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Abstract

The paper deals with the here defined dislocated strong quasi-metric (if p(y,x) =0,
thenx =y, 0 < p(z,x) < p(z,y) + ply,x) and with the well-known notion of the
dislocated metric (in addition, p(y, x) = p(x, y)). In particular, the partial metric is a kind
of dislocated metric. Our basic results on general contractions (also for cyclic
mappings) and results of variational type can be treated as a starting point for further
development.
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1 Introduction

Recent years have witnessed the appearance of many papers devoted to fixed point theo-
rems for partial metric spaces. The aim of the present paper is to show that the dislocated
(strong quasi-)metric as presented here (Definition 2.1) has a great potential. Each partial
metric is a dislocated metric and examples preceding Definition 2.4 show that the dislo-
cated metric is more general. The paper is divided into three sections.

In Section 2 the definitions of a dislocated (strong quasi-)metric and of a partial metric
are presented. This section contains some examples and a comparison between the two
notions. Also some additional ideas (0-completeness, Ker p) are included.

Section 3 is devoted to fixed point theorems for general contractions. The simplest re-
quirement is condition (3.1): p(f (),f (%)) < ¢(p(y, x)), for all x, y € X, where p is a dislocated
metric on X, f : X — X is a mapping, and the comparison function ¢ : [0, 00) — [0, 00)
belongs to a wide class of mappings defined in [1] and here. The main classical results
are Theorem 3.3 (a direct extension of the celebrated theorems of Matkowski [2], Theo-
rem 1.2, and of Boyd-Wong [3], Theorem 1), and a more general Theorem 3.5. The most
sophisticated ones are the theorems for cyclic mappings (see Definition 3.6): Theorem 3.9,
and a result of a new type, Theorem 3.10, which is proved with the use of cross mappings
defined in [4]. Our theorems extend also some general results of Karapinar and Salimi [5],
Theorems 1.8, 1.9.

Section 4 (p is a dislocated strong quasi-metric) contains theorems obtained with order
reasoning for a transitive relation defined by y < x iff ¥ (y) + p(y,%) — ¥ (x) < 0 where ¢ :
X — R is a mapping. The results of variational type involve the existence and properties
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of the smallest element in a maximal chain. Typical are Theorems 4.1 and 4.2, and an
extension of the Ekeland principle (Theorem 4.5). The fixed point results are Theorem 4.3

and Theorem 4.4 (an extension of the celebrated theorems of Caristi and Takahashi).

2 Dislocated metric and dislocated strong quasi-metric

The notion of dislocated metric was introduced by Hitzler and Seda in [6].

Definition 2.1 Let X be a nonempty set, and p: X x X — [0,00) a mapping satisfying

ifp(y,x) =0thenx=y, xyeX, (2.1)

plzx) <plz,y) + p(y,x), =x,y,z€X. (2.2)

Then p is called a dislocated strong quasi-metric (briefly a dsq-metric), and (X, p) is called
a dislocated strong quasi-metric space (briefly a dsq-metric space). The kernel of p is the
set

Kerp = [x € X: lim p(x,x,) = 0 for a sequence (x,),en in X}.
n— 00
If, in addition,

p,x)=px,y), xyeX, (2.3)

holds, then p is called a dislocated metric (briefly a d-metric), and (X, p) is called a dislo-
cated metric space (briefly a d-metric space).

In the previous version of the present paper (entitled ‘Near (quasi-)metric and fixed
point theorems’) dislocated metric was called near metric because the author was not
aware of Hitzler’s definition, and a dislocated strong quasi-metric was called a near quasi-
metric.

The nonalphabetical order of x, y, z in conditions (2.1), (2.2), (2.3) is better suited to the
results of Section 4 (y = f(x) < x corresponds with ¥ (y) < ¥ (x)).

The topology of a d-metric (or dsq-metric) space (X, p) is generated by balls B(x,r) =
{y € X : p(x,y) < r}. Clearly, x € B(x, r) does not necessarily hold, but the family of all balls
generates the respective smallest topology for X = | J{B(x,7) : x € X, r > 0} [7], Theorem 12,
p47. If Z = Kerp is nonempty, then (Z, p|z«z) is a metric (or quasi-metric) subspace of
(X, p).

Recently, Amini-Harandi has defined metric-like mapping o (identic with the idea of
d-metric p) and metric-like space (X, o) [8], Definition 2.1. The topology of his space gen-
erated by o -balls B, (x,€) = {y € X : |0 (x,7) — 0 (x,%)| < €} usually differs from the topology
for a d-metric space.

It should be noted that also Karapinar and Salimi [5] follow the ideas of Amini-Harandi,
which are better suited to partial metric spaces (see Definition 2.4).

For the d-metric p the following condition is satisfied:

lim p(x,x,) = lim p(y,x,) =0 vyieldsx=y e Kerp = {x eX:plx,x) = O}. (2.4)

n—00
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Indeed, from 0 < p(y,x) < p(y,%,) + p(x,x,) it follows that p(y,x) = 0, x = y (see (2.1)), and
p(x,x) = 0 means that x € Kerp.

Proposition 2.2 Let (X, p) be a d-metric (or dsq-metric) space. Then p(-,y) is lower semi-
continuous at points of Kerp, y € X.

Proof Let (x,)uen be such that lim, . p(x,x,) = 0. Then the inequality p(x,y) <

liminf,_, o p(x,,7) is a consequence of p(x,y) < p(x,x,) + p(x,,,y). O

Definition 2.3 A d-metric (or dsq-metric) space (X, p) is called 0-complete if the follow-
ing condition is satisfied:

for every sequence (x,),cn in X such that lim  p(x,,%,,) =0
n>m— 00

there exists an x € X such that lim p(x,x,) = 0;
n— 00

anonempty set A C X is 0-complete if (A, pjax4) is 0-complete.

In view of (2.4) a point x as in (2.5) is unique if p is a d-metric, and then p(x, x) = 0.

To present a simple example of a 0-complete d-metric space let us consider X = [-1, 00)
and p(x,y) = x + ¥y + 2. An easy computation shows that p(y,x) = 0 yields x =y = -1. In
addition,

pzx)=z+x+2<z+x+2+2y+2=p(zy) +pQyx)

yields (2.2). Clearly, lim,,; ;00 p(%y, %,,) = 0 means that lim,_, » p(-1,%,) = 0, and (X, p) is
0-complete. For X = (-1, 00) and the same p we obtain a non-0-complete d-metric space.
Another example is X = {(x,%2) € R? : x; > —1,x, > 0} with p defined by p((x,x,),
O1,52)) = %1 + %2 + Y1+ Y2 + 2.
Let us recall the notions of a partial metric due to Matthews [9], and of a dualistic partial
metric due to Oltra and Valero [10] and O’Neill [11].

Definition 2.4 A dualistic partial metric is a mapping p : X x X — R such that

y=x it p(,y)=pp,x) =pkx), xyeX, (2.6)
py) <plyx), xyeX, (2.7)
p,x) =pxy), xyeX, (2.8)
p(zx) < p(zy) +p(,x) - p:y), xy,z€X. (2.9)

If p is nonnegative, then it is called a partial metric.

For details concerning the topology of a (dualistic) partial metric space see, e.g. [10].

We can see that each partial metric is a d-metric ((2.6) and (2.7) for p > 0 yield (2.1)).
On the other hand, p(x,y) = x + y + 2 does not necessarily mean that p(y,y) < p(y,x), and
therefore the d-metrics in our examples are not partial metrics.
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It is well known (see, e.g,, [10]) that a metric d can be defined by a (dualistic) partial
metric p as follows:

d(y,x) = max{p(y,x) —p()’»y),P(x,y) —P(x:x)}» xy€X.

A dualistic partial metric space (X, p) is 0-complete (see [12], Definition 2.1, [1], Corol-
lary 4) if for every sequence such that lim,, ;0 p(x,, %,) = O there exists an x € X such
that lim,,_, o d(x,x,) = 0 and p(x,x) = 0.

Now, it is clear that if a partial metric space (X, p) is 0-complete, then (X, p) treated as a
dislocated metric space is also 0-complete.

Lemma 2.5 (¢f [13], Lemma 2.2) Let (X, p) be a d-metric space with a nonempty kernel Z.
Then (Z,pzxz) is a metric subspace of (X, p); if (X, p) is 0-complete, then (Z, p|zz) is com-
plete.

Proof Clearly, pzx7 is a metric on Z. From lim,,, o p(%,%,) = 0 and
0= p(xrx) = p(xrxn) +p(xn’x) = 219(x:xn)

it follows that p(x,x) = 0, i.e. x € Z. Therefore, if (X, p) is 0-complete, then (Z,p|zxz) is
complete. d

3 General contractions
In the present section we are interested in mappings f : X — X satisfying

pfO).f®) < 9(p,%)) 3.1
or

p(f).f(x)) < o(ms(y,x)) (3.2)
for

my(y,x) = max{p(y, %), p(f ), 7). p(f (x), %) }, (3.3)

where (X, p) is a d-metric space, and ¢ is a comparison function.

It should be noted that the d-metric p defines the metric § in the following way: 8(x,x) =
0, and 8(x,y) = p(x,y) for x # y. One can see that a d-metric space (X,p) is 0-complete
(Definition 2.3) iff the metric space (X, §) is complete.

Let us note that for f(y) = y and y # x #f(x)

mf()’; x) = max{p(y, x):P(Yr)’):P(f(x),x)}

does not necessarily equal

max{3(y,x),8(y,), 8 (f (x),%) } = max{p(y, %), p(f (x),x) }
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(e.g. for p(y,y) = 2 and p =1 elsewhere). Therefore, it is better to apply the d-metric p than
the metric §.

Our theorems in the present section are new also if p is a metric. The special features
of the mapping ¢ will enable one to give proofs of these theorems using metric § but such
full proofs would be unnecessarily complex (see also [14]).

According to the notations from [1] ® is a class of mappings ¢ : [0,00) — [0, 00) such
that p(«) <o, ¢ > 0;and ¢ € @y iff ¢ €  and p(0) = 0. In turn, ®p consists of mappings ¢ :
[0,00) — [0, 00) for which every sequence (a,),en such that a,,1 < ¢(a,), n € N converges
to zero. It appears [1], Proposition 16, that ®p C ®y; if ¢ € Dy satisfies

limsupp(B) <o, >0, (3.4)

B—at

then ¢ € ®p. In particular (see [1]), if ¢ € P is upper semicontinuous from the right (see
[3]), then @ € ®p; also, if ¢ € Py is nondecreasing and lim,,—, o ¢" () = 0, & > 0 (see [2]),
then ¢ € ®p.

Let us consider ¥p (®p C Wp C ) consisting of mappings ¢ for which every sequence
(@n)nen such that 0 < a,,; < ¢(a,), n € N converges to zero. If ¢ € ® satisfies (3.4), then
¢ € Wp (see the proof of [1], Proposition 16). It was noted in [1] that Theorems 28 and 31
of that paper are valid also for ®p replaced by Wp, as ¢(0) is meaningless.

Example Let us consider linear mappings g, : R — R, g,(x) =1 — nx, n € N. One can see
that g,(1/(n +1)) =1/(n + 1), and g, (1/n) = 0. Therefore, ¢ € @, defined by ¢(0) = 0 = ¢(x),
x>1, p(x) =g,(x), x € (1/(n +1),1/n], n € N, has the following properties:
(i) px)<1/2,x€R,

(if) @) <1l/(n+1),x<1/n,

(iii) limsupg_, g+ ¢(B) =1/n,1<neN.
Clearly, ¢ is not monotone, and (iii) means that (3.4) is not satisfied. If a,,,; < ¢(a,), n €N,
holds, then (i) yields a, < ¢(a;1) < 1/2, and from (ii) it follows (by induction) that a,,; <
@(a,) <1/(n +1), n € N. Consequently, we obtain ¢ € ®p.

The subsequent two lemmas for (3.1), (3.2) are partial extensions of [1], Lemmas 25, 26,
proved for partial metric spaces (see also [15], Lemmas 1, 2).

Lemma 3.1 Let X be a nonempty set, and let p : X x X — [0,00), f : X — X be mappings
satisfying condition (3.1) or (3.2), for all x,y € X and a ¢ € ®. Then the condition

p(P®).f®) < o(p(f®),x)), x€X, (3.5)
holds, and if ¢ € Wp, then lim,,_, o p(f"(x),f"(x)) = 0, x € X.
Proof For notational simplicity let us adopt x,, = f"(x), n € N. We have

my (%1, %) = max{p(x1, %), p(x2, 1) }.
Suppose p(x1, %) < p(x2,x1). Then (3.2) yields

O<a =p(x2!x1) = gD(Wlf(xl,x)) = ¢(P(x2,x1)) = ‘P(O‘)’
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a contradiction (¢ € ®). Now, my(x1,%) = p(x1,x) holds, and we obtain (3.5) (which for (3.1)
is trivial). Now, for a, = p(x,,1,%,), n € N, and ¢ € Wp we get lim,,_,» 4, = 0. O

Lemma 3.2 Let (X,p) be a 0-complete d-metric space, and let f : X — X be a map-
ping satisfying condition (3.1) or (3.2), for all x,y € X and a ¢ € ®. If for x, = f"(x0),
1imy,; s 00 P(Xn, X1) = O holds, then there exists a unique fixed point x of f, lim,,_, o p(x,%,,) =
0 (i.e. x =lim,_, o x, in (X, p)), and p(x,x) = 0.

Proof Let x € X be such that lim,,_, o p(#,x,) = 0. For condition (3.1) we have

P(F),%) < p(%ni1, f (%) + (X1, %) < @ (D%, %)) + P11, %).

Suppose p(f(x),x) = o« > 0. Then ¢(p(x,,x)) > a/2 holds for large n, as p(x,+1,x) — 0. Con-
sequently, p(x,x,) = 0 for large n, and

O Sp(xnﬂ;xn) Sp(x;ﬁl;x) +p(xn;x) = 0

means that f(x,) = x, (see (2.1)) and x = x,, is a fixed point of f.
For condition (3.2), p(f(x),x) > 0, and large n we have
0 < p(f(x), %) < p(Xne1,f () + P(Xi1, %) < @ (1117 (%, %)) + P(X11, %)
= ¢ (max{p(x,, %), p(ns1,%0), P(F (%), %) }) + (041, %)

= w(p(f(x),x)) +p(xn+1’x)‘

Consequently, 0 < p(f(x),x) < ¢(p(f(x),x)) holds, a contradiction (¢ € ®). In view of (2.1),
p(f(x),x) = 0 yields x = f(x).
If y is a fixed point of f, then
0 <p(fO)y) =p0:9) =p(fO)SB) < 0(p»,)
= ¢(max{p(,9).p(f1)9)}) = 0 (ms(3,))

means that p(y,y) = 0, i.e. y € Kerp.
Suppose x, y are two fixed points of f. Then

p,%) = p(f().f (%)) < ¢ (p(:))
= p(max{p(y, %), p(f),7), p(f (x), %) }) = ¢ (ms(y, %))
means that p(y,x) = 0, and x = y. d

Now, we are ready to prove the following extension of [1], Theorem 27 (the proof is
almost the same as in [1]).

Theorem 3.3 Let (X, p) be a 0-complete d-metric space, and let f : X — X be a mapping
satisfying condition (3.1) or (3.2), for all x,y € X and a ¢ € ® having property (3.4) or a
¢ € Yp such that

limsupp(B)<a, a>0 (3.6)

B—a~
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(e.g. if ¢ is nondecreasing) holds. Then f has a unique fixed point; if x = f (x), then p(x,x) = 0
and lim,,_, o, p(x, f"(x0)) = 0, x9 € X.

Proof 1t is sufficient to prove that limy, ;o0 p(%, %4,) = 0 holds for x,, = f"(x0), n € N (see
Lemma 3.2). Suppose that there are infinitely many &, # € N such that p(f"+** (x),f* (%)) >

€ > 0. Let n = n(k) > 0 be the smallest numbers satisfying this inequality for infinitely many
large k. For simplicity let us adopt x = f*(xo) and x,, = f"(x), n € N. We have

€ < p(Xns1,%) < PKi1s %) + P(X, X) < pXni1, %) + €,

which for n = n(k) means that
klim px,,x) = klim plx,x) =€,

as ¢ € Wp and limg_, 0 p(%y,41,%,) = limg_, 0 p(x1,%) = 0 (see Lemma 3.1). Now for y = x,
condition (3.2) yields

€ < p(Xni1, %) < p(Ene1,x1) + (1, %) < @ (my (%, %)) + p(x1, %)

= @ (max{p(x,, &), pni1, %), P(X1, %) }) + plx1, %),
and we obtain (from (3.1) as well)
€ < o(p(xn,x)) + play, %)
for large k. Now, p(x,, x) < €, limy_, o, p(x,,, x) = €, and condition (3.6) yield

€ <lim sup(p(p(x,,,x)) <¢,
k— 00

a contradiction. Similarly, p(x,.1,%) > €,

P11, %) = PXns1, Xni2) — P61, %) < P(ns2,%1) < @ (p(Hs1, %)),

and condition (3.4) yield

€ <lim sup(p(p(x,,+1,x)) <€,
k—o00

a contradiction. Therefore, lim,, ;;—, 0o p(%1, %) = 0 holds. O
Let us recall the following.

Lemma3.4[1],Lemma29 Letf: X — X beamappingsuchthatf’ forat € N has a unique

fixed point, say x. Then x is the unique fixed point of f. If, in addition, x € lim,,_, o, (f*)" (xo),

x0 € X, then x € lim,,_, o f"(x0), X0 € X holds.

Now, Theorem 3.3 and Lemma 3.4 yield the following.



Pasicki Fixed Point Theory and Applications (2015) 2015:82 Page 8 of 14

Theorem 3.5 Let (X, p) be a 0-complete d-metric space, and let f : X — X be a mapping
satisfying condition (3.1) or (3.2), for all x,y € X with f replaced by f* forat € N, and a
¢ € ® having property (3.4) or a ¢ € Vp such that (3.6) holds. Then f has a unique fixed
point; if x = f (x), then x satisfies p(x,x) = 0 and lim,,_, oo p(x, f"(x0)) = 0, %9 € X.

Kirk ez al. [16] suggested the idea of cyclic mappings which was later formalized by Rus
in [17] as the cyclic representation of X = X; U- - - UX; with respect to f. The next definition

means the same, but it is more compact.

Definition 3.6 A mapping f : X — X is called cyclic on Xj,...,X; (forat>1)if 0 # X =
XiU---UXy,and f(Xj) C Xjuurj=1,...,¢5, wherej++=j+1forj=1,...,t -1, and t + + = 1.

Clearly, X; # ¢ for a j in Definition 3.6, and hence X; #0,j=1,...,t.
The proof of Lemma 3.1 works also for the following.

Lemma3.7 Letp: X x X — [0,00) be a mapping, and let f : X — X be cyclicon X, ..., X;.
Assume that (3.1) or (3.2) is satisfied forall x € X;, y € Xjo, j=1,...,t,and a ¢ € ®. Then
condition (3.5) holds, and if ¢ € Wp, then lim,,_, o, p(f"(x),f"(x)) =0, x € X.

If we consider # such that x € X; and x, € X;,, for aj e {1,...,t}, then the proof of
Lemma 3.2 yields the following.

Lemma 3.8 Let (X,p) be a 0-complete d-metric space, and let f : X — X be cyclic on
X1, X;. Assume that (3.1) or (3.2) is satisfied for all x € Xj, y € Xj,\, j=1,...,t,and a
@ € O.Iffor x, = f"(x0), liMyy y— 00 PXn, %) = O holds, then there exists a unique fixed point
x of f, lim,, oo p(x,%,) = 0 (i.e. x = lim,—, o0 %, in (X, p)), and p(x,x) = 0.

Lemmas 3.7 and 3.8 yield the following extension of Theorem 3.3.

Theorem 3.9 Let (X,p) be a 0-complete d-metric space, and let f : X — X be cyclic on
X1, X;. Assume that (3.1) or (3.2) is satisfied for all x € Xj, y € Xj,\, j=1,...,t,and a
¢ € ® having property (3.4) or a ¢ € Vp such that (3.6) holds. Then f has a unique fixed
point; if x = f (x), then p(x,x) = 0 and lim,_, o p(x,f"(x0)) = 0, x9 € X.

Proof 1t is sufficient to prove that lim,, ,,—, oo p(x,,, x,,) = 0 holds for x,, = f"(xy), n € N (see
Lemma 3.8). Suppose that there are infinitely many k,# € N such that p(x(,.1)e+4+1, %) >
€ > 0. Let n = n(k) > 0 be the smallest numbers satisfying this inequality for infinitely many
large k. For simplicity let us adopt x = xx = fX(x0), and x,, = f"(x), n € N. Clearly, x € X;

yields X,z41, X(u41)e41 € Xjir. We have

€ < PK(ra1)e+1, %) < PK (a1t Bnee1) + P(Fes1, %)

< PXra)ess Xner1) + € < PEGa)es1s Xoa)e) + -+ - + P(Xner2s Xner1) + €,

which for n = n(k) means that

lim p(x(n+l)t+l¢x) = lim p(xnt+1; x) =€,
k—00 k—00
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as ¢ € Wp and limy,;—, oo p(X141, %) = O (see Lemma 3.7). Now for y = x,,,11 condition (3.2)
yields
€ < pXun)ts1, %) < PE(ui1)ests Xpuen)e) + -+ - + PKner2, %1) + plr, %)
< P(x(n+1)t+1; x(n+l)t) L ¢(mf(xnt+1: x)) +P(x1,x)
:P(x(nu)nl» x(n+1)t) L

+ @(max{p(nes1, %), P(nes2s Xnes1), p(x1, %) }) + plx, ),

and we obtain (from (3.1) as well)

€ Sp(x(n+l)t+1¢x(n+l)t) +-- ¢(P(xnr+1; x)) +l7(x1: x)

for large k. Now, p(®,41,%) < €, limi_, oo (241, %) = €, and condition (3.6) yield

€ < limsup @ (p(xu41,%)) <€,

k— 00

a contradiction. Similarly, p(x(.41)241,%) > €,

p(x(n+1)t+1¢ x) - p(x(n+1)t+1¢ x(n+1)t+2) - p(xb x)

= p(x(n+1)t+27 xl) <e (p(x(n+1)t+lx x));

and condition (3.4) yield

€ <lim Sup(p(p(x(n+l)t+1; x)) <E€,
k— 00

a contradiction. Now, it is clear that limy,;;—, 0o P(Xp4n41,%s) = 0. Consequently,

lim p(xm+nt+s: xm)

m,n— 00

< lim (P(xm+nt+sr Kmintes—1) +
1,100

+p(xm+r1t+2: xm+nt+l) +p(xm+nt+1; xm)) =0
forany s € {2,...,t}, i.e. limy, 00 p(Xy, Xm) = 0. O

Karapinar and Salimi [5], Definition 1.7, have defined the notion of a generalized ¢--
contractive mapping. It appears that ¢ = (id + ¥)™ o (id + ¥ — ¢) € ®p because condi-
tion (3.4) is satisfied. Therefore, [5], Theorem 1.9, is a particular case of Theorem 3.3,
and [5], Theorem 1.8, is a consequence of Theorem 3.9 (see also the example preceding
Lemma 3.1).

Let us present cyclic mappings of the second type, i.e. those for (3.1) or (3.2) with x,y €
Xj,j=1,...,t. It is convenient to apply the idea of cross mappings introduced in [4].

Let Fj: X; — 25+, j=1,...,t (for ¢ > 1), be multivalued mappings. Then for Y = X; x
-+ X Xy, E=E; x --- x E, we define a cross mapping F : Y — 2F as follows [4], (3.1):

F(x) = Fy(x;) x Fi(x1) X -+ X Fr_1(%:-1), x=x1,...,%) €Y. (3.7)
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We can see that for E; C X}, j =1,...,t the composition F; o F;_j o - - - o F; has a fixed point
in Xj iff F has a fixed point. This concept is very efficient for multivalued mappings (see
[4], Section 3). Let us apply cross mappings to prove the following.

Theorem 3.10 Let (X, p) be a 0-complete d-metric space, and let f : X — X be cyclic on
0-complete sets Xi,...,X;. Assume that (3.1) or (3.2) is satisfied for all x,y € X;, j =1,...,¢,
and a nondecreasing ¢ € Wp. Then f has a unique fixed point; if x = f(x), then p(x,x) =0
and lim,,_, o p(x, f"(x0)) = 0, %9 € X.

Proof Let us consider Y = Xj X --- x X; and

q()/,x):maX{P()/l,xl),~H,P()’t,xt)}» x:ye Y.

Then (Y, q) is a d-metric space, and it is 0-complete. If ¢ is nondecreasing and (3.1) or
(3.2) is satisfied for p, then it is also satisfied for g, as e.g max{¢(a), p(b)} = p(max{a, b}).
In view of Theorem 3.3 the cross mapping / defined by

h(x) = (f(xt)!f(xl)l .. wf(xt—l))’ VS Y;

has a unique fixed point. This means that f* has a unique fixed point. Now we apply
Lemma 3.4. O

There exist many papers concerning cyclic mappings (see, e.g., the references of [18]),
and it is very likely that Theorems 3.9 and 3.10 are just a starting point for further devel-

opment.

4 Variational results
In this section p is a dislocated strong quasi-metric (i.e. a dsq-metric).

To present a simple example of a 0-complete dsq-metric space let us consider X =
[-1,00) and p(x,y) = x+ 2y + 3. An easy computation shows that p(y,x) = O yieldsx =y = -1.
Clearly,

Plx)=z+2x+3<z+2x+3+3y+3=2+2y+3+y+2x+3=p(z,y) +py,x)

yields (2.2). Moreover, (2.3) is not satisfied and therefore, p is not a d-metric. In addition,
(X, p) is 0-complete, as lim,,,;— 00 p(%y, %) = 0 means that lim,_, o, p(-1,%,) = 0.
Let us prove the following analog of [19], Theorem 21.

Theorem 4.1 Let (X, p) be a 0-complete dsq-metric space and  : X — R a mapping lower
semicontinuous at points of Ker p. Let us adopt y < x iff v (y) + p(y,x) — ¥ (x) <0, %,y € X,
and assume that  is bounded below on each chain and the following holds:

foreach x € X \ B there exists a y € X \ {x} such that y < x. (4.1)
Then for any xo € X \ B, each maximal chain A C X containing xo has a unique smallest

element x, in addition satisfying
(i) ¥(x)=inf{yy(2):z€ A} and x € B,
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(ii) ¥ () + p(x,x0) — ¥ (x0) = inf{y (2) + p(z,x0) — Y (x0) : 2 € A} <0,
(iii) 0 <Y (y) +py,x) —¥(x), foreachy € X \ {x},
(iv) x € Kerp (i.e. p(x,x) = 0 if p is a d-metric).

Proof The relation < is transitive and in view of Kuratowski’s lemma [7], p.33, for any
%0 € X \ B there exists a maximal chain A containing x¢. Let us adopt « = inf{y(z) : z € A}
and suppose a < ¥ (x), for each x € A. Then there exists a sequence (x,),cn in A such
that (Y (x,))sen decreases to «. For any y € A such that v (x,,) < ¥ (y) the condition y < %,
cannot hold, as then

0 fp(yxxn) =< w(xn) - 1#0’) <0.

Therefore, if y € A and ¥ (x,) < ¥ (y), then x,, < y. In particular, m < n yields x,, < %, i.€.,
0 Sp(xmxm) S w(xm) - 1;[f(xn);

and consequently, limys - 00 p(%, %1,) = 0, as ¥ is bounded below on A. Therefore, there
exists an x such that lim,_, o, p(x,x,) = 0, i.e. x € Kerp (see Definition 2.1), and p(x,x) = 0
if p is a d-metric (see (2.4)). Clearly,

V() +p(xm) = ¥ (xm)

is lower semicontinuous at x (see Proposition 2.2). Now, we obtain

Klf(x) +p(x’xm) - W(xm) = lim 1ﬂ(xn) +lim SUPP(xn»xm) - W(xm) = 0;
n—00 n—00
ie. x <X %y, and ¥(x) <lim, o ¥(x,) = @. For any y € A and ¥ (x,,) < ¥ () we get x <
xm < y. Consequently, x € A and (iv) is satisfied. Suppose a y € A \ {x} such that ¥ (y) = «.
Then 0 < min{p(x,y),p(y,%)} < |[¥(y) — ¥(x)| = 0 yields x = y. Therefore, x is the unique
smallest element of A and conditions (ii), (iii) follow. In view of (4.1) x € B, and we get (i).
O

The ‘order’ reasoning fails for a quasi-metric (x = y iff g(x,y) = g(y,x) = 0, g(z,x) <
q(z,y) + q(y, %)), as g(y,x) = 0 does not necessarily yield g(x,y) = 0.

A reasoning similar to the one presented in the above proof yields the following analog
of [19], Theorem 22.

Theorem 4.2 Let (X, p) be a 0-complete dsq-metric space and  : X — R a mapping lower
semicontinuous at points of Kerp. Let us adopt y < x iff Y () + p(y,x) — ¥ (x) <0,x,y € X,
and assume that xo € X belongs to a chain and  is bounded below on each chain contain-
ing xo. Then each maximal chain A C X containing xo has a unique smallest element x, in
addition satisfying
(i) ¥(x) =inf{y(2):z €A},

(i) () + pl, x0) — ¥ (o) = inf(¥(2) + plz,x0) — W (x0) : 2 € A} <0,

(iii) 0 <y (y) +py,x) — ¥ (x), foreachy € X \ {x},

(iv) x € Kerp (i.e. p(x,x) = 0 if p is a d-metric).
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Proof In view of Kuratowski’s lemma [7], p.33, there exists a maximal chain A containing
x0. Now, for A we follow the proof of Theorem 4.1, omitting the last sentence. O

We also have the following analog of [19], Theorem 23.

Theorem 4.3 Let (X, p) be a 0-complete dsq-metric space and  : X — R a mapping lower
semicontinuous at points of Kerp. Let us adopt y < x iff Y () + p(y,x) — ¥ (x) <0,x,y € X,
and assume that  is bounded below on each chain. If X C Y and F : X — 2Y is a mapping
satisfying

foreach x € X \ F(x) there existsay € X \ {x} such that y < x. (4.2)

Then for any xy € X, xo € F(xo) holds or each maximal chain A C X containing xo has a
unique smallest element x, which in addition satisfies conditions (i), ..., (iv) of Theorem 4.2
and is such that x € F(x).

Proof If xy ¢ F(xo), then Theorem 4.2 applies and (iii) contradicts (4.2) for x ¢ F(x). O

The subsequent theorem extends the theorems of Caristi [20], Theorem (2.1)’, and Taka-
hashi [21], Theorem 5.

Theorem 4.4 Let (X, p) be a 0-complete dsq-metric space and  : X — R a mapping lower
semicontinuous at points of Ker p. Let us adopt y < x iff v (y) + p(y,x) — ¥ (x) <0, %,y € X,
and assume that \r is bounded below on each chain. If X C Y and F : X — 2¥ is a mapping

satisfying
for each x € X there exists a'y € F(x) such thaty < x. (4.3)

Then for any xo € X, each maximal chain A C X containing xo has a unique smallest ele-
ment x, which in addition satisfies conditions (i), ..., (iv) of Theorem 4.2 and is such that
x € F(x).

Proof In view of (4.3) Theorem 4.2 works. Now condition (4.3) and (iii) mean that x €
F(x). a

The subsequent theorem extends Ekeland’s variational principle [22], Theorem 1, (cf
[19], Theorem 25, and [23], Theorem 3).

Theorem 4.5 Let (X, p) be a 0-complete dsq-metric space and  : X — R a bounded below
mapping lower semicontinuous at points of Kerp. Let us adopt y < x iff ¥(y) + p(y,x) —
Y(x) <0, x,y € X, and assume that xo € X belongs to a chain (e.g. if p(xo,%0) = 0). Then
the following conditions are satisfied:
(a) there exists an x € X such that W (x) < ¥ (xo) and ¥ (x) — p(y,x) < ¥ (y), for each
yeX\ (),
(b) for any € >0 and each xo € X with p(xy,%0) = 0 there exists an x € X such that
Y(x) < ¥(xo), and ¥ (x) — ep(y,x) < Y (y), for each y € X \ {x}; if, in addition,
Y(xo) < € +inf{yr(2) : z € X} holds, then p(x,x9) < 1.
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Proof Clearly, Theorem 4.2 (i), (iii) yield (a). If we consider ep in place of p for p(x¢,xo) = 0,
then for the smallest element x in any maximal chain A containing x, we have ¥ (x) <
¥ (x0), and 0 < ¥ (y) + ep(y,x) — ¥ (x), y € X \ {x} (Theorem 4.2(i), (iii)). From ep(x,x9) <
¥ (x0) — ¥ (x) (Theorem 4.2(ii)) and the second assumption of (b) we obtain

plx,x0) < [V(xo) — ¥ (x)]/e < [W(wo) —inf{y(z) :z€ X}]/e <1. O

Kirk and Saliga [24], p.2769, say that for a Hausdorff space (X, t) a mapping ¢ : X — R
is T-lower semicontinuous from above if given any sequence (x,),en in X, the conditions:
(V¥ (x,))nen decreases to « and lim,,_, o x,, = %, yield ¥ (x) < «. The proof of Theorem 4.1
works without any change if we relax in such a way the assumption of lower semicontinuity
of Y at points of Ker p (we may then say that ¢ is lower semicontinuous from above at the
points of Ker p). Consequently, all results of the present section stay valid with this weaker
assumption.

It should be noted that the dislocated (strong quasi-)metric p defines the (quasi-)metric
3 in the following way: §(x, x) = 0, and (%, y) = p(x,y) for x # y. One can see that a dislocated
(strong quasi-)metric space (X,p) is 0-complete (Definition 2.3) iff the (quasi-)metric
space (X, 8) is complete (for the quasi-metric, see [19], Definitions 14, 7).

Consequently, ifa proof of a fixed point theorem for complete metric spaces is based on a
sequence (x,),en that converges to a fixed point, §(x,,, x,,1) # 0, n € N (and §(x,,, x,,) = 0 can
be disregarded), then the same proof works for 0-complete d-metric spaces, and further,
for 0-complete partial metric spaces.

Another method is to prove that Z = Kerp is nonempty, fiz : Z — Z, and to apply
Lemma 2.5 (see comments on Theorems 2.3 and 2.4 [13]).
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