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Abstract
In this paper, owing to the concept of F-contraction, we define two new classes of
functionsM(S, T ) and N(S, T ), and we prove some new fixed point results for
single-valued and multivalued mappings in complete metric spaces. Our results
extend, generalize and unify several known results in the literature. We include an
example to show that the generalization is proper.
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1 Introduction and preliminaries
In fixed point theory, the contractive conditions on underlying functions play an impor-
tant role in finding solutions of fixed point problems. Banach contraction principle is a
remarkable result in metric fixed point theory. Over the years, it has been generalized
in different directions by several mathematicians (see [–] and [–]). In , War-
dowski [] introduced a new concept of contraction, and he proved a fixed point theorem
which generalizes the Banach contraction principle. Later on, Wardowski and Van Dung
[] gave the idea of F-weak contraction and proved a theorem concerning F-weak con-
traction. Afterwards, Abbas et al. [] further generalized the concept of F-contraction
and proved certain fixed point results. Hussain and Salimi [] introduced an α-GF-
contraction with respect to a general family of functions G and established Wardowski-
type fixed point results in ordered metric spaces. Batra et al. [, ] extended the concept
of F-contraction on graphs and altered distances. They proved some fixed point and co-
incidence point results by illustrating them with some examples. Recently, Cosentino and
Vetro [] followed the approach of F-contraction and obtained some fixed point theorems
of Hardy-Rogers-type for self-mappings in complete metric spaces and complete ordered
metric spaces. Then Sgroi and Vetro [] extended this Hardy-Rogers-type fixed point
result for multivalued mappings. The reader can see [, , , , , , , ] for recent
results in this direction.

The aim of this article is to establish some new fixed point theorems and generalize the
results of Beg and Azam [], Cosentino and Vetro [], Sgroi and Vetro [] and Wardowski
[] by introducing a new type of contractions.

We recall some basic known definitions and results which will be used in the sequel.
Throughout this article, N, R+, R denote the set of natural numbers, the set of positive
real numbers and the set of real numbers, respectively.
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To be consistent with Wardowski [], we denote by� the set of all functions F : R+ →R

satisfying the following conditions:
(F) F is strictly increasing;
(F) for all sequence {αn} ⊆ R+, limn→∞ αn =  if and only if limn→∞ F(αn) = –∞;
(F) there exists  < k <  such that lima→+ αkF(α) = .

Definition . [] Let (X, d) be a metric space. A mapping T : X → X is said to be an
F-contraction if there exist τ ∈R

+ and a function F ∈� such that for all x, y ∈ X,

d(Tx, Ty) >  ⇒ τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
. (.)

Example . [] Let F : R+ →R be defined by F(α) = lnα. It is clear that F satisfies (F)-
(F) for any k ∈ (, ). Each mapping T : X → X satisfying (.) is an F-contraction such
that

d(Tx, Ty) ≤ e–τ d(x, y) for all x, y ∈ X, Tx �= Ty.

It is clear that for x, y ∈ X such that Tx = Ty, the inequality d(Tx, Ty) ≤ e–τ d(x, y) also holds,
i.e., T is a Banach contraction.

Example . [] If F(α) = lnα + α, α > , then F satisfies (F)-(F). Then condition (.)
satisfied by the mapping T : X → X is of the form

d(Tx, Ty)
d(x, y)

ed(Tx,Ty)–d(x,y) ≤ e–τ for all x, y ∈ X, Tx �= Ty.

Remark . From (F) and (.), it is easy to conclude that every F-contraction is neces-
sarily continuous.

Wardowski [] stated a modified version of the Banach contraction principle as follows.

Theorem . [] Let (X, d) be a complete metric space and let T : X → X be an F-contrac-
tion. Then T has a unique fixed point z ∈ X and for every x ∈ X the sequence {Tnx}n∈N
converges to z.

Cosentino and Vetro in [] proved the following Hardy-Rogers-type fixed point theorem
for F-contractive condition in the setting of complete metric spaces.

Theorem . [] Let (X, d) be a complete metric space and T : X → X be a self-mapping.
If there exist τ >  and reals α,β ,γ , δ, L ≥  such that for all x, y ∈ X,

d(Tx, Ty) >  implies

τ + F
(
d(Tx, Ty)

) ≤ F
(
αd(x, y) + βd(x, Tx) + γ d(y, Ty)

+ δ
(
d(x, Ty) + Ld(y, Tx)

))
, (.)

where F ∈� and α + β + γ + L =  and γ �= , then T has a unique fixed point.
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2 Main results
In this section, we prove a common fixed point theorem for self-mappings regarding
F-contraction, and we give an illustrative example. For a metric space (X, d) and two self-
mappings S, T : X → X, we denote by M(S, T) the collection of all functions λ : X × X →
[, ) such that

λ(TSx, y) ≤ λ(x, y) and λ(x, STy) ≤ λ(x, y).

Similarly N(S, T) denotes the collection of all functions � : X → [, ) for all x, y ∈ X with

�(TSx) ≤ �(x).

In the following proposition, we discuss some properties of the above control functions
belonging to the classes M(S, T) and N(S, T). This proposition plays an important role in
the proofs of our main theorems.

Proposition . Let (X, d) be a metric space and S, T : X → X be self-mappings. Let x ∈
X, we define the sequence {xn} by xn+ = Sxn, xn+ = Txn+ for all integers n ≥ .

If λ ∈ M(S, T), then λ(xn, y) ≤ λ(x, y) and λ(x, xn+) ≤ λ(x, x) for all x, y ∈ X and inte-
gers n ≥ .

Proof Let x, y ∈ X and integers n ≥ . Then we have

λ(xn, y) = λ(TSxn–, y) ≤ λ(xn–, y) = λ(TSxn–, y) ≤ · · · ≤ λ(x, y).

Similarly, we have

λ(x, xn+) = λ(x, STxn–) ≤ λ(x, xn–) = λ(x, STxn–) ≤ · · · ≤ λ(x, x). �

Now we establish a theorem regarding common fixed points of self-mappings S, T : X →
X under some new contractive conditions and generalized Theorem . in the sense that
instead of taking constants, we take control functions.

Theorem . Let (X, d) be a complete metric space and S, T : X → X be self-mappings. If
there exist τ >  and mappings λ,μ,γ , δ, L ∈ M(S, T) such that for all x, y ∈ X,

(a)

λ(x, y) + μ(x, y) + γ (x, y) + L(x, y) = , γ (x, y) �=  and δ(x, y) ≥ ;

λ(x, y) + μ(x, y) + γ (x, y) + δ(x, y) = , γ (x, y) �=  and L(x, y) ≥ ;

(b) d(Sx, Ty) >  implies

τ + F
(
d(Sx, Ty)

) ≤ F
(
λ(x, y)d(x, y) + μ(x, y)

(
d(x, Sx)

)
+ γ (x, y)d(y, Ty)

+ δ(x, y)
(
d(x, Ty) + L(x, y)d(y, Sx)

))
,

where F ∈�, then S and T have a common fixed point.
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Moreover, if
(c)

λ(x, y) + δ(x, y) + L(x, y) ≤ ,

then the common fixed point of S and T is unique.

Proof Let x ∈ X, we define the sequence {xn} by

xn+ = Sxn and xn+ = Txn+

for all integers n ≥ . From Proposition ., for all integers n ≥ , we have

τ + F
(
d(xn, xn+)

)
= τ + F

(
d(Txn–, Sxn)

)
= τ + F

(
d(Sxn, Txn–)

)

≤ F
(
λ(xn, xn–)d(xn, xn–)

+ μ(xn, xn–)d(xn, Sxn)

+ γ (xn, xn–)d(xn–, Txn–)

+ δ(xn, xn–)d(xn, Txn–)

+ L(xn, xn–)d(xn–, Sxn)
)

= F
(
λ(xn, xn–)d(xn, xn–) + μ(xn, xn–)d(xn, xn+)

+ γ (xn, xn–)d(xn–, xn) + L(xn, xn–)d(xn–, xn+)
)

≤ F
(
λ(x, xn–)d(xn, xn–) + μ(x, xn–)d(xn, xn+)

+ γ (x, xn–)d(xn–, xn)
)

+ L(x, xn–)
(
d(xn–, xn) + d(xn, xn+)

)

≤ F
(
λ(x, x)d(xn, xn–) + μ(x, x)d(xn, xn+)

+ γ (x, x)d(xn–, xn)

+ L(x, x)
(
d(xn–, xn) + d(xn, xn+)

))

= F
((

λ(x, x) + γ (x, x) + L(x, x)
)
d(xn–, xn)

+
(
μ(x, x) + L(x, x)

)
d(xn, xn+)

)
. (.)

Since F is strictly increasing, we deduce the following:

d(xn, xn+) <
(
λ(x, x) + γ (x, x) + L(x, x)

)
d(xn–, xn)

+
(
μ(x, x) + L(x, x)

)
d(xn, xn+).

Hence,

d(xn, xn+) <
λ(x, x) + γ (x, x) + L(x, x)

 – μ(x, x) – L(x, x)
d(xn–, xn) = d(xn–, xn).
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Consequently, from (.) we have

τ + F
(
d(xn, xn+)

)
< F

(
d(xn–, xn)

)
. (.)

Similarly, we have

τ + F
(
d(xn+, xn+)

)
= τ + F

(
d(Sxn, Txn+)

)

≤ F
(
λ(xn, xn+)d(xn, xn+) + μ(xn, xn+)d(xn, Sxn)

+ γ (xn, xn+)d(xn+, Txn+) + δ(xn, xn+)d(xn, Txn+)

+ L(xn, xn+)
(
d(xn+, Sxn)

))

= F
(
λ(xn, xn+)d(xn, xn+) + μ(xn, xn+)d(xn, xn+)

+ γ (xn, xn+)d(xn+, xn+) + δ(xn, xn+)d(xn, xn+)
)

≤ F
(
λ(x, xn+)d(xn, xn+) + μ(x, xn+)d(xn, xn+)

+ γ (x, xn+)d(xn+, xn+)

+ δ(x, xn+)
(
d(xn, xn+) + d(xn+, xn+)

))

≤ F
(
λ(x, x)d(xn, xn+) + μ(x, x)d(xn, xn+)

+ γ (x, x)d(xn+, xn+) + δ(x, x)
(
d(xn, xn+)

+ d(xn+, xn+)
))

= F
((

λ(x, x) + μ(x, x) + δ(x, x)
)
d(xn, xn+)

+
(
γ (x, x) + δ(x, x)

)
d(xn+, xn+)

)
. (.)

Since F is strictly increasing, we deduce

d(xn+, xn+) <
(
λ(x, x) + μ(x, x) + δ(x, x)

)
d(xn, xn+)

+
(
γ (x, x) + δ(x, x)

)
d(xn+, xn+).

Hence,

d(xn+, xn+) <
λ(x, x) + μ(x, x) + δ(x, x)

 – γ (x, x) – δ(x, x)
d(xn, xn+) = d(xn, xn+).

Consequently, from (.) we have

τ + F
(
d(xn+, xn+)

)
< F

(
d(xn, xn+)

)
. (.)

Thus

F
(
d(xn, xn+)

)
< F

(
d(xn–, xn)

)
–τ < F

(
d(xn–, xn–)

)
– τ < · · · < F

(
d(x, x)

)
– nτ (.)

for all n ∈N. Since F ∈�, so by taking limit as n → ∞ in (.) we have

lim
n→∞ F

(
d(xn, xn+)

)
= –∞ ⇐⇒ lim

n→∞ d(xn, xn+) = . (.)
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Now, from (F), there exists  < k <  such that

lim
n→∞

[
d(xn, xn+)

]kF
(
d(xn, xn+)

)
= . (.)

By (.), we have

d(xn, xn+)kF
(
d(xn, xn+)

)
– d(xn, xn+)kF

(
d(x, x)

)

< d(xn, xn+)k[F
(
d(x, x) – nτ

)
– F

(
d(x, x)

)]

= –nτ
[
d(xn, xn+)

]k ≤ . (.)

By taking limit as n → ∞ in (.) and applying (.) and (.), we have

lim
n→∞ n

[
d(xn, xn+)

]k = . (.)

It follows from (.) that there exists n ∈N such that

n
[
d(xn, xn+)

]k ≤  (.)

for all n > n. This implies

d(xn, xn+) ≤ 
n/k (.)

for all n > n. Now we prove that {xn} is a Cauchy sequence. For m > n > n, we have

d(xn, xm) ≤
m–∑

i=n

d(xi, xi+) ≤
m–∑

i=n


i/k . (.)

Since  < k < , then
∑∞

i=


i/k converges. Therefore, d(xn, xm) →  as m, n → ∞. Thus we
proved that {xn} is a Cauchy sequence in X. The completeness of X ensures that there
exists z ∈ X such that xn → z as n → ∞. First we show that z is a fixed point of S. By
Proposition ., we have

τ + F
(
d(Sz, xn+)

)
= τ + F

(
d(Sz, Txn+)

)

≤ F
(
λ(z, xn+)d(z, xn+) + μ(z, xn+)d(z, Sz)

+ γ (z, xn+)d(xn+, Txn+) + δ(z, xn+)d(z, Txn+)

+ L(z, xn+)d(xn+, Sz)
)

= F
(
λ(z, xn+)d(z, xn+) + μ(z, xn+)d(z, Sz)

+ γ (z, xn+)d(xn+, xn+) + δ(z, xn+)d(z, xn+)

+ L(z, xn+)d(xn+, Sz)
)

≤ F
(
λ(z, x)d(z, xn+) + μ(z, x)d(z, Sz) + γ (z, x)d(xn+, xn+)

+ δ(z, x)d(z, xn+) + L(z, x)d(xn+, Sz)
)
.
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Since F is strictly increasing, we deduce

d(Sz, xn+) < λ(z, x)d(z, xn+) + μ(z, x)d(z, Sz) + γ (z, x)d(xn+, xn+)

+ δ(z, x)d(z, xn+) + L(z, x)d(xn+, Sz).

Letting n → +∞ in the previous inequality, we get

d(Sz, z) ≤ (
μ(z, x) + L(z, x)

)
d(Sz, z)

as μ(z, x) + γ (z, x) < . This implies d(Sz, z) = . Thus we have z = Sz. We also show that
z is a fixed point of T . By Proposition ., we have

τ + F
(
d(xn+, Tz)

)
= τ + F

(
d(Sxn, Tz)

)

≤ F
(
λ(xn, z)d(xn, z) + μ(xn, z)d(xn, Sxn)

+ γ (xn, z)d(z, Tz) + δ(xn, z)d(xn, Tz)

+ L(xn, z)d(z, Sxn)
)

= F
(
λ(xn, z)d(xn, z) + μ(xn, z)d(xn, xn+) + γ (xn, z)d(z, Tz)

+ δ(xn, z)d(xn, Tz) + L(xn, z)d(z, xn+)
)

≤ F
(
λ(x, z)d(xn, z) + μ(x, z)d(xn, xn+) + γ (x, z)d(z, Tz)

+ δ(x, z)d(xn, Tz) + L(x, z)d(z, xn+)
)
.

Since F is strictly increasing, we deduce

d(xn+, Tz) < λ(x, z)d(xn, z) + μ(x, z)d(xn, xn+)

+ γ (x, z)d(z, Tz) + δ(x, z)d(xn, Tz) + L(x, z)d(z, xn+).

Letting n → +∞ in the previous inequality, we get

d(z, Tz) ≤ (
γ (x, z) + γ (x, z)

)(
d(z, Tz)

)
.

This implies d(z, Tz) =  and hence z = Tz. Therefore, z is a common fixed point of S and T .
Now we show the uniqueness. Suppose that there exists another common fixed point u

of S and T , that is, u = Su = Tu. Assume that Su �= Tz, then from (b) we have

τ + F
(
d(Su, Tz)

) ≤ F
(
λ(u, z)d(u, z) + μ(u, z)d(u, Su) + γ (u, z)d(z, Tz)

+ δ(u, z)d(u, Tz) + L(u, z)d(z, Su)
)

= F
((

λ(u, z) + δ(u, z) + L(u, z)
)
d(u, z)

)
.

Since F is strictly increasing, we deduce

d(Su, Tz) ≤ (
λ(u, z) + δ(u, z) + L(u, z)

)
d(u, z) =

(
λ(u, z) + δ(u, z) + L(u, z)

)
d(Su, Tz).
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It implies that d(Su, Tz) = , that is, Su = Tz. It is a contradiction. Thus S and T have a
unique common fixed point, which ends the proof. �

Consequently, we have the following results.

Corollary . Let (X, d) be a complete metric space and S, T : X → X be self-mappings. If
there exist τ >  and mappings λ,μ,γ ∈ M(S, T) such that for all x, y ∈ X,

(a)

λ(x, y) + μ(x, y) + γ (x, y) = ;

(b) d(Sx, Ty) >  implies

τ + F
(
d(Sx, Ty)

) ≤ F
(
λ(x, y)d(x, y) + μ(x, y)

(
d(x, Sx) + d(y, Ty)

)

+ γ (x, y)
(
d(x, Ty) + d(y, Sx)

))
,

where F ∈�, then S and T have a unique common fixed point.

Corollary . Let (X, d) be a complete metric space and S, T : X → X be self-mappings. If
there exist τ >  and mappings �,	,
,�, L ∈ N(S, T) such that for all x, y ∈ X,

(a) �(x) + 	(x) + 
(x) + L(x) = , 
(x) �=  and �(x) ≥ ;
�(x) + 	(x) + 
(x) + �(x) = , 
(x) �=  and L(x) ≥ ;

(b) d(Sx, Ty) >  implies

τ + F
(
d(Sx, Ty)

) ≤ F
(
�(x)d(x, y) + 	(x)d(x, Sx) + 
(x)d(y, Ty)

+ �(x)d(x, Ty) + L(x)d(y, Sx)
)
,

where F ∈�, then S and T have a common fixed point.
Moreover, if

�(x) + �(x) + L(x) ≤ ,

then the common fixed point of S and T is unique.

Proof Define λ,μ,γ , δ, L : X × X → [, ) by λ(x, y) = �(x), μ(x, y) = 	(x), γ (x, y) = 
(x),
δ(x, y) = �(x) and L(x, y) = L(x) for all x, y ∈ X. Then, for all x, y ∈ X,

(a)

λ(TSx, y) = �(TSx) ≤ �(x) = λ(x, y) and λ(x, STy) = �(x) = λ(x, y);

μ(TSx, y) = 	(TSx) ≤ 	(x) = μ(x, y) and μ(x, STy) = 	(x) = μ(x, y);

γ (TSx, y) = 
(TSx) ≤ 
(x) = γ (x, y) and γ (x, STy) = 
(x) = γ (x, y);

δ(TSx, y) = �(TSx) ≤ �(x) = γ (x, y) and δ(x, STy) = �(x) = δ(x, y);

L(TSx, y) = L(TSx) ≤ L(x) = L(x, y) and L(x, STy) = L(x) = L(x, y);
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(b)

λ(x, y) + μ(x, y) + γ (x, y) + L(x, y) = �(x) + 	(x) + 
(x) + L(x) = ;

λ(x, y) + μ(x, y) + γ (x, y) + δ(x, y) = �(x) + 	(x) + 
(x) + �(x) = 

and

γ (x, y) = 
(x) �= ;

(c) d(Sx, Ty) >  implies

τ + F
(
d(Sx, Ty)

) ≤ F
(
�(x)d(x, y) + 	(x)d(x, Sx) + 
(x)d(y, Ty)

+ �(x)d(x, Ty) + L(x)d(y, Sx)
)

= F
(
λ(x, y)d(x, y) + μ(x, y)d(x, Sx) + γ (x, y)d(y, Ty)

+ δ(x, y)d(x, Ty) + L(x, y)d(y, Sx)
)
.

By Theorem ., S and T have a unique common fixed point. �

By letting �(·) = �, 	(·) = 	, 
(·) = 
, �(·) = � and L(·) = L in Corollary ., we get the
following result.

Corollary . Let (X, d) be a complete metric space and S, T : X → X be self-mappings. If
there exist τ >  and a mapping F : R+ →R such that for all x, y ∈ X,

d(Sx, Ty) >  implies

τ + F
(
d(Sx, Ty)

) ≤ F
(
�d(x, y) + 	d(x, Sx) + 
d(y, Ty) + �d(x, Ty) + Ld(y, Sx)

)

for all nonnegative reals �,	,
,�, L ∈ [, ) with � + 	 + 
 + � = , 
 �=  and L ≥ ,
then S and T have a common fixed point. Moreover, if

� + � + L ≤ ,

then the common fixed point of S and T is unique.

By setting S = T in the above corollary, we get Theorem . of [].

Corollary . [] Let (X, d) be a complete metric space and T : X → X be a self-mapping.
If there exist τ >  and the mapping F : R+ →R such that for all x, y ∈ X,

d(Tx, Ty) >  implies

τ + F
(
d(Tx, Ty)

) ≤ F
(
�d(x, y) + 	d(x, Tx) + 
d(y, Ty) + �d(x, Ty) + Ld(y, Tx)

)

for all nonnegative reals �,	,
,�, L ∈ [, ) with � + 	 + 
 + � = , 
 �=  and L ≥ .
Then T has a fixed point. Moreover, if � + � + L ≤ , then the fixed point of T is unique.

Putting � = � = L =  and 	 + 
 =  with 	 �=  and 
 �=  in Corollary ., we get
Corollary . of [] as follows.
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Corollary . [] Let (X, d) be a complete metric space and T : X → X be a self-mapping.
If there exist τ >  and a mapping F : R+ →R such that for all x, y ∈ X,

d(Tx, Ty) >  implies

τ + F
(
d(Tx, Ty)

) ≤ F
(
	d(x, Tx) + 
d(y, Ty)

)

for all nonnegative reals 	,
,∈ [, ) with 	 + 
 =  and 
 �= , then T has a unique fixed
point.

Putting � = 	 = 
 =  and � = 
 in Corollary ., we get Corollary . of [] as follows.

Corollary . [] Let (X, d) be a complete metric space and T : X → X be a self-mapping.
If there exist τ >  and the mapping F : R+ →R such that for all x, y ∈ X,

d(Tx, Ty) >  implies

τ + F
(
d(Tx, Ty)

) ≤ F
(




d(x, Ty) + Ld(y, Tx)
)

for nonnegative real L ∈ [, ). Then T has a fixed point. Moreover, if L ≤ 
 , then the fixed

point of T is unique.

Remark . If λ(x, y) = , μ(x, y) = γ (x, y) = δ(x, y) = L(x, y) =  and S = T in Theorem .,
we can get Theorem . of Wardowski [].

3 Fixed point results for multivalued mappings
The fixed point theory of multivalued contraction mappings using the Hausdorff metric
was initiated by Nadler [], who extended the Banach contraction principle to multival-
ued mappings. Since then many authors have studied fixed points for multivalued map-
pings. The theory of multivalued mappings has many applications in control theory, con-
vex optimization, differential equations and economics. Recently, Sgroi and Vetro have
extended the concept of F-contraction for multivalued mapping and they proved the fol-
lowing theorem in [].

Theorem . [] Let (X, d) be a complete metric space and T : X → CB(X). If there exist
a mapping F ∈�, τ >  and real numbers α,β ,γ , δ, L ≥  such that

τ + F
(
H(Tx, Ty)

) ≤ F
(
αd(x, y) + βd(x, Tx) + γ d(y, Ty) + δ

(
d(x, Ty) + Ld(y, Tx)

))

for all x, y ∈ X, with Tx �= Ty, where α + β + γ + L =  and γ �= , then T has a unique fixed
point.

In the present section, we recall the concept of F-contractions for multivalued mappings
and prove a Suzuki-Hardy-Rogers-type fixed point theorem for such contractions. Our
new result generalizes and improves Sgroi and Vetro’s fixed point theorem, Nadler’s fixed
point theorem and the Banach contraction principle.

Theorem . Let (X, d) be a metric space and let T : X → CB(X) be a multivalued map-
ping. Assume that there exists a function F ∈� which is continuous from right and τ ∈R

+
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such that

λd(x, Tx) ≤ d(x, y) (.)

implies

τ + F
(
H(Tx, Ty)

) ≤ F
(
ad(x, y) + a

(
d(x, Tx)

)
+ ad(y, Ty)

+ a
(
d(x, Ty) + ad(y, Tx)

))
(.)

for all x, y ∈ X, Tx �= Ty, where ai, i = , , , ,  are nonnegative numbers and a + a + a +
a =  and a �= . Here –a–a

+a–a+a
= λ < . Then T has a fixed point.

Proof Let x ∈ X be an arbitrary point of X and choose x ∈ Tx. If x ∈ Tx, then x is a
fixed point of T and the proof is completed. Assume that x /∈ Tx, then Tx �= Tx. Now

λd(x, Tx) ≤ λd(x, x) < d(x, x).

From the assumption, we have

τ + F
(
H(Tx, Tx)

) ≤ F
(
ad(x, x) + ad(x, Tx)

+ ad(x, Tx) + ad(x, Tx) + ad(x, Tx)
)

≤ F
(
ad(x, x) + ad(x, x) + ad(x, Tx)

+ ad(x, Tx) + ad(x, x)
)

= F
(
(a + a + a)d(x, x) + (a + a)d(x, Tx)

)
.

As F is continuous from the right, there exists a real number h >  such that

F
(
hH(Tx, Tx)

) ≤ F
(
H(Tx, Tx)

)
+ τ .

Now, from

d(x, Tx) ≤ H(Tx, Tx) < hH(Tx, Tx)

we deduce that there exists x ∈ Tx such that

d(x, x) ≤ hH(Tx, Tx).

Consequently, we get

F
(
d(x, x)

) ≤ F
(
hH(Tx, Tx)

)
< F

(
H(Tx, Tx)

)
+ τ ,

which implies that

τ + F
(
d(x, x)

) ≤ τ + F
(
H(Tx, Tx)

)
+ τ

≤ F
(
ad(x, x) + ad(x, Tx)
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+ ad(x, Tx) + ad(x, Tx)

+ ad(x, Tx)
)

+ τ .

Thus

τ + F
(
d(x, x)

) ≤ F
(
(a + a + a)d(x, x) + (a + a)d(x, x)

)
. (.)

Since F is strictly increasing, we deduce

d(x, x) < (a + a + a)d(x, x) + (a + a)d(x, x),

and hence

d(x, x) <
(

a + a + a

 – a – a

)
d(x, x) = d(x, x).

Consequently, from (.) we have

τ + F
(
d(x, x)

)
< F

(
d(x, x)

)
.

Continuing in this manner, we can define a sequence {xn} ⊂ X such that xn /∈ Txn, xn+ ∈
Txn and

τ + F
(
d(Txn–, Txn)

)
< F

(
d(xn–, xn)

)
(.)

for all n ∈N∪ {}.Therefore

F
(
d(xn, xn+)

)
< F

(
d(xn–, xn)

)
–τ < F

(
d(xn–, xn–)

)
–τ < · · · ≤ F

(
d(x, x)

)
–nτ (.)

for all n ∈N. Since F ∈�, so by taking limit as n → ∞ in (.), we have

lim
n→∞ F

(
d(xn, xn+)

)
= –∞ ⇐⇒ lim

n→∞ d(xn, xn+) = . (.)

Now, from (F), there exists  < k <  such that

lim
n→∞

[
d(xn, xn+)

]kF
(
d(xn, xn+)

)
= . (.)

By (.), we have

d(xn, xn+)kF
(
d(xn, xn+)

)
– d(xn, xn+)kF

(
d(x, x)

)

< d(xn, xn+)k[F
(
d(x, x) – nτ

)
– F

(
d(x, x)

)]

= –nτ
[
d(xn, xn+)

]k ≤ . (.)

By taking limit as n → ∞ in (.) and applying (.) and (.), we have

lim
n→∞ n

[
d(xn, xn+)

]k = . (.)
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It follows from (.) that there exists n ∈N such that

n
[
d(xn, xn+)

]k ≤  (.)

for all n > n. This implies

d(xn, xn+) ≤ 
n/k (.)

for all n > n. Now we prove that {xn} is a Cauchy sequence. For m > n > n, we have

d(xn, xm) ≤
m–∑

i=n

d(xi, xi+) ≤
m–∑

i=n


i/k . (.)

Since,  < k < , then
∑∞

i=


i/k converges. Therefore, d(xn, xm) →  as m, n → ∞. Thus
{xn} is a Cauchy sequence. Completeness of X ensures that there exists z ∈ X such that
xn → z as n → ∞. If there exists an increasing sequence {nk} ⊂ N such that xnk ∈ Tz for
all k ∈ N since Tz is closed and xnk → z, we get z ∈ Tz and the proof is completed. So we
can assume that there exists n ∈ N such that xn /∈ Tz for all n ∈ N with n ≥ n. Then we
assume that Txn– �= Tz for all n ≥ n. Now we show that

λd(z, Tx) ≤ d(z, x)

for all x ∈ X\{z}. Since xn → z, so there exists n ∈N such that

d(z, xn) ≤ 


d(z, x)

for all n ∈N with n ≥ n. Then we have

λd(xn, Txn) < d(xn, Txn) ≤ d(xn, xn+)

≤ d(xn, z) + d(z, xn+)

≤ 


d(x, z) = d(x, z) –



d(x, z)

≤ d(x, z) – d(z, xn) ≤ d(x, xn).

Thus, by assumption, we get

τ + F
(
H(Txn, Tx)

) ≤ F
(
ad(xn, x) + ad(xn, Txn) + ad(x, Tx)

+ ad(xn, Tx) + ad(x, Txn)
)

≤ F
(
ad(xn, x) + ad(xn, xn+) + ad(x, Tx)

+ ad(xn, Tx) + ad(x, xn+)
)
.

Since F is continuous from the right, so there exists a real number h >  such that

F
(
hH(Txn, Tx)

)
< F

(
H(Txn, Tx)

)
+ τ .
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Now, from

d(xn+, Tx) ≤ H(Txn, Tx) < hH(Txn, Tx)

we get

F
(
d(xn+, Tx)

) ≤ F
(
hH(Txn, Tx)

)
< F

(
H(Txn, Tx)

)
+ τ .

Thus we have

τ + F
(
d(xn+, Tx)

) ≤ τ + F
(
H(Txn, Tx)

)
+ τ

≤ F
(
ad(xn, x) + ad(xn, xn+) + ad(x, Tx)

+ ad(xn, Tx) + ad(x, xn+)
)

+ τ .

Since F is strictly increasing, we have

d(xn+, Tx) < ad(xn, x) + ad(xn, xn+) + ad(x, Tx) + ad(xn, Tx) + ad(x, xn+).

Letting n tend to ∞, we obtain

d(z, Tx) ≤ ad(z, x) + ad(x, Tx) + ad(z, Tx) + ad(x, z)

≤
(

a + a + a

 – a – a

)
d(z, x)

for all x ∈ X\{z}. We prove that

τ + F
(
H(Tz, Tx)

) ≤ F
(
ad(x, z) + ad(x, Tx) + ad(z, Tz) + ad(x, Tz) + ad(z, Tx)

)

for all x ∈ X. Then, for every n ∈ N, there exists yn ∈ Tx such that

d(z, yn) ≤ d(z, Tx) +

n

d(z, x).

So we have the following:

d(x, Tx) ≤ d(x, yn)

≤ d(x, z) + d(z, yn)

≤ d(x, z) + d(z, Tx) +

n

d(z, x)

≤ d(x, z) +
a + a + a

 – a – a
d(z, x) +


n

d(z, x)

=
(

 +
a + a + a

 – a – a
+


n

)
d(x, z)

for all n ∈N, and hence λd(x, Tx) ≤ d(x, z). Thus, by assumption, we get

τ + F
(
H(Tx, Tz)

) ≤ F
(
ad(x, z) + ad(x, Tx) + ad(z, Tz) + ad(x, Tz) + ad(z, Tx)

)
.
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Taking x = xn+, we have

τ + F
(
d(xn+, Tz)

) ≤ τ + F
(
H(Txn, Tz)

)

≤ F
(
ad(xn, z) + ad(xn, Txn) + ad(z, Tz)

+ ad(xn, Tz) + ad(z, Txn)
)
.

Since F is strictly increasing, we have

d(xn+, Tz) < ad(xn, z) + ad(xn, Txn) + ad(z, Tz) + ad(xn, Tz) + ad(z, Txn).

Letting n → +∞, we get

d(z, Tz) ≤ (a + a)d(z, Tz)

as a + a < . Thus we get d(z, Tz) = . Since Tz is closed, we obtain z ∈ Tz. Thus z is a
fixed point of T . �

Corollary . Let (X, d) be a metric space and let T : X → CB(X) be a multivalued map-
ping. Assume that there exists a function F ∈ � that is continuous from right and τ ∈ R

+

such that

βd(x, Tx) ≤ d(x, y)

implies

τ + F
(
H(Tx, Ty)

) ≤ F
(
rd(x, y) + r

(
d(x, Ty) + rd(y, Tx)

))

for all x, y ∈ X, Tx �= Ty, where ai, i = , ,  are nonnegative numbers and r + r =  and
r �= . Here –r

+r–r+r
= β < . Then T has a fixed point.

Proof By taking a = a =  in previous result. �

Now we present the following example which illustrates our results.

Example . Let X = [, ], T : X → CB(X) be defined as Tx = [, x
 ] and d be the usual

metric on X. Taking F(t) = ln(t) + t for all t ∈R
+ and τ = ln(

√
). Without loss of generality,

we take x < y. Then, for all x, y ∈ X, d(Tx, Ty) >  and d(x, y) > . Now

λd(x, Tx) =  < d(x, y)

implies that

τ + F
(
H(Tx, Ty)

)
= ln() + ln

(
H(Tx, Ty)

)
= ln() + ln

(



|y – x|
)

+



|y – x|

≤ ln() + ln

(


|y – x|

)
+




|y – x|
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≤ ln() + ln

(



)
+ ln

(



|y – x|
)

+



|y – x|

= ln

(


|y – x| +



|y – x| +



|y – x|

)

+
(



|y – x| +



|y – x| +



|y – x|

)

≤ ln

(


|y – x| +




∣
∣∣
∣y –

x


∣
∣∣
∣ +




∣
∣∣
∣x –

y


∣
∣∣
∣

)

+
(



|y – x| +




∣∣
∣∣y –

x


∣∣
∣∣ +




∣∣
∣∣x –

y


∣∣
∣∣

)

= F
(
ad(x, y) + a

(
d(x, Ty) + ad(y, Tx)

))
,

where a + a =  and a �= . Thus all conditions of the above corollary are satisfied and
 is a fixed point of T .

Now we prove a new fixed point theorem for Kannan-type multivalued F-contractions,
which is a generalization of the results of Beg and Azam [].

Theorem . Let (X, d) be a complete metric space and let T : X → CB(X). Assume that
there exist a function F ∈ � which is continuous from right, τ >  and ϕi : R → [, ) (i =
, ) such that

τ + F
(
H(Tx, Ty)

) ≤ F
(
ϕ

(
d(x, Tx)

)
d(x, Tx) + ϕ

(
d(y, Ty)

)
d(y, Ty)

)
(.)

for all x, y ∈ X, with Tx �= Ty, where ϕ(d(x, Tx)) + ϕ(d(y, Ty)) = . Then T has a fixed point.

Proof Let x ∈ X be an arbitrary point of X and choose x ∈ Tx. If x ∈ Tx, then x is a
fixed point of T and the proof is completed. Assume that x /∈ Tx, then Tx �= Tx. From
(.), we have

τ + F
(
H(Tx, Tx)

) ≤ F
(
ϕ

(
d(x, Tx)

)
d(x, Tx) + ϕ

(
d(x, Tx)

)
d(x, Tx)

)

≤ F
(
ϕ

(
d(x, x)

)
d(x, x) + ϕ

(
d(x, x)

)
d(x, x)

)
.

As F is continuous from the right, there exists a real number h >  such that

F
(
hH(Tx, Tx)

) ≤ F
(
H(Tx, Tx)

)
+ τ .

Now, from

d(x, Tx) ≤ H(Tx, Tx) < hH(Tx, Tx),

we deduce that there exists x ∈ Tx such that

d(x, x) ≤ hH(Tx, Tx).

Consequently, we get

F
(
d(x, x)

) ≤ F
(
hH(Tx, Tx)

)
< F

(
H(Tx, Tx)

)
+ τ ,
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which implies that

τ + F
(
d(x, x)

) ≤ τ + F
(
H(Tx, Tx)

)
+ τ

≤ F
(
ϕ

(
d(x, x)

)
d(x, x) + ϕ

(
d(x, x)

)
d(x, x)

)
+ τ .

Thus

τ + F
(
d(x, x)

) ≤ F
(
ϕ

(
d(x, x)

)
d(x, x) + ϕ

(
d(x, x)

)
d(x, x)

)
.

Since F is strictly increasing, we deduce

d(x, x) < ϕ
(
d(x, x)

)
d(x, x) + ϕ

(
d(x, x)

)
d(x, x),

and hence

d(x, x) <
ϕ(d(x, x))

 – ϕ(d(x, x))
d(x, x) = d(x, x).

Consequently,

τ + F
(
d(x, x)

) ≤ F
(
d(x, x)

)
.

Continuing in this manner, we can define a sequence {xn} ⊂ X such that xn /∈ Txn, xn+ ∈
Txn and

τ + F
(
d(Txn–, Txn)

) ≤ F
(
d(xn–, xn)

)

for all n ∈ N ∪ {}. Proceeding as in the proof of Theorem ., we obtain that {xn} is a
Cauchy sequence. Since X is a complete space, so there exists z ∈ X such that xn → z as
n → ∞. If there exists an increasing sequence {nk} ⊂ N such that xnk ∈ Tz for all k ∈ N,
since Tz is closed and xnk → z, we get z ∈ Tz and the proof is completed. So we can assume
that there exists n ∈ N such that xn /∈ Tz for all n ∈N with n ≥ n. Then we assume that
Txn– �= Tz for all n ≥ n. Thus, by assumption, we have

τ + F
(
d(xn+, Tz)

) ≤ τ + F
(
H(Txn, Tz)

)

≤ F
(
ϕ

(
d(xn, Txn)

)
d(xn, Txn) + ϕ

(
d(z, Tz)

)(
d(z, Tz)

))
.

Since F is strictly increasing, we have

d(xn+, Tz) < ϕ
(
d(xn, Txn)

)
d(xn, Txn) + ϕ

(
d(z, Tz)

)(
d(z, Tz)

)
.

Letting n → +∞, we get

d(z, Tz) ≤ ϕ
(
d(z, Tz)

)(
d(z, Tz)

)

as ϕ(d(z, Tz)) < . Thus we get d(z, Tz) = . Since Tz is closed, we obtain z ∈ Tz. Thus z is
a fixed point of T , and hence the proof is completed. �
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4 Conlusion
Wardowski [] very recently exploited the idea of F-contraction and proved a significant
result concerning the existence of fixed points for such contractions in complete metric
spaces. We continue his investigations and define two new classes of functions M(S, T) and
N(S, T). In the present project, some unique common fixed point theorems for single-
valued mappings and fixed point theorems of multivalued mappings under generalized
contractive conditions in a complete metric space (X, d) have been discussed. All the main
results in this article are of some value for solving problems in complete metric spaces. Our
results may be the motivation to other authors to extend and improve these results to be
suitable tools for their applications.
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