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Abstract
In this article, we introduce a new type of contraction and prove certain coincidence
point theorems which generalize some known results in this area. As an application,
we derive some new fixed point theorems for F-contractions. The article also includes
an example which shows the validity of our main result and an application in which
we prove an existence and uniqueness of a solution for a general class of Fredholm
integral equations of the second kind.
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1 Introduction and preliminaries
The Banach contraction principle [] is one of the earliest and most important results in
fixed point theory. Because of its application in many disciplines such as computer sci-
ence, chemistry, biology, physics, and many branches of mathematics, a lot of authors
have improved, generalized, and extended this classical result in nonlinear analysis; see,
e.g., [–] and the references therein. In , Azam [] obtained the existence of a coin-
cidence point of a mapping and a relation under a contractive condition in the context of
metric space. For coincidence point results see also []. Consistent with Azam, we begin
with some basic known definitions and results which will be used in the sequel. Through-
out this article, N, R+, R denote the set of all natural numbers, the set of all positive real
numbers, and the set of all real numbers, respectively.

Let A and B be arbitrary nonempty sets. A relation R from A to B is a subset of A×B and
is denoted R : A � B. The statement (x, y) ∈ R is read ‘x is R-related to y’, and is denoted
xRy. A relation R : A � B is called left-total if for all x ∈ A there exists a y ∈ B such that
xRy, that is, R is a multivalued function. A relation R : A � B is called right-total if for all
y ∈ B there exists an x ∈ A such that xRy. A relation R : A � B is known as functional, if
xRy, xRz implies that y = z, for x ∈ A and y, z ∈ B. A mapping T : A → B is a relation from
A to B which is both functional and left-total.

For R : A � B, E ⊂ A we define

R(E) = {y ∈ B : xRy for some x ∈ E},
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dom(R) =
{

x ∈ A : R
({x}) �= φ

}
,

Range(R) =
{

y ∈ B : y ∈ R
({x}) for some x ∈ dom(R)

}
.

For convenience, we denote R({x}) by R{x}. The class of relations from A to B is denoted
by R(A, B). Thus the collection M(A, B) of all mappings from A to B is a proper sub-
collection of R(A, B). An element w ∈ A is called a coincidence point of T : A → B and
R : A � B if Tw ∈ R{w}. In the following we always suppose that X is a nonempty set and
(Y , d) is a metric space. For R : X � Y and u, v ∈ dom(R), we define

D
(
R{u}, R{v}) = inf

uRx,vRy
d(x, y).

Wardowski [] introduced and studied a new contraction called an F-contraction to
prove a fixed point result as a generalization of the Banach contraction principle.

Definition  Let F : R+ →R be a mapping satisfying the following conditions:

(F) F is strictly increasing;
(F) for all sequence {αn} ⊆ R+, limn→∞ αn =  if and only if limn→∞ F(αn) = –∞;
(F) there exists  < k <  such that limn→+ αkF(α) = .

Consistent with Wardowski [], we denote by � the set of all functions F : R+ → R

satisfying the conditions (F)-(F).

Definition  [] Let (X, d) be a metric space. A self-mapping T on X is called an F-
contraction if there exists τ >  such that for x, y ∈ X

d(Tx, Ty) >  �⇒ τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
,

where F ∈�.

Theorem  [] Let (X, d) be a complete metric space and T :X → X be a self-mapping. If
there exists τ >  such that for all x, y ∈ X: d(Tx, Ty) >  implies

τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
,

where F ∈�, then T has a unique fixed point.

Abbas et al. [] further generalized the concept of an F-contraction and proved certain
fixed and common fixed point results. Hussain and Salimi [] introduced some new type
of contractions called α-GF-contractions and established Suzuki-Wardowski type fixed
point theorems for such contractions. For more details on F-contractions, we refer the
reader to [, –].

In this paper, we obtain coincidence points of mappings and relations under a new type
of contractive condition in a metric space. Moreover, we discuss an illustrative example to
highlight the realized improvements.
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2 Main results
Now we state and prove the main results of this section.

Theorem  Let X be a nonempty set and (Y , d) be a metric space. Let T : X → Y , R : X � Y
be such that R is left-total, Range(T) ⊆ Range(R) and Range(T) or Range(R) is complete. If
there exist a mapping F : R+ →R and τ >  such that

d(Tx, Ty) >  �⇒ τ + F
(
d(Tx, Ty)

) ≤ F
(
D

(
R{x}, R{y})) (.)

for all x, y ∈ X, then there exists w ∈ X such that Tw ∈ R{w}.

Proof Let x ∈ X be an arbitrary but fixed element. We define the sequences {xn} ⊂ X
and {yn} ⊂ Range(R). Let y = Tx, Range(T) ⊆ Range(R). We may choose x ∈ X such that
xRy, since R is left-total. Let y = Tx, since Range(T) ⊆ Range(R). If Tx = Tx, then we
have xRy. This implies that x is the required point that is Tx ∈ R{x}. So we assume that
Tx �= Tx, then from (.) we get

τ + F
(
d(y, y)

)
= τ + F

(
d(Tx, Tx)

) ≤ F
(
D

(
R{x}, R{x}

))
. (.)

We may choose x ∈ X such that xRy, since R is left-total. Let y = Tx, since Range(T) ⊆
Range(R). If Tx = Tx, then we have xRy. This implies that Tx ∈ R{x} and x is the
coincidence point. So Tx �= Tx, then from (.), we get

τ + F
(
d(y, y)

)
= τ + F

(
d(Tx, Tx)

) ≤ F
(
D

(
R{x}, R{x}

))
. (.)

By induction, we can construct sequences {xn} ⊂ X and {yn} ⊂ Range(R) such that

yn = Txn– and xnRyn (.)

for all n ∈ N. If there exists n ∈ N for which Txn– = Txn . Then xn Ryn+. Thus Txn ∈
R{xn} and the proof is finished. So we suppose now that Txn– �= Txn for every n ∈N. Then
from (.), (.), and (.), we deduce that

τ + F
(
d(yn, yn+)

)
= τ + F

(
d(Txn–, Txn)

) ≤ F
(
D

(
R{xn–}, R{xn}

))
(.)

for all n ∈ N. Since xnRyn and xn+Ryn+, by the definition of D, we get D(R{xn–}, R{xn}) ≤
d(yn–, yn). Thus from (.), we have

τ + F
(
d(yn, yn+)

) ≤ F
(
d(yn–, yn)

)
, (.)

which further implies that

F
(
d(yn, yn+)

) ≤ F
(
d(yn–, yn)

)
– τ ≤ F

(
d(yn–, yn–)

)
– τ ≤ · · ·

≤ F
(
d(y, y)

)
– nτ . (.)
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From (.), we obtain

lim
n→∞ F

(
d(yn, yn+)

)
= –∞. (.)

Then from (F), we get

lim
n→∞ d(yn, yn+) = . (.)

Now from (F), there exists  < k <  such that

lim
n→∞

[
d(yn, yn+)

]kF
(
d(yn, yn+)

)
= . (.)

By (.), we have

d(yn, yn+)kF
(
d(yn, yn+)

)
– d(yn, yn+)kF

(
d(y, y)

)

≤ d(yn, yn+)k[F
(
d(y, y) – nτ

)
– F

(
d(y, y)

)]

= –nτ
[
d(yn, yn+)

]k ≤ . (.)

By taking the limit as n → ∞ in (.) and applying (.) and (.), we have

lim
n→∞ n

[
d(yn, yn+)

]k = . (.)

It follows from (.) that there exists n ∈N such that

n
[
d(yn, yn+)

]k ≤  (.)

for all n > n. This implies

d(yn, yn+) ≤ 
n/k (.)

for all n > n. Now we prove that {yn} is a Cauchy sequence. For m > n > n we have

d(yn, ym) ≤
m–∑

i=n

d(yi, yi+) ≤
m–∑

i=n


i/k . (.)

Since  < k < ,
∑∞

i=


i/k converges. Therefore, d(yn, ym) →  as m, n → ∞. Thus we
proved that {yn} is a Cauchy sequence in Range(R). Completeness of Range(R) ensures
that there exists z ∈ Range(R) such that yn → z as n → ∞. Now since R is left-total, wRz
for some w ∈ X. Now

F
(
d(yn, Tw)

)
= F

(
d(Txn–, Tw)

) ≤ F
(
D

(
R{xn–}, R{w})) – τ

< F
(
d(yn–, z)

)
– τ .

Since limn→∞ d(yn–, z) = , by (F), we have limn→∞ F(d(yn–, z)) = –∞. This implies
that limn→∞ F(d(yn, Tw)) = –∞, which further implies that limn→∞ d(yn, Tw) = . Hence



Hussain et al. Fixed Point Theory and Applications  (2015) 2015:78 Page 5 of 13

d(z, Tw) = . It follows that z = Tw. Hence Tw ∈ R{w}. In the case when Range(T) is
complete. Since Range(T) ⊆ Range(R), there exists an element z∗ ∈ Range(R) such that
yn → z∗. The remaining part of the proof is the same as in previous case. �

Example  Let X = Y = R, d(x, y) = |x – y|. Define T : R →R, R : R�R as follows:

Tx =

{
 if x ∈Q,
 if x ∈Q

′,

R =
(
Q×[, ]

) ∪ (
Q

′×[, ]
)
.

Then Range(T) = {, } ⊂ Range(R) = [, ] ∪ [, ]. Let F(t) = ln(t) and τ = .

For x ∈ Q, y ∈Q
′ or y ∈Q, x ∈Q

′, d(Tx, Ty) >  implies that

τ + F
(
d(Tx, Ty)

) ≤ F
(
D

(
R{x}, R{y})).

Thus all conditions of the above theorem are satisfied and  is the coincidence point of T
and R.

From Theorem  we deduce the following result immediately.

Theorem  Let X be a nonempty set and (Y , d) be a metric space. Let T , R : X → Y be two
mappings such that Range(T) ⊆ Range(R) and Range(T) or Range(R) is complete. If there
exist a mapping F : R+ →R and τ >  such that

τ + F
(
d(Tx, Ty)

) ≤ F
(
d(Rx, Ry)

)

for all x, y ∈ X, then T and R have a coincidence point in X. Moreover, if either T or R is
injective, then R and T have a unique coincidence point in X.

Proof By Theorem , we see that there exists w ∈ X such that Tw = Rw, where

Rw = lim
n→∞ Rxn = lim

n→∞ Txn–, x ∈ X.

For uniqueness, assume that w, w ∈ X, w �= w, Tw = Rw, and Tw = Rw. Then τ +
F(d(Tw, Tw)) ≤ F(d(Rw, Rw)) for some τ > . If R or T is injective, then

d(Rw, Rw) > 

and

τ + F
(
d(Rw, Rw)

)
= τ + F

(
d(Tw, Tw)

) ≤ F
(
d(Rw, Rw)

)
,

a contradiction to the fact that τ > . �

Remark  If in the above theorem we choose X = Y , R = I (the identity mapping on X),
we obtain Theorem , which is Theorem . of Wardowski [].
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Corollary  Let T : X → Y , R : X � Y be such that R is left-total, Range(T) ⊆ Range(R)
and Range(T) or Range(R) is complete. If there exists λ ∈ [, ) such that for all x, y ∈ X

d(Tx, Ty) ≤ λD
(
R{x}, R{y}),

then there exists w ∈ X such that Tw ∈ R{w}.

Proof Consider the mapping F(t) = ln(t), for t > . Then obviously F satisfies (F)-(F).
From Theorem , we obtain the desired conclusion. �

Corollary  Let X be nonempty set and (Y , d) be a metric space. T , R : X → Y be two
mappings such that Range(T) ⊆ Range(R) and Range(T) or Range(R) is complete. If there
exists a λ ∈ [, ) such that for all x, y ∈ X

d(Tx, Ty) ≤ λd(Rx, Ry),

then R and T have a coincidence point in X. Moreover, if either T or R is injective, then R
and T have a unique coincidence point in X.

Proof Consider the mapping F(t) = ln(t), for t > . Then obviously F satisfies (F)-(F).
From Theorem , we obtain the desired conclusion. �

Remark  If in the above corollary we choose X = Y and R = I (the identity mapping
on X), we obtain the Banach contraction theorem.

In this way, we recall the concept of F-contractions for multivalued mappings and
proved Suzuki-type fixed point theorem for such contractions. Nadler [] invented the
concept of a Hausdorff metric H induced by metric d on X as follows:

H(A, B) = max
{

sup
x∈A

d(x, B), sup
y∈B

d(y, A)
}

for every A, B ∈ CB(X). He extended the Banach contraction principle to multivalued map-
pings. Since then many authors have studied fixed points for multivalued mappings. Very
recently, Sgroi and Vetro extended the concept of the F-contraction for multivalued map-
pings (see also []).

Theorem  Let (X, d) be a metric space and let T : X → CB(X). Assume that there exist
a function F ∈� that is continuous from the right and τ ∈R

+ such that




d(x, Tx) ≤ d(x, y) �⇒ τ + F
(
H(Tx, Ty)

) ≤ F
(
d(x, y)

)
(.)

for all x, y ∈ X. Then T has a fixed point.

Proof Let x ∈ X be an arbitrary point of X and choose x ∈ Tx. If x ∈ Tx, then x is a
fixed point of T and the proof is completed. Assume that x /∈ Tx, then Tx �= Tx. Now




d(x, Tx) ≤ 


d(x, x) < d(x, x).



Hussain et al. Fixed Point Theory and Applications  (2015) 2015:78 Page 7 of 13

From the assumption, we have

τ + F
(
H(Tx, Tx)

) ≤ F
(
d(x, x)

)
.

Since F is continuous from the right, there exists a real number h >  such that

F
(
hH(Tx, Tx)

) ≤ F
(
H(Tx, Tx)

)
+ τ .

Now, from

d(x, Tx) ≤ H(Tx, Tx) < hH(Tx, Tx),

we deduce that there exists x ∈ Tx such that

d(x, x) ≤ hH(Tx, Tx).

Consequently, we get

F
(
d(x, x)

) ≤ F
(
hH(Tx, Tx)

)
< F

(
H(Tx, Tx)

)
+ τ ,

which implies that

τ + F
(
d(x, x)

) ≤ τ + F
(
H(Tx, Tx)

)
+ τ

≤ F
(
d(x, x)

)
+ τ .

Thus

τ + F
(
d(x, x)

) ≤ F
(
d(x, x)

)
.

Continuing in this manner, we can define a sequence {xn} ⊂ X such that xn /∈ Txn, xn+ ∈
Txn and

τ + F
(
d(xn, xn+)

) ≤ F
(
d(xn–, xn)

)

for all n ∈N∪ {}. Therefore

F
(
d(xn, xn+)

) ≤ F
(
d(xn–, xn)

)
– τ ≤ F

(
d(xn–, xn–)

)
– τ ≤ · · ·

≤ F
(
d(x, x)

)
– nτ (.)

for all n ∈N. Since F ∈�, by taking the limit as n → ∞ in (.) we have

lim
n→∞ F

(
d(xn, xn+)

)
= –∞ ⇐⇒ lim

n→∞ d(xn, xn+) = . (.)

Now from (F), there exists  < k <  such that

lim
n→∞

[
d(xn, xn+)

]kF
(
d(xn, xn+)

)
= . (.)
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By (.), we have

d(xn, xn+)kF
(
d(xn, xn+)

)
– d(xn, xn+)kF

(
d(x, x)

)

≤ d(xn, xn+)k[F
(
d(x, x) – nτ

)
– F

(
d(x, x)

)]

= –nτ
[
d(xn, xn+)

]k ≤ . (.)

By taking the limit as n → ∞ in (.) and applying (.) and (.), we have

lim
n→∞ n

[
d(xn, xn+)

]k = . (.)

It follows from (.) that there exists n ∈N such that

n
[
d(xn, xn+)

]k ≤  (.)

for all n > n. This implies

d(xn, xn+) ≤ 
n/k (.)

for all n > n. Now we prove that {xn} is a Cauchy sequence. For m > n > n we have

d(xn, xm) ≤
m–∑

i=n

d(xi, xi+) ≤
m–∑

i=n


i/k . (.)

Since  < k < ,
∑∞

i=


i/k converges. Therefore, d(xn, xm) →  as m, n → ∞. Thus {xn} is
a Cauchy sequence. Since X is a complete metric space, there exists z ∈ X such that such
that xn → z as n → +∞. Now, we prove that z is a fixed point of T . If there exists an
increasing sequence {nk} ⊂N such that xnk ∈ Tz for all k ∈N. Since Tz is closed and xn → z
as n → +∞, we get z ∈ Tz and the proof is completed. So we can assume that there exists
n ∈ N such that xn /∈ Tz for all n ∈ N with n ≥ n. This implies that Txn– �= Tz for all
n ≥ n. We first show that

d(z, Tx) ≤ d(z, x)

for all x ∈ X\{z}. Since xn → z, there exists n ∈N such that

d(z, xn) ≤ 


d(z, x)

for all n ∈N with n ≥ n. Then we have




d(xn, Txn) < d(xn, Txn) ≤ d(xn, xn+)

≤ d(xn, z) + d(z, xn+)

≤ 


d(x, z) = d(x, z) –



d(x, z)

≤ d(x, z) – d(z, xn) ≤ d(x, xn).
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Thus, by assumption, we get

τ + F
(
H(Txn, Tx)

) ≤ F
(
d(xn, x)

)
. (.)

Since F is continuous from the right, there exists a real number h >  such that

F
(
hH(Txn, Tx)

)
< F

(
H(Txn, Tx)

)
+ τ .

Now, from

d(xn+, Tx) ≤ H(Txn, Tx) < hH(Txn, Tx),

we obtain

F
(
d(xn+, Tx)

) ≤ F
(
hH(Txn, Tx)

)
< F

(
H(Txn, Tx)

)
+ τ .

Thus we have

τ + F
(
d(xn+, Tx)

) ≤ τ + F
(
H(Txn, Tx)

)
+ τ

≤ F
(
d(xn, x)

)
+ τ .

Since F is strictly increasing, we have

d(xn+, Tx) < d(xn, x).

Letting n tend to +∞, we obtain

d(z, Tx) ≤ d(z, x)

for all x ∈ X\{z}. We next prove that

τ + F
(
H(Tz, Tx)

) ≤ F
(
d(z, x)

)

for all x ∈ X. Since F ∈ �, we take x �= z. Then for every n ∈ N, there exists yn ∈ Tx such
that

d(z, yn) ≤ d(z, Tx) +

n

d(z, x).

So we have

d(x, Tx) ≤ d(x, yn)

≤ d(x, z) + d(z, yn)

≤ d(x, z) + d(z, Tx) +

n

d(z, x)

≤ d(x, z) + d(x, z) +

n

d(z, x)

=
(

 +

n

)
d(x, z)
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for all n ∈N and hence 
 d(x, Tx) ≤ d(x, z). Thus by assumption, we get

τ + F
(
H(Tz, Tx)

) ≤ F
(
d(z, x)

)
.

Thus

τ + F
(
d(xn+, Tz)

) ≤ τ + F
(
H(Txn, Tz)

)

≤ F
(
d(xn, z)

)
.

Since F is strictly increasing, we have d(xn+, Tz) < d(xn, z). Letting n → ∞, we get
d(z, Tz) ≤ . Since Tz is closed, we obtain z ∈ Tz. Thus z is fixed point of T . �

3 Applications
Fixed point theorems for contractive operators in metric spaces are widely investigated
and have found various applications in differential and integral equations (see [, , ,
] and references therein). In this section we discuss the existence and uniqueness of
solution of a general class of the following Volterra type integral equations under various
assumptions on the functions involved. Let C[,�] denote the space of all continuous
functions on [,�], where � >  and for an arbitrary ‖x‖τ = supt∈[,�]{|x(t)|e–τ t}, where
τ >  is taken arbitrary. Note that ‖ · ‖τ is a norm equivalent to the supremum norm, and
(C([,�],R),‖ · ‖τ ) endowed with the metric dτ defined by

dτ (x, y) = sup
t∈[,�]

{∣∣x(t) – y(t)
∣∣e–τ t}

for all x, y ∈ C([,�],R) is a Banach space; see also [].
Consider the integral equation

(fy)(t) =
∫ t


K

(
t, s, hx(s)

)
ds + g(t), (.)

where x : [,�] → R is unknown, g : [,�] → R, and h, f : R → R are given functions.
The kernel K of the integral equation is defined on [,�] × [,�].

Theorem  Assume that the following conditions are satisfied:
(i) K : [,�] × [,�] ×R →R, g : [,�] →R and f : R →R are continuous,

(ii)
∫ t

 K(t, s, ·) : R →R is increasing, for all t, s ∈ [,�],
(iii) there exists τ ∈ (, +∞) such that

∣∣K
(
t, s, hx(s)

)
– K

(
t, s, hy(s)

)∣∣ ≤ τ
∣∣hx(s) – hy(s)

∣∣

for all t, s ∈ [,�] and hx, hy ∈R,
(iv) if f is injective, then for τ >  there exists e–τ ∈R

+ such that for all x, y ∈R;

|hx – hy| ≤ e–τ |fx – fy|
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and {fx : x ∈ C([,�],R)} is complete. Then there exists w ∈ C([,�],R) such that for x ∈
C([,�],R) and xn(t) = fxn–(t)

fw(t) = lim
n→∞ fxn(t) = lim

n→∞

[
g(t) +

∫ t


K

(
t, s, hxn–(s)

)
ds

]

and w is the unique solution of (.).

Proof Let X = Y = C([,�],R) and

dτ (x, y) = sup
t∈[,�]

{∣∣x(t) – y(t)
∣∣e–τ t}

for all x, y ∈ X. Let T , R : X → X be defined as follows:

(Tx)(t) = g(t) +
∫ t


K

(
t, s, hx(s)

)
ds and Rx = fx.

Then by assumptions RX = {Rx : x ∈ X} is complete. Let x∗ ∈ TX, then x∗ = Tx for x ∈ X
and x∗(t) = Tx(t). By the assumptions there exists y ∈ X such that Tx(t) = fy(t), hence RX ⊆
TX. Since

∣∣(Tx)(t) – (Ty)(t)
∣∣ =

∣∣∣∣

∫ t



[
K

(
t, s, hx(s)

)]
ds –

∫ t



[
K

(
t, s, hy(s)

)]
ds

∣∣∣∣

≤
∫ t



∣∣K
(
t, s, hx(s)

)
– K

(
t, s, hy(s)

)∣∣ds

≤
∫ t


τ
∣∣hx(s) – hy(s)

∣∣ds

≤
∫ t


τe–τ

∣∣fx(s) – fy(s)
∣∣ds

=
∫ t


τe–τ

∣∣(Rx)(s) – (Ry)(s)
∣∣e–τ seτ s ds

≤ τe–τ‖Rx – Ry‖τ

∫ t


eτ s ds

≤ τe–τ‖Rx – Ry‖τ

eτ t

τ

= e–τ‖Rx – Ry‖τ eτ t .

This implies that

∣∣(Tx)(t) – (Ty)(t)
∣∣eτ t ≤ e–τ‖Rx – Ry‖τ ,

or equivalently

dτ (Tx, Ty) ≤ e–τ dτ (Rx, Ry).

Taking logarithms, we have

ln
(
dτ (Tx, Ty)

) ≤ ln
(
e–τ dτ (Rx, Ry)

)
.
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After routine calculations, one can easily get

τ + ln
(
dτ (Tx, Ty)

) ≤ ln
(
dτ (Rx, Ry)

)
.

Now, we observe that the function F : R+ → R defined by F(t) = ln(t) for each t ∈
C([,�],R) and τ >  is in �. Thus all conditions of Theorem  are satisfied. Hence, there
exists a unique w ∈ X such that

fw(t) = lim
n→∞ Rxn(t) = lim

n→∞ Txn–(t) = T(w)(t), x ∈ X,

for all t, which is the unique solution of (.). �
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