

(
r
c

))

, Fxn–,fxn

(

αk–φ

(
r
c

))

, Fxn ,fxn–

(

αk–φ

(
r
c

))}

≥ min

{

Fxn–,xn

(

αk–φ

(
r
c

))

, Fxn ,xn+

(

αk–φ

(
r
c

))}

.

We will show that

Fxn ,xn+

(
αkφ(r)

) ≥ Fxn–,xn

(

αk–φ

(
r
c

))

. ()

If we assume that Fxn ,xn+ (αk–φ( r
c )) is the minimum, then from Lemma ., we get xn =

xn+, which is a contradiction with the assumption xn 
= xn+ and so Fxn–,xn (αk–φ( r
c )) is the

minimum i.e., inequality () holds. Now from (), one obtains that

Fxn ,xn+

(
αkt

) ≥ Fxn ,xn+

(
αkφ(r)

) ≥ Fxn–,xn

(

αk–φ

(
r
c

))

≥ · · · ≥ Fx,x

(

αk–nφ

(
r
cn

))

,

that is,

Fxn ,xn+

(
αkt

) ≥ Fx,x

(

αk–nφ

(
r
cn

))

,

for arbitrary n ∈ N. Next, let m, n ∈ N with m > n, then by (PbM) and strictly increasing
of φ we have

Fxn ,xm

(
(m – n)t

)

≥ min
{

Fxn ,xn+ (αt), . . . , Fxm–,xm–

(
αm–n–t

)
, Fxm–,xm

(
αm–n–t

)}

≥ min

{

Fx,x

(

α–nφ

(
r
cn

))

, . . . , Fx,x

(

α–nφ

(
r

cm–

))

, Fx,x

(

α–nφ

(
r

cm–

))}

≥ min

{

Fx,x

(

α–nφ

(
r
cn

))

, . . . , Fx,x

(

α–nφ

(
r

cm–

))

, Fx,x

(

α–nφ

(
r

cm–

))}

= Fx,x

(

α–nφ

(
r
cn

))

.
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Since α–nφ( r
cn ) → ∞ as n → ∞, for fixed ε ∈ (, ) there exists n ∈ N such that

Fx,x (α–nφ( r
cn )) >  – ε, whenever n ≥ n. This implies that, for every m > n ≥ n,

Fxn ,xm

(
(m – n)t

)
>  – ε.

Since t >  and ε ∈ (, ) are arbitrary, we deduce that {xn} is a Cauchy sequence in the
complete Menger PbM-space (X, F , T). Then there exists u ∈ X such that xn → u as n →
∞. We are going to show that u is a fixed point of f . Using (PbM), we have

Ffu,u(t) ≥ T
(
Ffu,xn

(
αφ(r)

)
, Fxn ,u

(
αt – αφ(r)

))

≥ min
{

Ffu,xn

(
αφ(r)

)
, Fxn ,u

(
αt – αφ(r)

)}
.

Note that, if xn = fu for infinitely many values of n, then u = fu, and hence the proof is
finished. Therefore, we assume that xn 
= fu for all n ∈N. Now, since xn → u, then, for any
arbitrary ε ∈ (, ) and n large enough, we get Fxn ,u(αt – αφ(r)) >  – ε. Hence, Ffu,u(t) ≥
min{Ffu,xn (αφ(r)),  –ε}. Since ε >  is arbitrary, we have Ffu,u(t) ≥ Ffu,xn (αφ(r)). Next, using
(iii) we get

Fu,fu(t) ≥ Fxn ,fu
(
αφ(r)

)

= Ffxn–,fu
(
αφ(r)

)

≥ β(xn–, u,αr)Ffxn–,fu
(
αφ(r)

)

≥ γ

(

fxn–, fu,
r
c

)

min

{

Fxn–,u

(

φ

(
r
c

))

, Fxn–,xn

(

φ

(
r
c

))

,

Fu,fu

(

φ

(
r
c

))

, Fxn–,fu

(

α

φ

(
r
c

))

, Fu,xn

(

α

φ

(
r
c

))}

≥ min

{

Fxn–,u

(

φ

(
r
c

))

, Fu,fu

(

φ

(
r
c

))

, Fxn–,xn

(

φ

(
r
c

))}

.

It follows that

Fu,fu(t) ≥ lim
n→∞ inf Fxn ,fu

(
αφ(r)

)

≥ lim
n→∞ inf min

{

Fxn–,u

(

φ

(
r
c

))

, Fu,fu

(

φ

(
r
c

))

, Fxn–,xn

(

φ

(
r
c

))}

≥ min

{

 – ε, Fu,fu

(

φ

(
r
c

))

,  – ε

}

.

Finally, since ε ∈ (, ) is arbitrary, then Ffu,u(αφ(r)) ≥ Fu,fu(φ( r
c )). From Lemma ., we

conclude that u = fu and so we achieve our goal. �

In the following we present an example of a generalized β-γ -type contractive mapping,
which is not a generalized β-type contractive mapping.

Example . Let X = [ 
 ,∞) and F be as in Example ., then (X, F , TM) is a complete

Menger PbM-space, with α = 
 . Define the mapping f : X → X and functions β and γ
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from X × X × (,∞) into (,∞) as follows:

fx =

⎧
⎨

⎩

, if x ∈ [ 
 , ],

, otherwise,

β(x, y, t) =



,

γ (x, y, t) =

⎧
⎨

⎩


 , if x, y ∈ [ 

 , ], or x, y /∈ [ 
 , ],


 , otherwise,

for all t > . Now, we consider φ : R+ → R
+ defined by φ(t) = t and let c = 

 . To prove
that f is a generalized β-γ -type contractive mapping, it suffices to check the following
condition:

β
(
x, y,αkt

)
Ffx,fy

(
αkφ(t)

)

≥ γ

(

fx, fy,αk– t
c

)

min

{

Fx,y

(

αk–φ

(
t
c

))

, Fx,fx

(

αk–φ

(
t
c

))

,

Fy,fy

(

αk–φ

(
t
c

))

, Fx,fy

(

αk–φ

(
t
c

))

, Fy,fx

(

αk–φ

(
t
c

))}

.

We distinguish three cases:
Case I. If x, y ∈ [ 

 , ] or x, y /∈ [ 
 , ], then the left-hand side of above inequality is equal to


 and γ (fx, fy,αk– t

c ) = γ (, , t
k– ) = γ (, , t

k– ) = 
 . Hence, the inequality obviously true.

Case II. If x /∈ [ 
 , ] and y ∈ [ 

 , ], then

β
(
x, y,αkt

)
Ffx,fy

(
αkφ(t)

)
=

t
t + k+ ≥ γ

(

fx, fy,αk– t
c

)

Ffx,y

(

αk–φ

(
t
c

))

=
t

t + k+|y – |

and hence the inequality is again true.
Case III. If x ∈ [ 

 , ] and y /∈ [ 
 , ], then

β
(
x, y,αkt

)
Ffx,fy

(
αkφ(t)

)
=

t
t + k+ ≥ γ

(

fx, fy,αk– t
c

)

Fx,fy

(

αk–φ

(
t
c

))

=
t

t + k+|x – |

and hence the inequality is again true.
Also, if we take γ (x, y, t) =  for all x, y ∈ X and all t > , then f is not a generalized β-type

contractive mapping. Indeed, for x = , y = , and t = k we have




≥ min

{


 + c
, , ,


 + c

,


 + c

}

=


 + c
.

This gives c ≥ , a contradiction.
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Example . Let X, F , f be as in Example .. Define the functions β : X × X × (,∞) →
(,∞) and γ : X × X × (,∞) → (,∞) as follows:

β(x, y, t) =

⎧
⎨

⎩

, if x, y ∈ [ 
 , ],

t+
t+|x–y| , otherwise,

γ (x, y, t) =

⎧
⎨

⎩

, if x = y = ,
t+

t+|x–y| , otherwise,

for all t > .
Now, we consider φ : R+ → R

+ defined by φ(t) = t and let c = 
 . Then f is a generalized

β-γ -type contractive mapping.
We distinguish three cases:
Case I. If x, y ∈ [ 

 , ], then the left-hand side of above inequality is equal to  and
γ (fx, fy,αk– t

c ) = γ (, , t
k– ) = . Hence, the inequality is obviously true.

Case II. If x, y /∈ [ 
 , ], then β(x, y,αkt)Ffx,fy(αkφ(t)) = γ (fx, fy,αk– t

c )Fx,y(αk–φ( t
c )) =

t+k

t+k–|x–y| and hence the inequality is again true.
Case III. If x ∈ [ 

 , ] and y /∈ [ 
 , ] or x /∈ [ 

 , ] and y ∈ [ 
 , ], then we have the same result

as case II.
On the other hand, f does not satisfy inequality () if we assume that β(x, y, t) =

γ (x, y, t) =  for all x, y ∈ X and all t > . Indeed, for x =  and y =  we get

t
t + k ≥ min

{
t

t + k–c
, , ,

t
t + k–c

,
t

t + k–c

}

=
t

t + k–c
,

which gives c ≥ , a contradiction.

Under an additional hypothesis on f , from Theorem ., we obtain the uniqueness of
the fixed point.

(J′) For all u, v ∈ Fix(f ) and for all t >  there exists z ∈ X such that β(z, fz, t) ≤  with
β(u, z, t) ≤ , and β(v, z, t) ≤  and γ (z, fz, t) ≥  with γ (u, z, t) ≥  and γ (v, z, t) ≥ .

Theorem . Adding condition (J′) to the hypotheses of Theorem ., we find that f has a
unique fixed point.

Proof Let u, v ∈ X be such that u = fu and v = fv. From condition (J′), there exists z ∈ X such
that β(z, fz, t) ≤  with β(u, z, t) ≤  and β(v, z, t) ≤ , and γ (z, fz, t) ≥  with γ (u, z, t) ≥ 
and γ (v, z, t) ≥ . By virtue of the fact that f is (β ,γ )-admissible, we deduce that

β
(
fz, f z, t

) ≤ , β(u, fz, t) ≤ , β(v, fz, t) ≤ ,

and

γ
(
fz, f z, t

) ≥ , γ (u, fz, t) ≥ , γ (v, fz, t) ≥ .
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By induction, we derive

β(zn, zn+, t) ≤ , β(u, zn, t) ≤ , β(v, zn, t) ≤ ,

γ (zn+, zn+, t) ≥ , γ (u, zn+, t) ≥ , γ (v, zn+, t) ≥ ,

for all t > , where zn = f nz (n ∈N). By continuity of φ, there exists r >  such that t > φ(r)
and therefore by (PbM) and (PbM) we have

Fu,zn+ (t) ≥ Fu,zn+

(
αkφ(r)

)

= Ffu,fzn

(
αkφ(r)

)

≥ β
(
u, zn,αkr

)
Ffu,fzn

(
αkφ(r)

)

≥ γ

(

fu, fzn,αk– r
c

)

min

{

Fu,zn

(

αk–φ

(
r
c

))

, Fu,fu

(

αk–φ

(
r
c

))

,

Fzn ,fzn

(

αk–φ

(
r
c

))

, Fu,fzn

(

αk–φ

(
r
c

))

, Fzn ,fu

(

αk–φ

(
r
c

))}

≥ min

{

Fu,zn

(

αk–φ

(
r
c

))

, Fzn ,zn+

(

αk–φ

(
r
c

))}

,

where k ∈N. Now, we consider following cases:
Case I. If Fzn ,zn+ (αk–φ( r

c )) is the minimum, then by (), (PbM), and (PbM), it follows
that

Fu,zn+

(
αkφ(r)

)

≥ Fzn ,zn+

(

αk–φ

(
r
c

))

= Ffzn–,fzn

(

αk–φ

(
r
c

))

≥ β

(

zn–, zn,αk– r
c

)

Ffzn–,fzn

(

αk–φ

(
r
c

))

≥ γ

(

zn, zn+,αk– r
c

)

min

{

Fzn–,zn

(

αk–φ

(
r
c

))

, Fzn–,fzn–

(

αk–φ

(
r
c

))

,

Fzn ,fzn

(

αk–φ

(
r
c

))

, Fzn–,fzn

(

αk–φ

(
r
c

))

, Fzn ,fzn–

(

αk–φ

(
r
c

))}

≥ min

{

Fzn–,zn

(

αk–φ

(
r
c

))

, Fzn ,zn+

(

αk–φ

(
r
c

))}

.

Now, if Fzn ,zn+ (αk–φ( r
c )) is the minimum for some n ∈ N, then by Lemma ., we de-

duce that zn = zn+. Since Fu,zn+ (αkφ(r)) ≥ Fzn ,zn+ (αk–φ( r
c )) = , u = zn+. Consequently

β(v, u, t) ≤  and γ (fv, fu, t) ≥  for all t >  and so by (), (PbM), and (PbM) we have

Fv,u
(
αkφ(t)

) ≥ β
(
v, u,αkt

)
Ffv,fu

(
αkφ(t)

)

≥ γ

(

fv, fu,αk– t
c

)

min

{

Fv,u

(

αk–φ

(
t
c

))

, Fv,fv

(

αk–φ

(
t
c

))

,
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Fu,fu

(

αk–φ

(
t
c

))

, Fv,fu

(

αk–φ

(
t
c

))

, Fu,fv

(

αk–φ

(
t
c

))}

≥ Fv,u

(

αk–φ

(
t
c

))

.

Again, by Lemma ., we conclude that u = v.
On the other hand, if Fzn–,zn (αk–φ( r

c )) is the minimum, then

Fzn ,zn+

(

αk–φ

(
r
c

))

≥ Fzn–,zn

(

αk–φ

(
r
c

))

≥ · · · ≥ Fz,z

(

αk–(n+)φ

(
r

cn+

))

,

and, letting n → ∞, we get Fzn ,zn+ (αk–φ( r
c )) → . Therefore limn→∞Fu,zn+ (t) = , which

implies that zn+ → u as n → ∞. A similar method shows that zn+ → v, for n → ∞. Since
the limit is unique, u = v.

Case II. Suppose that Fu,zn (αk–φ( r
c )) is the minimum, then we get

Fu,zn+

(
αkφ(r)

) ≥ Fu,zn

(

αk–φ

(
r
c

))

≥ Fu,zn–

(

αk–φ

(
r
c

))

≥ · · ·

≥ Fu,z

(

αk–(n+)φ

(
r

cn+

))

.

Letting n → ∞, we obtain limn→∞ Fu,zn+ (αkφ(r)) = , that is, zn+ → u as n → ∞. A similar
argument shows that zn+ → v, for n → ∞. Now, uniqueness of the limit gives us u = v,
and the proof is complete. �

Our last existence theorem is a version of [], Theorem ., for generalized β-γ -type
contractive mappings in Menger PbM-spaces.

Theorem . Let (X, F , T) be a complete Menger PbM-space with coefficient α, and f :
X → X be a mapping. Assume that there exist β : X × X × (,∞) → (,∞) and γ : X ×
X × (,∞) → (,∞) such that the following conditions hold:

(i)
β
(
x, y,αkt

)
Ffx,fy

(
αkφ(t)

)

≥ γ

(

fx, fy,αk– t
c

)

min

{

Fx,y

(

αk–φ

(
t
c

))

, Fx,fx

(

αk–φ

(
t
c

))

,

Fy,fy

(

αk–φ

(
t
c

))

, Fy,fx

(

αk–φ

(
t
c

))}

,

for all x, y ∈ X , for all t >  and for all k ∈N, where c ∈ (, ) and φ ∈ �;
(ii) f is (β ,γ )-admissible;

(iii) there exists x ∈ X such that β(x, fx, t) ≤  and γ (x, fx, t) ≥  for all t > ;
(iv) for each sequence {xn} in X such that β(xn–, xn, t) ≤  and γ (xn, xn+, t) ≥ , for all

n ∈N and for all t > , there exists k ∈ N such that β(xm–, xn–, t) ≤  and
γ (xm, xn, t) ≥ , for all m, n ∈N with m > n ≥ k and for all t > ;

(v) if {xn} is a sequence in X such that β(xn–, xn, t) ≤  and γ (xn, xn+, t) ≥  for all
n ∈N and for all t >  and xn → x as n → ∞, then β(xn–, x, t) ≤  and
γ (xn, fx, t) ≥  for all n ∈N and for all t > .
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Then f has a fixed point. If in addition, condition (J′) holds, then f has a unique fixed
point.

Proof Let x ∈ X be such that (iii) holds. Define a sequence {xn} in X such that xn+ = fxn for
all n = , , . . . . We suppose that xn+ 
= xn for all n = , , . . . , otherwise f has trivially a fixed
point. By (ii) and (iii), and applying induction, we get β(xn–, xn, t) ≤  and γ (xn, xn+, t) ≥
 for all n ∈ N and for all t > . By continuity of φ at zero, we can find r >  such that
t > φ(r), thus β(xn–, xn,αkr) ≤  and γ (xn, xn+,αk– r

c ) ≥ , where k ∈ N. It follows from
conditions (i) and (PbM) that

Fxn ,xn+ (t) ≥ Fxn ,xn+

(
αkφ(r)

)

≥ β
(
xn–, xn,αkr

)
Ffxn–,fxn

(
αkφ(r)

)

≥ γ

(

xn, xn+,αk– r
c

)

min

{

Fxn–,xn

(

αk–φ

(
r
c

))

, Fxn–,xn

(

αk–φ

(
r
c

))

,

Fxn ,xn+

(

αk–φ

(
r
c

))

, Fxn ,xn

(

αk–φ

(
r
c

))}

≥ γ

(

xn, xn+,αk– r
c

)

min

{

Fxn–,xn

(

αk–φ

(
r
c

))

, Fxn ,xn+

(

αk–φ

(
r
c

))}

≥ min

{

Fxn–,xn

(

αk–φ

(
r
c

))

, Fxn ,xn+

(

αk–φ

(
r
c

))}

.

Next, if Fxn ,xn+ (αk–φ( r
c )) is the minimum, then Fxn ,xn+ (αkφ(r)) ≥ Fxn ,xn+ (αk–φ( r

c ))
and so by Lemma ., xn = xn+, which contradicts the assumption xn 
= xn+. Now if
Fxn–,xn (αk–φ( r

c )) is the minimum, then

Fxn ,xn+ (t) ≥ Fxn ,xn+

(
αkφ(r)

) ≥ Fxn–,xn

(

αk–φ

(
r
c

))

≥ · · · ≥ Fx,x

(

αk–nφ

(
r
cn

))

.

Letting n → ∞, then

Fxn ,xn+ (t) → . ()

We claim that {xn} is a Cauchy sequence. Suppose the contrary. Then there exist ε > ,
λ ∈ (, ) for which we can find subsequences {xm(s)} and {xn(s)} of {xn} such that n(s) is the
smallest index for which

s < m(s) < n(s), Fxm(s),xn(s) (ε) ≤  – λ, Fxm(s),xn(s)– (ε) >  – λ. ()

By the properties of φ there exists ε >  such that

φ(ε) < ε. ()

From () and (), we deduce that Fxm(s),xn(s) (αφ(ε)) ≤ –λ, so {xn} is not Cauchy sequence
with respect to αφ(ε) and λ. Thus there exist increasing sequences of integers m(s) and
n(s), such that n(s) is the smallest index for which

s < m(s) < n(s), Fxm(s),xn(s)

(
αφ(ε)

) ≤  – λ, Fxm(s),xn(s)–

(
αφ(ε)

)
>  – λ. ()
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Take a real number η such that  < η < φ( ε
c ) – φ(ε). From () it follows that

Fxm(s),xn(s)–

(

αφ

(
ε

c

)

– αη

)

>  – λ.

Then, for any  < λ < λ < , by () it is possible to find a positive integer N such that for
all s > N, we have

Fxm(s)–,xm(s) (αη) >  – λ, Fxn(s)–,xn(s) (αη) >  – λ. ()

By () and also applying (PbM), we have

Fxm(s)–,xn(s)–

(

φ

(
ε

c

))

≥ T
(

Fxm(s)–,xm(s) (αη), Fxm(s),xn(s)–

(

αφ

(
ε

c

)

– αη

))

> T( – λ,  – λ).

Since λ is arbitrary and T is continuous, it follows that

Fxm(s)–,xn(s)–

(

φ

(
ε

c

))

>  – λ. ()

A direct consequence of () is

Fxm(s)–,xm(s)

(

φ

(
ε

c

))

≥ Fxm(s)–,xm(s)

(

αφ

(
ε

c

))

≥ Fxm(s)–,xm(s) (αη) >  – λ >  – λ. ()

A similar relation holds when one substitutes xm(s)– and xm(s) with xn(s)– and xn(s), respec-
tively. On the other hand, we observe that

Fxm(s),xn(s)–

(

φ

(
ε

c

))

≥ Fxm(s),xn(s)–

(

αφ

(
ε

c

))

≥ Fxm(s),xn(s)–

(

αφ

(
ε

c

)

– αη

)

>  – λ. ()

Applying assumptions (i), (iv), and (), (), (), () we get

 – λ ≥ Fxm(s),xn(s)

(
αφ(ε)

)
= Ffxm(s)–,fxn(s)–

(
αφ(ε)

)

≥ β(xm(s)–, xn(s)–,αε)Ffxm(s)–,fxn(s)–

(
αφ(ε)

)

≥ γ

(

fxm(s)–, fxn(s)–,
ε

c

)

min

{

Fxm(s)–,xn(s)–

(

φ

(
ε

c

))

, Fxm(s)–,xm(s)

(

φ

(
ε

c

))

,

Fxn(s)–,xn(s)

(

φ

(
ε

c

))

, Fxn(s)–,xm(s)

(

φ

(
ε

c

))}

> γ

(

fxm(s)–, fxn(s)–,
ε

c

)

{ – λ,  – λ,  – λ,  – λ}

≥  – λ.
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This is a contradiction; therefore {xn} is a Cauchy sequence in the complete Menger PbM-
space. Thus xn → u as n → ∞ for some u ∈ X.

Now, we show that u is a fixed point of f . We have

Ffu,u(t) ≥ T
(
Ffu,xn

(
αφ(r)

)
, Fxn ,u

(
αt – αφ(r)

))
. ()

Since φ is continuous, there exists r >  such that t > φ(r). Further, since u = limn→∞xn,
then, for arbitrary δ ∈ (, ), there exists n ∈ N such that for all n ≥ n, we get

Fxn ,u
(
αt – αφ(r)

)
>  – δ. ()

Hence, from () and (), we find that

Ffu,u(t) ≥ T
(
Ffu,xn

(
αφ(r)

)
,  – δ

)
.

Since δ >  is arbitrary and T is continuous, we can write Ffu,u(t) ≥ Ffu,xn (αφ(r)). Without
loss of generality we may assume that xn 
= fu for all n ∈N, otherwise if for infinitely many
values of n, xn = fu, then u = fu, and hence the proof is finished. Applying (i) and (v), we
derive

Fu,fu(t) ≥ Fxn ,fu
(
αφ(r)

)

≥ β(xn–, u,αr)Ffxn–,fu
(
αφ(r)

)

≥ γ

(

fxn–, fu,
r
c

)

min

{

Fxn–,u

(

φ

(
r
c

))

, Fxn–,fxn–

(

φ

(
r
c

))

,

Fu,fu

(

φ

(
r
c

))

, Fu,fxn–

(

φ

(
r
c

))}

≥ min

{

Fxn–,u

(

φ

(
r
c

))

, Fxn–,fxn–

(

φ

(
r
c

))

, Fu,fu

(

φ

(
r
c

))

, Fu,fxn–

(

φ

(
r
c

))}

.

Letting n → ∞ in the above inequality, we get Ffu,u(αφ(r)) ≥ Fu,fu(φ( r
c )). Thus u = fu by

Lemma .. Hence f has a fixed point. Furthermore, if (J′) holds, then by using a similar
technique as in the proof of Theorem . one can see that u is a unique fixed point of f .

�

4 Application to integral equation
As an application of our results, we will consider the following Volterra type integral equa-
tion:

x(t) = g(t) +
∫ t


�

(
t, s, x(s)

)
ds, ()

for all t ∈ [, k′], where k′ > .
Let C([, k′],R) be the space of all continuous functions defined on [, k′] endowed with

the b-metric

d(x, y) = max
t∈[,k′]

∣
∣x(t) – y(t)

∣
∣, x, y ∈ C

([
, k′],R

)
.
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Alternatively the space C([, k′],R) can be endowed with the b-metric

dB(x, y) = max
t∈[,k′]

(∣
∣x(t) – y(t)

∣
∣e–Lt), x, y ∈ C

([
, k′],R

)
, L > .

One can see that d and dB are complete b-metrics with s = . We define the mapping
F : C([, k′],R) × C([, k′],R) →D+ by

Fx,y(t) = H
(
t – dB(x, y)

)
, t > , x, y ∈ C

([
, k′],R

)
. ()

We know that (C([, k′],R), F , TM) is a complete Menger PbM-space with coefficient α = 
 .

Now we discuss the existence of a solution for the Volterra type integral equation ().

Theorem . Let (C([, k′],R), F , TM) be the Menger PbM-space and � ∈ C([, k′] ×
[, k′] ×R,R) be an operator satisfying the following conditions:

(i) ‖�‖∞ = supt,s∈[,k′],x∈C([,k′],R) | �(t, s, x(s)) |< ∞,
(ii) there exists L >  such that for all x, y ∈ C([, k′],R) and all t, s ∈ [, k′] we obtain

∣
∣�

(
t, s, fx(s)

)
– �

(
t, s, fy(s)

)∣
∣

≤ L√


max
{∣
∣x(s) – y(s)

∣
∣,

∣
∣x(s) – fx(s)

∣
∣,

∣
∣y(s) – fy(s)

∣
∣,

∣
∣y(s) – fx(s)

∣
∣
}

,

where f : C([, k′],R) → C([, k′],R) is defined by

fx(t) = g(t) +
∫ t


�

(
t, s, fx(s)

)
ds, g ∈ C

([
, k′],R

)
.

Then the Volterra type integral equation () has a unique solution x∗ ∈ C([, k′],R).

Proof For each x, y ∈ C([, k′],R) we consider dB(x, y) = maxt∈[,k′](|x(t) – y(t)|e–Lt),
where L satisfies condition (ii). As we mentioned above (C([, k′],R), F , TM) is a complete
Menger PbM-space with coefficient α = 

 . Therefore, for all x, y ∈ C([, k′],R), we get

dB(fx, fy) = max
t∈[,k′]

(∣
∣fx(t) – fy(t)

∣
∣e–Lt)

= max
t∈[,k′]

(∣
∣
∣
∣

∫ t


�

(
t, s, fx(s)

)
– �

(
t, s, fy(s)

)
ds

∣
∣
∣
∣



e–Lt
)

≤ L


max

{
dB(x, y), dB(x, fx), dB(y, fy), dB(y, fx)

}
max

t∈[,k′]

(∫ t


eL(s–t) ds

)

=


(
 – e–Lk′)

max
{

dB(x, y), dB(x, fx), dB(y, fy), dB(y, fx)
}

.

Putting c = ( – e–Lk′ ), by using (), for any r >  and k ∈N we derive

Ffx,fy

(
r

k

)

= H
(

r
k – dB(fx, fy)

)

≥ H
(

r
k –

c


max
{

dB(x, y), dB(x, fx), dB(y, fy), dB(y, fx)
}
)
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= H
(

r
k–c

– max
{

dB(x, y), dB(x, fx), dB(y, fy), dB(y, fx)
}
)

= min

{

Fx,y

(
r

k–c

)

, Fx,fx

(
r

k–c

)

, Fy,fy

(
r

k–c

)

, Fy,fx

(
r

k–c

)}

,

for all x, y ∈ C([, k′],R). Therefore by Theorem . with φ(r) = r for all r >  and β(x, y, t) =
γ (x, y, t) =  for all x, y ∈ C([, k′],R) and t > , we deduce that the operator f has a unique
fixed point x∗ ∈ C([, k′],R), which is the unique solution of the integral equation ().

�
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