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Abstract
The purpose of this paper is to present a new iterative scheme for finding a common
solution to a variational inclusion problem with a finite family of accretive operators
and a modified system of variational inequalities in infinite-dimensional Banach
spaces. Under mild conditions, a strong convergence theorem for approximating this
common solution is proved. The methods in the paper are novel and different from
those in the early and recent literature.
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1 Introduction
Variational inequalities theory, which was introduced by Stampacchia [] in the early
s, has emerged as an interesting and fascinating branch of applicable mathematics
with a wide range of applications in industry, finance, economics, social, pure and applied
sciences. It has been shown that this theory provides the most natural, direct, simple, uni-
fied and efficient framework for a general treatment of a wide class of unrelated linear and
nonlinear problems; see, for example, [–] and the references therein. Variational in-
equalities have been extended and generalized in several directions using novel and new
techniques.

In , Brézis [] initiated the study of the existence theory of a class of variational
inequalities, later known as variational inclusions, using proximal-point mappings due to
Moreau []. Variational inclusions include variational, quasi-variational, variational-like
inequalities as special cases. Variational inclusions can be viewed as an innovative and
novel extension of the variational principles and thus have wide applications in the fields
of optimization, control, economics and engineering sciences.

In recent years, much attention has been given to study the system of variational inclu-
sions/inequalities, which occupies a central and significant role in the interdisciplinary
research among analysis, geometry, biology, elasticity, optimization, imaging process-
ing, biomedical sciences and mathematical physics. One can see an immense breadth
of mathematics and its simplicity in the works of this research. A number of problems
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leading to the system of variational inclusions/inequalities arise in applications to vari-
ational problems and engineering. It is well known that the system of variational inclu-
sions/inequalities can provide new insight regarding problems being studied and can stim-
ulate new and innovative ideas for problem solving.

In , Ansari and Yao [] introduced the system of generalized implicit variational
inequalities and proved the existence of its solution. They derived the existence results for
a solution of system of generalized variational inequalities, from which they established
the existence of a solution of system of optimization problems.

Ansari et al. [] introduced the system of vector equilibrium problems and proved the
existence of its solution. Moreover, they also applied their results to the system of vector
variational inequalities. The results of [] and [] were used as tools to solve the Nash
equilibrium problem for non-differentiable and (non)convex vector-valued functions.

Let A, B : C → E be two nonlinear mappings. In , Yao et al. [] introduced a system
of general variational inequalities problem of finding (x∗, y∗) ∈ C × C such that

{
〈Ay∗ + x∗ – y∗, j(x – x∗)〉 ≥ , ∀x ∈ C,
〈Bx∗ + y∗ – x∗, j(x – y∗)〉 ≥ , ∀x ∈ C.

(.)

In -uniformly smooth Banach spaces, Kangtunyakarn [], recently, introduced a new
system of variational inequalities problem of finding (x∗, y∗) ∈ C × C such that

{
〈x∗ – (I – λA)(ax∗ + ( – a)y∗), j(x – x∗)〉 ≥ , ∀x ∈ C,
〈y∗ – (I – μB)x∗, j(x – y∗)〉 ≥ , ∀x ∈ C.

(.)

If a = , then problem (.) reduces to the problem of finding (x∗, y∗) ∈ C × C such that

{
〈λAy∗ + x∗ – y∗, j(x – x∗)〉 ≥ , ∀x ∈ C,
〈μBx∗ + y∗ – x∗, j(x – y∗)〉 ≥ , ∀x ∈ C,

(.)

which is introduced by Cai and Bu []. In Hilbert spaces, problem (.) reduces to the
problem of finding (x∗, y∗) ∈ C × C such that

{
〈λAy∗ + x∗ – y∗, x – x∗〉 ≥ , ∀x ∈ C,
〈μBx∗ + y∗ – x∗, x – y∗〉 ≥ , ∀x ∈ C,

(.)

which is introduced by Ceng et al. []. If A = B, then problem (.) collapses the problem
of finding (x∗, y∗) ∈ C × C such that

{
〈λAy∗ + x∗ – y∗, x – x∗〉 ≥ , ∀x ∈ C,
〈μAx∗ + y∗ – x∗, x – y∗〉 ≥ , ∀x ∈ C,

(.)

which is introduced by Verma []. In particular, if we let x∗ = y∗ in (.), then problem
(.) is nothing but the classical variational inequality problem: find x∗ ∈ C such that

〈
Ax∗, x – x∗〉 ≥ , ∀x ∈ C. (.)

The set of solutions of problem (.) is denoted by VI(C, A).
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Motivated by the works mentioned above, we shall consider the following problem in
q-uniformly smooth Banach spaces: find (x∗, y∗) ∈ C × C such that

{
〈x∗ – (I – λA)(ax∗ + ( – a)y∗), jq(x – x∗)〉 ≥ , ∀x ∈ C,
〈y∗ – (I – μB)x∗, jq(x – y∗)〉 ≥ , ∀x ∈ C,

(.)

where a ∈ [, ], λ >  and μ >  are three constants. This problem is called a modified
system of variational inequalities, which clearly includes problems (.)-(.) as special
cases.

In order to find a common element of the set of solutions of problem (.) and the set
of fixed points of nonlinear operators, Kangtunyakarn [] also studied the following al-
gorithm in a -uniformly smooth Banach space:

xn+ = G
(
αnu + βnxn + γnSAxn

)
, ∀n ≥ , (.)

where SA is the SA-mapping generated by S, S, . . . , SN , T, T, . . . , TN , G : C → C is the
mapping defined by Gx = QC(I – λA)(aI + ( – a)QC(I – μB))x, and QC is a sunny non-
expansive retraction of E onto C. Then, under mild conditions, they established a strong
convergence theorem.

On the other hand, we know that the quasi-variational inclusion problem in the setting
of Hilbert spaces has been extensively studied in the literature; see, for instance, [–].
There is, however, little work in the existing literature on this problem in the setting of
Banach spaces. The main difficulties are due to the fact that the inner product structure of
Hilbert spaces fails to be true in Banach spaces. To overcome these difficulties, López et al.
[] used a new technique to carry out certain initiative investigations on splitting meth-
ods for accretive operators in Banach spaces. They considered the following algorithms
with errors in Banach spaces:

xn+ = ( – αn)xn + αn
(
Jrn

(
xn – rn(Axn + an)

)
+ bn

)
(.)

and

xn+ = αnu + ( – αn)
(
Jrn

(
xn – rn(Axn + an)

)
+ bn

)
, (.)

where u ∈ E, {an}, {bn} ⊂ E and Jrn = (I + rnB)– is the resolvent of B. Then they established
the weak and strong convergence of algorithms (.) and (.), respectively.

Recently, Khuangsatung and Kangtunyakarn [] introduced the following algorithm
in Hilbert spaces for finding a common element of the set of fixed points of a k-strictly
pseudononspreading mapping, the set of solutions of a finite family of variational inclusion
problems and the set of solutions of a finite family of equilibrium problems:

⎧⎪⎨
⎪⎩

∑N
i= αi�i(zn, y) + 

rn
〈y – zn, zn – wn〉 ≥ , ∀y ∈ C,

wn+ = αnμ + βnwn + γnJM,λ(I – λ
∑N

i= biAi)wn

+ ηn(I – ρn(I – S))wn + δnzn, ∀n ≥ .
(.)

And, under suitable conditions, they proved the strong convergence of the sequence {wn}.
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Motivated and inspired by Zhang et al. [], Qin et al. [], López et al. [], Taka-
hashi et al. [] and Khuangsatung and Kangtunyakarn [], we suggest and analyze a
new iterative algorithm for finding a common solution to a variational inclusion problem
with a finite family of accretive operators and a modified system of variational inequali-
ties in infinite-dimensional Banach spaces. We also prove the convergence analysis of the
proposed algorithm under some suitable conditions. The results obtained in this paper
improve and extend the corresponding results announced by many others.

2 Preliminaries
Throughout this paper, we denote by E and E∗ a real Banach space and the dual space of
E, respectively. We use Fix(T) to denote the set of fixed points of T and Br to denote the
closed ball with center zero and radius r. Let C be a subset of E and q >  be a real number.
The (generalized) duality mapping Jq : E → E∗ is defined by

Jq(x) =
{

x∗ ∈ E∗ :
〈
x, x∗〉 = ‖x‖q,

∥∥x∗∥∥ = ‖x‖q–}
for all x ∈ E, where 〈·, ·〉 denotes the generalized duality pairing between E and E∗. It is
well known that if E is smooth, then Jq is single-valued, which is denoted by jq.

Let C be a nonempty closed convex subset of a real Banach space E. Let A : E → E be
a single-valued nonlinear mapping, and let M : E → E be a multivalued mapping. The
so-called quasi-variational inclusion problem is to find a z ∈ E such that

 ∈ (A + M)z. (.)

The set of solutions of (.) is denoted by VI(E, A, M).

Definition . Let E be a Banach space. Then a function δE : [, ] → [, ] is said to be
the modulus of convexity of E if

δE(ε) = inf

{
 –

‖x + y‖


: ‖x‖ ≤ ,‖y‖ ≤ ,‖x – y‖ ≥ ε

}
.

If δE(ε) >  for all ε ∈ (, ], then E is uniformly convex.

Definition . The function ρE : [, ) → [, ) is said to be the modulus of smoothness
of E if

ρE(t) = sup

{


(‖x + ty‖ + ‖x – ty‖) –  : ‖x‖ = ‖y‖ = 

}
.

A Banach space E is said to be:
() uniformly smooth if ρE(t)

t →  as t → ;
() q-uniformly smooth if there exists a fixed constant c >  such that ρE(t) ≤ ctq, where

q ∈ (, ].

It is known that a uniformly convex Banach space is reflexive and strictly convex.

Definition . A mapping T : C → E is said to be:
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() nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C;

() r-contractive if there exists r ∈ [, ) such that

‖Tx – Ty‖ ≤ r‖x – y‖ for all x, y ∈ C;

() accretive if for all x, y ∈ C, there exists jq(x – y) ∈ Jq(x – y) such that

〈
Tx – Ty, jq(x – y)

〉 ≥ ;

() η-strongly accretive if for all x, y ∈ C, there exist η >  and jq(x – y) ∈ Jq(x – y) such
that

〈
Tx – Ty, jq(x – y)

〉 ≥ η‖x – y‖q;

() μ-inverse-strongly accretive if for all x, y ∈ C, there exist μ >  and
jq(x – y) ∈ Jq(x – y) such that

〈
Tx – Ty, jq(x – y)

〉 ≥ μ‖Tx – Ty‖q.

Definition . A set-valued mapping T : Dom(T) → E is said to be:
() accretive if for any x, y ∈ Dom(T), there exists jq(x – y) ∈ Jq(x – y) such that for all

u ∈ T(x) and v ∈ T(y),

〈
u – v, jq(x – y)

〉 ≥ ;

() m-accretive if T is accretive and (I + ρT)(Dom(T)) = E for every (equivalently, for
some) ρ > , where I is the identity mapping.

Let M : Dom(M) → E be m-accretive. The mapping JM,ρ : E → Dom(M) defined by

JM,ρ(u) = (I + ρM)–(u), ∀u ∈ E,

is called the resolvent operator associated with M, where ρ is any positive number and I
is the identity mapping. It is well known that JM,ρ is single-valued and nonexpansive.

We need some facts and tools which are listed as lemmas below.

Lemma . ([]) Let E be a Banach space and Jq be a generalized duality mapping. Then,
for any given x, y ∈ E, the following inequality holds:

‖x + y‖q ≤ ‖x‖q + q
〈
y, jq(x + y)

〉
, jq(x + y) ∈ Jq(x + y).

Lemma . ([]) Let {αn} be a sequence of nonnegative numbers satisfying the property

αn+ ≤ ( – γn)αn + bn + γncn, n ∈N,

where {γn}, {bn}, {cn} satisfy the restrictions:
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(i)
∑∞

n= γn = ∞, limn→∞ γn = ;
(ii) bn ≥ ,

∑∞
n= bn < ∞;

(iii) lim supn→∞ cn ≤ .
Then limn→∞ αn = .

Lemma . ([]) Let  < p < ∞, q ∈ (, ], r >  be given. If E is a real q-uniformly smooth
Banach space, then there exists a constant Cq >  such that

‖x + y‖q ≤ ‖x‖q + q
〈
y, jq(x)

〉
+ Cq‖y‖q, ∀x, y ∈ E.

Lemma . ([]) Let C be a nonempty closed convex subset of a real q-uniformly smooth
Banach space E. Let the mapping A : C → E be an α-inverse-strongly accretive operator.
Then the following inequality holds:

∥∥(I – λA)x – (I – λA)y
∥∥q ≤ ‖x – y‖q – λ

(
qα – Cqλ

q–)‖Ax – Ay‖q.

In particular, if  < λ ≤ ( qα

Cq
)


q– , then I – λA is nonexpansive.

Recall that if C and D are nonempty subsets of a Banach space E such that C is closed
convex and D ⊂ C, then a mapping Q : C → D is sunny [] provided

Q
(
x + t

(
x – Q(x)

))
= Q(x)

for all x ∈ C and t ≥ , whenever Qx + t(x – Q(x)) ∈ C. A mapping Q : C → D is called a
retraction if Qx = x for all x ∈ D. Furthermore, Q is a sunny nonexpansive retraction from
C onto D if Q is a retraction from C onto D which is also sunny and nonexpansive. A subset
D of C is called a sunny nonexpansive retraction of C if there exists a sunny nonexpansive
retraction from C onto D. The following lemma collects some properties of the sunny
nonexpansive retraction.

Lemma . ([, ]) Let C be a closed convex subset of a smooth Banach space E. Let D
be a nonempty subset of C. Let Q : C → D be a retraction and let j, jq be the normalized
duality mapping and generalized duality mapping on E, respectively. Then the following
are equivalent:

(i) Q is sunny and nonexpansive;
(ii) ‖Qx – Qy‖ ≤ 〈x – y, j(Qx – Qy)〉, ∀x, y ∈ C;

(iii) 〈x – Qx, j(y – Qx)〉 ≤ , ∀x ∈ C, y ∈ D;
(iv) 〈x – Qx, jq(y – Qx)〉 ≤ , ∀x ∈ C, y ∈ D.

Lemma . Let A : C → E and M : C ⊇ Dom(M) → E be two nonlinear operators. De-
note Jr by

Jr := JM,r = (I + rM)–

and Tr by

Tr := Jr(I – rA) = (I + rM)–(I – rA).
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Then it holds for all r >  that Fix(Tr) = VI(E, A, M).

Proof From the definition of Tr , it follows that

x = Trx ⇐⇒ x = (I + rM)–(I – rA)x

⇐⇒ (I – rA)x ∈ (I + rM)x

⇐⇒  ∈ (A + M)x

⇐⇒ x ∈ VI(E, A, M).

This completes the proof. �

Lemma . ([]) Assume that C is a nonempty closed subset of a real uniformly convex
and q-uniformly smooth Banach space E. Suppose that A : C → E is α-inverse-strongly
accretive and M is an m-accretive operator in E, with Dom(M) ⊆ C. Then it holds that:

(i) Given  < s ≤ r and x ∈ E,

‖Tsx – Trx‖ ≤
∣∣∣∣ –

s
r

∣∣∣∣‖x – Trx‖ and ‖x – Tsx‖ ≤ ‖x – Trx‖.

(ii) Given k > , there exists a continuous, strictly increasing and convex function
φq : [,∞) → [,∞) with φq() =  such that for all x, y ∈ Bk ,

‖Trx – Try‖q ≤ ‖x – y‖q – r
(
αq – rq–Cq

)‖Ax – Ay‖q

– φq
(∥∥(I – Jr)(I – rA)x – (I – Jr)(I – rA)y

∥∥)
.

3 Main results
For every i = , , . . . , N , let Ai : C → E and M : C ⊇ Dom(M) → E be nonlinear mappings.
From (.), we introduce the combination of variational inclusion problems in Banach
spaces as follows: find a point x∗ ∈ C such that

 ∈
( N∑

i=

λiAi + M

)
x∗, (.)

where λi is a real positive number for all i = , , . . . , N with
∑N

i= λi = . The set of solutions
of (.) in Banach spaces is denoted by VI(E,

∑N
i= λiAi, M).

To prove the strong convergence results, we also need the following four lemmas.

Lemma . Let C be a nonempty closed convex subset of a real smooth Banach space E.
Let N ≥  be some positive integer, Ai : C → E be ηi-inverse-strongly accretive with η =
min{η,η, . . . ,ηN }, and M be m-accretive in E with Dom(M) ⊆ C. Let {λi} be a real number
sequence in (, ) with

∑N
i= λi =  and VI(E,

∑N
i= λiAi, M) �= ∅. Then

VI

(
E,

N∑
i=

λiAi, M

)
=

N⋂
i=

VI(E, Ai, M).
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Proof It is obvious that
⋂N

i= VI(E, Ai, M) ⊆ VI(E,
∑N

i= λiAi, M). Next we prove that

VI

(
E,

N∑
i=

λiAi, M

)
⊆

N⋂
i=

VI(E, Ai, M).

Suppose that x ∈ VI(E,
∑N

i= λiAi, M) and x ∈ ⋂N
i= VI(E, Ai, M). We have from Lem-

ma . that

x ∈ Fix

(
Jr

(
I – r

N∑
i=

λiAi

))
.

Since
⋂N

i= VI(E, Ai, M) ⊆ VI(E,
∑N

i= λiAi, M), we have x ∈ VI(E,
∑N

i= λiAi, M). Again,
from Lemma ., we have

x ∈ Fix

(
Jr

(
I – r

N∑
i=

λiAi

))
.

In light of the nonexpansiveness of Jr , we deduce that

‖x – x‖q =

∥∥∥∥∥Jr

(
I – r

N∑
i=

λiAi

)
x – Jr

(
I – r

N∑
i=

λiAi

)
x

∥∥∥∥∥
q

≤
∥∥∥∥∥
(

I – r
N∑

i=

λiAi

)
x –

(
I – r

N∑
i=

λiAi

)
x

∥∥∥∥∥
q

=

∥∥∥∥∥(x – x) – r

( N∑
i=

λiAix –
N∑

i=

λiAix

)∥∥∥∥∥
q

≤ ‖x – x‖q – qr
N∑

i=

λi
〈
Aix – Aix, jq(x – x)

〉

+ Cqrq
N∑

i=

λi‖Aix – Aix‖q

≤ ‖x – x‖q – qr
N∑

i=

λiηi‖Aix – Aix‖q + Cqrq
N∑

i=

λi‖Aix – Aix‖q

≤ ‖x – x‖q – qrη
N∑

i=

λi‖Aix – Aix‖q + Cqrq
N∑

i=

λi‖Aix – Aix‖q

≤ ‖x – x‖q – r
N∑

i=

λi
(
qη – Cqrq–)‖Aix – Aix‖q,

which means that

r
N∑

i=

λi
(
qη – Cqrq–)‖Aix – Aix‖q ≤ .
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By Lemma ., without loss of generality, we may assume r ∈ (, ( qη

Cq
)


q– ). We then deduce

that

Aix = Aix, ∀i = , , . . . , N . (.)

Again since x ∈ VI(E,
∑N

i= λiAi, M) and x ∈ ⋂N
i= VI(E, Ai, M), we find that

 ∈
N∑

i=

λiAix + Mx (.)

and

 ∈
N∑

i=

λiAix + Mx. (.)

We derive from (.) and (.) that

 ∈
N∑

i=

λiAix + Mx –
N∑

i=

λiAix – Mx. (.)

It then follows from (.) and (.) that

 ∈ Mx – Mx.

By virtue of x ∈ ⋂N
i= VI(E, Ai, M) and (.), we see

 ∈ Mx – Mx + Mx + Aix = Mx + Aix = Mx + Aix (.)

for all i = , , . . . , N , which yields that

x ∈
N⋂

i=

VI(E, Ai, M).

Hence, we obtain the desired result. �

Lemma . Let E, C, M, η, λi and Ai be the same as those in Lemma .. Then the mapping∑N
i= λiAi is η-inverse-strongly accretive.

Proof Let x, y ∈ C. It follows that

〈 N∑
i=

λiAix –
N∑

i=

λiAiy, jq(x – y)

〉

=
N∑

i=

λi
〈
Aix – Aiy, jq(x – y)

〉

≥
N∑

i=

λiηi‖Aix – Aiy‖q
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≥
N∑

i=

λiη‖Aix – Aiy‖q

≥ η

∥∥∥∥∥
N∑

i=

λiAix –
N∑

i=

λiAiy

∥∥∥∥∥
q

.

Consequently, the mapping
∑N

i= λiAi is η-inverse-strongly accretive. �

Lemma . Assume that C is a nonempty closed subset of a real uniformly convex and
q-uniformly smooth Banach space E. Let S : C → C be nonexpansive, A : C → E be
η-inverse-strongly accretive, and M : Dom(M) → E be m-accretive with Dom(M) ⊆ C. As-
sume r ∈ (, ( qη

Cq
)


q– ) and Fix(S) ∩ Fix(Tr) �= ∅. Then Fix(STr) = F(TrS) = Fix(S) ∩ Fix(Tr).

Proof It is easy to check that Fix(S) ∩ Fix(Tr) ⊆ Fix(STr) and Fix(S) ∩ Fix(Tr) ⊆ Fix(TrS).
We are left to show that Fix(STr) ⊆ Fix(S) ∩ Fix(Tr) and Fix(TrS) ⊆ Fix(S) ∩ Fix(Tr).

We first prove Fix(STr) ⊆ Fix(S) ∩ Fix(Tr). Suppose that x̂ ∈ Fix(STr) and x̃ ∈ Fix(S) ∩
Fix(Tr). We have by Lemma . that

‖x̂ – x̃‖q = ‖STrx̂ – STrx̃‖q

≤ ‖Trx̂ – Trx̃‖q

≤ ‖x̂ – x̃‖q – r
(
ηq – rq–Cq

)‖Ax̂ – Ax̃‖q

– φq
∥∥(I – Jr)(I – rA)x̂ – (I – Jr)(I – rA)x̃

∥∥.

Hence, we have from r ∈ (, ( qη

Cq
)


q– ) and the property of φq that

‖Ax̂ – Ax̃‖ =
∥∥(I – Jr)(I – rA)x̂ – (I – Jr)(I – rA)x̃

∥∥ = .

It follows that

‖x̂ – Trx̂ – x̃ + Trx̃‖ = .

Hence, we have

Trx̂ = x̂.

By the assumption of x̂ ∈ Fix(STr), we have x̂ = Sx̂. This means that x̂ ∈ Fix(S) ∩ Fix(Tr).
We now prove Fix(TrS) ⊆ Fix(S) ∩ Fix(Tr). Suppose that ũ ∈ Fix(TrS) and û ∈ Fix(S) ∩

Fix(Tr). Repeating the above proof again, we get that

‖ASũ – ASû‖ =
∥∥(I – Jr)(I – rA)Sũ – (I – Jr)(I – rA)Sû

∥∥ = .

It follows that

‖Sũ – TrSũ – û + TrSû‖ = .

Hence, we have

Sũ = TrSũ.
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By the assumption of ũ ∈ Fix(TrS), we have ũ = Sũ and ũ = Trũ. This means that ũ ∈
Fix(S) ∩ Fix(Tr), which implies Fix(TrS) ⊆ Fix(S) ∩ Fix(Tr). �

Lemma . Let C be a nonempty closed convex subset of a q-uniformly smooth Banach
space E, and let A, B : C → E be two nonlinear mappings. Let QC be a sunny nonexpansive
retraction from E onto C. For ∀λ,μ >  and a ∈ [, ], define a mapping

Gx := QC(I – λA)
(
aI + ( – a)QC(I – μB)

)
x, ∀x ∈ C.

Then (x∗, y∗) is a solution of problem (.) if and only if x∗ = Gx∗, where y∗ = QC(I –μB)x∗.

Proof First, we prove ‘�⇒’.
Let (x∗, y∗) be a solution of (.), and we have

{
〈x∗ – (I – λA)(ax∗ + ( – a)y∗), jq(x – x∗)〉 ≥ , ∀x ∈ C,
〈y∗ – (I – μB)x∗, jq(x – y∗)〉 ≥ , ∀x ∈ C.

From Lemma ., we have

x∗ = QC(I – λA)
(
ax∗ + ( – a)y∗)

and y∗ = QC(I – μB)x∗.
It follows that

x∗ = QC(I – λA)
(
aI + ( – a)QC(I – μB)

)
x∗ = Gx∗,

which implies that x∗ ∈ Fix(G), where y∗ = QC(I – μB)x∗.
Next we prove ‘⇐�’.
Let x∗ ∈ Fix(G) and y∗ = QC(I – μB)x∗. Then

x∗ = Gx∗ = QC(I – λA)
(
aI + ( – a)QC(I – μB)

)
x∗ = QC(I – λA)

(
ax∗ + ( – a)y∗).

It follows from Lemma . that

{
〈x∗ – (I – λA)(ax∗ + ( – a)y∗), jq(x – x∗)〉 ≥ , ∀x ∈ C,
〈y∗ – (I – μB)x∗, jq(x – y∗)〉 ≥ , ∀x ∈ C.

Then we find that (x∗, y∗) is a solution of problem (.). �

Example . ([]) Let R be a real line with the Euclidean norm and let A, B : R → R be
defined by Ax = x–

 and Bx = x–
 for all x ∈R. The mapping G : R →R is defined by

Gx := (I – A)
(




I +



(I – B)
)

x

for all x ∈R. Then  ∈ Fix(G) and (, ) is a solution of problem (.).
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Theorem . Let E be a uniformly convex and q-uniformly smooth Banach space. Let
N ≥  be some positive integer and let Ai : C → E be ηi-inverse-strongly accretive with
η = min{η,η, . . . ,ηN }. Let M be m-accretive on E with Dom(M) ⊆ C, f : C → C be
r-contractive. Let A, B : C → E be α- and β-inverse-strongly accretive, respectively. Define
a mapping Gx := QC(I – λA)(aI + ( – a)QC(I – μB))x for all x ∈ C and a ∈ [, ]. Assume
λ ∈ (, ( qα

Cq
)


q– ), μ ∈ (, ( qβ

Cq
)


q– ) and Fix(G)∩⋂N

i= VI(E, Ai, M). For arbitrarily given x ∈ C,
let {xn} be the sequence generated iteratively by

xn+ = αnf (xn) + ( – αn)Jrn

((
I – rn

N∑
i=

λiAi

)
Gxn + en

)
, (.)

where {en}∞ ⊂ E, {αn}∞ ⊂ [, ], {λn}N
 ⊂ (, ) and {rn}∞ ⊂ (, +∞) satisfy the following

conditions:
(i)

∑∞
n= ‖en‖ < ∞;

(ii)
∑∞

n= αn = ∞, limn→∞ αn =  and
∑∞

n= |αn+ – αn| < ∞;
(iii)  < lim infn→∞ rn ≤ lim supn→∞ rn < ( qη

Cq
)


q– and

∑∞
n= |rn+ – rn| < ∞;

(iv)
∑N

n= λi = .
Then {xn} converges strongly to some point x ∈ Fix(G) ∩ ⋂N

i= VI(E, Ai, M), which solves the
variational inequality

〈
f (x) – x, jq(p – x)

〉 ≤ , p ∈ Fix(G) ∩
N⋂

i=

VI(E, Ai, M).

And (x, y) solves problem (.), where y = QC(I – μB)x.

Proof Let {yn} be a sequence generated by

yn+ = αnf (yn) + ( – αn)TnGyn, (.)

where Tn := Jrn (I – rn
∑N

i= λiAi). Hence to show the desired result, it suffices to prove
that yn → x. Indeed, by virtue of Lemma ., Lemma ., (iii), λ ∈ (, ( qα

Cq
)


q– ) and μ ∈

(, ( qβ

Cq
)


q– ), we find that Tn : C → C and G : C → C are nonexpansive. And hence,

‖yn+ – xn+‖

≤ αnr‖yn – xn‖ + ( – αn)

∥∥∥∥∥Jrn

(
I – rn

N∑
i=

λiAi

)
Gyn

– Jrn

((
I – rn

N∑
i=

λiAi

)
Gxn + en

)∥∥∥∥∥
≤ αnr‖yn – xn‖ + ( – αn)

∥∥∥∥∥
(

I – rn

N∑
i=

λiAi

)
Gyn –

(
I – rn

N∑
i=

λiAi

)
Gxn

∥∥∥∥∥ + ‖en‖

≤ [
 – αn( – r)

]‖yn – xn‖ + ‖en‖. (.)

By virtue of Lemma . and (.), we see limn→∞ ‖yn – xn‖ = .
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First, we prove that the sequence {yn} is bounded.
Taking x ∈ Fix(G) ∩ ⋂N

i=(Ai + M)–(), we find x ∈ Fix(G) ∩ Fix(Tn) by Lemma . and
Lemma .. It follows from (.) and Lemma . that

‖yn+ – x‖ =
∥∥αnf (yn) + ( – αn)TnGyn – x

∥∥
≤ αn

∥∥f (yn) – x
∥∥ + ( – αn)‖TnGyn – x‖

≤ αn
∥∥f (yn) – f (x)

∥∥ + αn
∥∥f (x) – x

∥∥ + ( – αn)‖TnGyn – x‖
≤ αnr‖yn – x‖ + αn

∥∥f (x) – x
∥∥ + ( – αn)‖yn – x‖

=
[
 – αn( – r)

]‖yn – x‖ + αn
∥∥f (x) – x

∥∥
≤ max

{‖f (x) – x‖
 – r

,‖yn – x‖
}

.

By induction, we have

‖yn – x‖ ≤ max

{‖f (x) – x‖
 – r

,‖y – x‖
}

, ∀n ≥ .

Hence, {yn} is bounded, so are {f (yn)}, {Tn(yn)} and {TnG(yn)}.
Next, we prove that

lim
n→∞‖yn+ – yn‖ → . (.)

Write V =
∑N

i= λiAi. Noticing Lemma ., we get that the mapping V is η-inverse-
strongly accretive. Putting zn = TnGyn, we derive from Lemma . that

‖zn+ – zn‖
= ‖Tn+Gyn+ – TnGyn‖
≤ ‖Tn+Gyn+ – TnGyn+‖ + ‖TnGyn+ – TnGyn‖

≤
∣∣∣∣ –

rαn

rβn

∣∣∣∣∥∥Gyn+ – Jrβn ( – rβn V )Gyn+
∥∥ + ‖Gyn+ – Gyn‖

≤ |rβn – rαn |
‖Gyn+ – Jrβn ( – rβn V )Gyn+‖

rβn
+ ‖yn+ – yn‖

≤ |rn+ – rn|M + ‖yn+ – yn‖, (.)

where M > supn≥{
‖Gyn+–Jrβn (–rβn V )Gyn+‖

rβn
}, rαn = min{rn+, rn} and rβn = max{rn+, rn}.

Combining (.) and (.), we find that

‖yn+ – yn‖
=

∥∥αnf (yn) + ( – αn)zn – αn–f (yn–) – ( – αn–)zn–
∥∥

=
∥∥(αn – αn–)

(
f (yn–) – zn–

)
+ ( – αn)(zn – zn–)

∥∥
+ αn

∥∥f (yn) – f (yn–)
∥∥
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≤ |αn – αn–|
∥∥f (yn–) – zn–

∥∥ + ( – αn)‖zn – zn–‖ + αnr‖yn – yn–‖
≤ |αn – αn–|M + ( – αn)‖zn – zn–‖ + αnr‖yn – yn–‖
≤ |αn – αn–|M + |rn – rn–|M +

[
 – αn( – r)

]‖yn – yn–‖,

where M > supn≥{‖f (yn) – zn‖}. It follows from Lemma ., (ii) and (iii) that
limn→∞ ‖yn+ – yn‖ = .

Again, using Lemma ., Lemma . and Lemma ., we obtain

‖yn+ – x‖q

=
∥∥αn

(
f (yn) – x

)
+ ( – αn)(TnGyn – x)

∥∥q

≤ ( – αn)‖TnGyn – x‖q + qαn
〈
f (yn) – x, jq(yn+ – x)

〉
≤ ‖TnGyn – x‖q + qαnM

≤ ‖yn – x‖q – rn
(
αq – rq–

n Cq
)‖VGyn – VGx‖q

– φq
(‖Gyn – rnVGyn – TnGyn + rnVGx‖) + qαnM,

where M > supn≥{〈f (yn)–x, jq(yn+ –x)〉}. Meanwhile, by the fact that ar –br ≤ rar–(a–b)
for all r ≥ , we find that

rn
(
αq – rq–

n Cq
)‖VGyn – VGx‖q

+ φq
(‖Gyn – rnVGyn – TnGyn + rnVGx‖)

≤ ‖yn – x‖q – ‖yn+ – x‖q + qαnM

≤ q‖yn – x‖q–(‖yn – x‖ – ‖yn+ – x‖) + qαnM. (.)

It follows immediately from (ii), (iii), (.) and the property of φq that

lim
n→∞‖VGyn – VGx‖ = lim

n→∞‖Gyn – rnVGyn – TnGyn + rnVGx‖ = ,

which implies that

lim
n→∞‖TnGyn – Gyn‖ = . (.)

In view of condition (iii), there exists ε >  such that rn ≥ ε for all n ≥ . Then we get, by
Lemma ., that

lim
n→∞‖TεGyn – Gyn‖ ≤ lim

n→∞ ‖TnGyn – Gyn‖ = . (.)

We show limn→∞ ‖TεGyn – yn‖ = .
Thanks to (.), (.), (.) and (ii), we see

‖TεGyn – yn‖
≤ ‖TεGyn – TnGyn‖ + ‖TnGyn – yn‖
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≤ ‖TεGyn – Gyn‖ + ‖Gyn – TnGyn‖ + ‖TnGyn – yn+‖ + ‖yn+ – yn‖
≤ ‖TεGyn – Gyn‖ + ‖Gyn – TnGyn‖ + αn

∥∥f (yn) – TnGyn
∥∥ + ‖yn+ – yn‖

→ . (.)

Next we prove that

lim sup
n→∞

〈
f (x) – x, jq(yn – x)

〉 ≤ .

Equivalently (should ‖yn – x‖ �= ), we need to prove that

lim sup
n→∞

〈
f (x) – x, j(yn – x)

〉 ≤ .

To this end, let xt satisfy xt = tf (xt) + ( – t)TεGxt . By Xu’s Theorem . in [], we
get xt → x ∈ Fix(TεG) = Fix(G) ∩ ⋂N

i= VI(E, Ai, M) (by Lemma ., Lemma . and
Lemma .) as t → , which x solves the variational inequality

〈
f (x) – x, j(p – x)

〉 ≤ , ∀p ∈ Fix(TεG).

Using subdifferential inequality, we deduce that

‖xt – yn‖

= t
〈
f (xt) – yn, j(xt – yn)

〉
+ ( – t)

〈
TεGxt – yn, j(xt – yn)

〉
= t

〈
f (xt) – zt , j(xt – yn)

〉
+ t

〈
xt – yn, j(xt – yn)

〉
+ ( – t)

〈
TεGxt – TεGyn, j(xt – yn)

〉
+ ( – t)

〈
TεGyn – yn, j(xt – yn)

〉
≤ t

〈
f (xt) – xt , j(xt – yn)

〉
+ t‖xt – yn‖ + ( – t)‖xt – yn‖

+ ( – t)‖TεGyn – yn‖‖xt – yn‖
≤ t

〈
f (xt) – xt , j(xt – yn)

〉
+ ‖xt – yn‖ + ‖TεGyn – yn‖‖xt – yn‖,

which implies that

〈
f (xt) – xt , j(yn – xt)

〉 ≤ ‖TεGyn – yn‖
t

‖xt – yn‖. (.)

Using (.), taking the upper limit as n → ∞ firstly, and then as t →  in (.), we have

lim sup
t→

lim sup
n→∞

〈
f (xt) – xt , j(yn – xt)

〉 ≤ .

Since E is a uniformly smooth Banach space, we have that the duality mapping j is norm-
to-norm uniform on any bounded subset of E, which ensures that the limits lim supt→ and
lim supn→∞ are interchangeable. Then we have

lim sup
n→∞

〈
f (x) – x, j(yn – x)

〉 ≤ .
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Finally, we show ‖yn – x‖ → .
By Lemma . and the fact that ab ≤ 

q aq + q–
q b

q
q– , we get

‖yn+ – x‖q

=
∥∥αnf (yn) + ( – αn)TnGyn – x

∥∥q

=
〈
αnf (yn) + ( – αn)TnGyn – x, jq(yn+ – x)

〉
= αn

〈
f (yn) – f (x), jq(yn+ – x)

〉
+ αn

〈
f (x) – x, jq(yn+ – x)

〉
+ ( – αn)

〈
TnGyn – x, jq(yn+ – x)

〉
≤ αn

∥∥f (yn) – f (x)
∥∥‖yn+ – x‖q– + αn

〈
f (x) – x, jq(yn+ – x)

〉
+ ( – αn)‖yn – x‖‖yn+ – x‖q–

≤ αnr‖yn – x‖‖yn+ – x‖q– + αn
〈
f (x) – x, jq(yn+ – x)

〉
+ ( – αn)‖yn – x‖‖yn+ – x‖q–

≤ [
 – αn( – r)

]‖yn – x‖‖yn+ – x‖q– + αn
〈
f (x) – x, jq(yn+ – x)

〉
≤ [

 – αn( – r)
] 

q
‖yn – x‖q +

q – 
q

‖yn+ – x‖q

+ αn
〈
f (x) – x, jq(yn+ – x)

〉
,

which implies that

‖yn+ – x‖q ≤ [
 – αn( – r)

]‖yn – x‖q + qαn
〈
f (x) – x, jq(yn+ – x)

〉
. (.)

Apply Lemma . to (.) to conclude yn → x ∈ Fix(G) ∩ ⋂N
i= VI(E, Ai, M) as n → ∞,

which solves the variational inequality

〈
f (x) – x, jq(p – x)

〉 ≤ , p ∈ Fix(G) ∩
N⋂

i=

VI(E, Ai, M).

And (x, y) is a solution of the modified system of variational inequalities problem (.) due
to Lemma ., where y = QC(I – μB)x. This completes the proof. �

Remark . Theorem . improves and extends Theorem . of López et al. [] in the
sense:

• From the problem of finding a solution for a variational inclusion problem with two
accretive operators to problem of finding a common solution for a variational
inclusion problem with a finite family of accretive operators and a modified system of
variational inequalities.

Remark . Theorem . improves and extends Theorem . of Zhang et al. [], The-
orem . of Qin et al. [], Theorem . of Takahashi et al. [] and Theorem . of
Khuangsatung and Kangtunyakarn [] in the following senses:

• From Hilbert spaces to uniformly convex and q-uniformly smooth Banach spaces.
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• From finding a common element of the set of solutions for the variational inclusion
problem with two accretive operators and the set of fixed points of nonexpansive
mappings to finding a common solution to a variational inclusion problem with a
finite family of accretive operators and a modified system of variational inequalities.

As a direct consequence of Theorem ., we obtain the following corollary.

Corollary . Let C be a nonempty, closed and convex subset of a Hilbert space H . Let
N ≥  be some positive integer and let Ai : C → H be ηi-inverse-strongly monotone with
η = min{η,η, . . . ,ηN }. Let M be maximal monotone in H with Dom(M) ⊆ C, f : C → C be
r-contractive. Let A, B : C → H be α- and β-inverse-strongly monotone, respectively. Define
a mapping Gx := ProjC(I – λA)(aI + ( – a) ProjC(I – μB))x for all x ∈ C and a ∈ [, ],
where ProjC is the metric projection from H onto C. Assume that λ ∈ (, α), μ ∈ (, β)
and Fix(G) ∩ ⋂N

i= VI(H , Ai, M) �= ∅. For arbitrarily given x ∈ C, let {xn} be the sequence
generated iteratively by

xn+ = αnf (xn) + ( – αn)Jrn

((
I – rn

N∑
i=

λiAi

)
Gxn + en

)
,

where {en}∞ ⊂ E, {αn}∞ ⊂ [, ], {λn}N
 ⊂ [, ] and {rn}∞ ⊂ (, +∞) satisfy the following

conditions:
(i)

∑∞
n= ‖en‖ < ∞;

(ii)
∑∞

n= αn = ∞, limn→∞ αn =  and
∑∞

n= |αn+ – αn| < ∞;
(iii)  < lim infn→∞ rn ≤ lim supn→∞ rn < η and

∑∞
n= |rn+ – rn| < ∞;

(iv)
∑N

n= λi = .
Then {xn} converges strongly to some point x ∈ Fix(G) ∩⋂N

i= VI(H , Ai, M), which solves the
variational inequality

〈
f (x) – x, p – x

〉 ≤ , p ∈ Fix(G) ∩
N⋂

i=

VI(H , Ai, M).

4 Applications
In this section, we give some applications of our main results in the framework of Hilbert
spaces. Let C be a nonempty, closed and convex subset of a Hilbert space, and let f : C ×
C →R be a bifunction satisfying the following conditions:

(A) f (x, x) =  for all x ∈ C;
(A) f is monotone, i.e., f (x, y) + f (y, x) ≤  for all x, y ∈ C;
(A) for all x, y, z ∈ C,

lim sup
t↓

f
(
tz + ( – t)x, y

) ≤ f (x, y);

(A) for all x ∈ C, f (x, ·) is convex and lower semi-continuous.
Then the mathematical model related to equilibrium problems (with respect to C) is to
find x̂ ∈ C such that

f (x̂, y) ≥ 
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for all y ∈ C. The set of such solutions x̂ is denoted by EP(f ). The following lemma appears
implicitly in Blum and Oettli [].

Lemma . Let C be a nonempty, closed and convex subset of H and let f : C × C →R be
a bifunction satisfying (A)-(A). Let r >  and x ∈ H . Then there exists z ∈ C such that

f (z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

The following lemma is given in Combettes and Hirstoaga [].

Lemma . Assume that f : C × C → R satisfies (A)-(A). For r >  and x ∈ H , define a
mapping Sr : H → C as follows:

Srx =
{

z ∈ C : f (z, y) +

r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all x ∈ H . Then the following hold:
(i) Sr is single-valued;

(ii) Sr is a firmly nonexpansive mapping, i.e., for all x, y ∈ H ,
‖Srx – Sry‖ ≤ 〈Srx – Sry, x – y〉;

(iii) Fix(Sr) = EP(f );
(iv) EP(f ) is closed and convex.

We call such Sr the resolvent of f for r > . Using Lemma . and Lemma ., Takahashi
et al. [] proved the following result.

Lemma . Let H be a Hilbert space and let C be a nonempty, closed and convex subset
of H . Let f : C × C →R satisfy (A)-(A). Let Af be a multivalued mapping of H into itself
defined by

Af x =

{
{z ∈ H : f (x, y) ≥ 〈y – x, z〉,∀y ∈ C}, x ∈ C,
∅, x /∈ C.

Then EP(f ) = A–
f  and Af is a maximal monotone operator. Further, for any x ∈ H and

r > , the resolvent Sr of f coincides with the resolvent of Af ; i.e., Srx = (I + rAf )–x.

Theorem . Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Let f : C × C → R be a bifunction satisfying (A)-(A) and let Sδ be the resolvent of f for
δ > . Let ψ : C → C be r-contractive, A, B : C → H be α- and β-inverse-strongly monotone,
respectively. Define a mapping Gx := ProjC(I – λA)(aI + ( – a) ProjC(I – μB))x for all x ∈ C
and a ∈ [, ]. Assume that λ ∈ (, α), μ ∈ (, β) and Fix(G) ∩ EP(f ) �= ∅. For arbitrarily
given x ∈ C, let {xn} be the sequence generated iteratively by

xn+ = αnψ(xn) + ( – αn)Srn (Gxn + en),

where {en}∞ ⊂ E, {αn}∞ ⊂ [, ] and {rn}∞ ⊂ (, +∞) for all n ∈ N satisfy the following
conditions:
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(i)
∑∞

i= ‖en‖ < ∞;
(ii)

∑∞
n= αn = ∞, limn→∞ αn =  and

∑∞
n= |αn+ – αn| < ∞;

(iii)
∑∞

n= |rn+ – rn| < ∞.
Then {xn} converges strongly to some point x ∈ Fix(G) ∩ EP(f ), which solves the variational
inequality

〈
f (x) – x, p – x

〉 ≤ , p ∈ Fix(G) ∩ EP(f ).

Proof Put Ai =  for i = , , . . . , N in Corollary .. From Lemma ., we know that Jrn = Srn

for all n ∈N. So, we obtain the desired result by Corollary .. �

Let g : H → (–∞, +∞] be a proper convex lower semi-continuous function. Then, the
subdifferential ∂g of g is defined as follows:

∂g =
{

y ∈ H : g(z) ≥ g(x) + 〈z – x, y〉, z ∈ H
}

, ∀x ∈ H .

From Rockafellar [], we know that ∂g is maximal monotone. It is easy to verify that
 ∈ ∂g(x) if and only if g(x) = miny∈H g(y). Let IC be the indicator function of C, i.e.,

IC(x) =

{
, x ∈ C,
+∞, x /∈ C.

Then IC is a proper lower semi-continuous convex function on H , and the subdifferential
∂IC of IC is a maximal monotone operator. Furthermore, suppose that C is a nonempty
closed convex subset. Then

(I + λ∂IC)–x = ProjC x, ∀x ∈ H ,λ > .

For more details, one can refer to [].

Theorem . Let C be a nonempty, closed and convex subset of a Hilbert space H . Let
N ≥  be some positive integer and let Ai : C → H be ηi-inverse-strongly monotone with η =
min{η,η, . . . ,ηN } for each i ∈ {, , . . . , N}. Let f : C → C be r-contractive. Let A, B : C →
H be α- and β-inverse-strongly monotone, respectively. Define a mapping Gx := ProjC(I –
λA)(aI + ( – a) ProjC(I – μB))x for all x ∈ C and a ∈ [, ]. Assume that λ ∈ (, α), μ ∈
(, β) and Fix(G)∩⋂N

i= VI(C, Ai) �= ∅. For arbitrarily given x ∈ C, let {xn} be the sequence
generated iteratively by

xn+ = αnf (xn) + ( – αn) ProjC

((
I – rn

N∑
i=

λiAi

)
Gxn + en

)
,

where {en}∞ ⊂ E, {αn}∞ ⊂ [, ], {λn}N
 ⊂ [, ] and {rn}∞ ⊂ (, +∞) satisfy the following

conditions:
(i)

∑∞
n= ‖en‖ < ∞;

(ii)
∑∞

n= αn = ∞, limn→∞ αn =  and
∑∞

n= |αn+ – αn| < ∞;
(iii)  < lim infn→∞ rn ≤ lim supn→∞ rn < η and

∑∞
n= |rn+ – rn| < ∞;

(iv)
∑N

n= λi = .
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Then {xn} converges strongly to some point x ∈ Fix(G) ∩ ⋂N
i= VI(C, Ai), which solves the

variational inequality

〈
f (x) – x, p – x

〉 ≤ , p ∈ Fix(G) ∩
N⋂

i=

VI(C, Ai).

Proof Put B = ∂IC . Next, we show that VI(C, Ai) = VI(H , Ai, ∂IC). Notice that

x ∈ VI(H , Ai, ∂IC) ⇐⇒  ∈ Aix + ∂ICx

⇐⇒ –Aix ∈ ∂ICx

⇐⇒ 〈Aix, y – x〉 ≥ 

⇐⇒ x ∈ VI(C, Ai).

In view of Theorem ., we find the desired result immediately. �

Let W : H → R be a convex and differentiable function and M : H → R be a convex
function. Consider the convex minimization problem minx∈H (Wx + Mx). From [], we
know if ∇W is 

L -Lipschitz continuous, then it is L-inverse-strongly monotone. Hence,
we have the following theorem.

Theorem . Let C be a nonempty, closed and convex subset of a Hilbert space H . Let
N ≥  be some positive integer. Let Wi : H → R be a convex and differentiable function
and ∇Wi be 

Li
-Lipschitz continuous with L = min{L, L, . . . , LN } for each i ∈ {, , . . . , N}.

Let M be a convex and lower semi-continuous function, f : C → C be r-contractive. Let
A, B : C → H be a convex and differentiable function and let ∇A, ∇B be α- and β-Lipschitz
continuous, respectively. Define a mapping

G′x := ProjC(I – λ∇A)
(
aI + ( – a) ProjC(I – μ∇B)

)
x, ∀x ∈ C, a ∈ [, ].

Assume that λ ∈ (, α), μ ∈ (, β) and Fix(G′) ∩ ⋂N
i= VI(H ,∇Wi, ∂M) �= ∅. For arbi-

trarily given x ∈ C, let {xn} be the sequence generated iteratively by

xn+ = αnf (xn) + ( – αn)(I + rn∂M)–

((
I – rn

N∑
i=

λi∇Wi

)
Gxn + en

)
,

where {en}∞ ⊂ E, {αn}∞ ⊂ [, ], {λn}N
 ⊂ [, ] and {rn}∞ ⊂ (, +∞) satisfy the following

conditions:
(i)

∑∞
n= ‖en‖ < ∞;

(ii)
∑∞

n= αn = ∞, limn→∞ αn =  and
∑∞

n= |αn+ – αn| < ∞;
(iii)  < lim infn→∞ rn ≤ lim supn→∞ rn < L and

∑∞
n= |rn+ – rn| < ∞;

(iv)
∑N

n= λi = .
Then {xn} converges strongly to some point x ∈ Fix(G′)∩⋂N

i= VI(H ,∇Wi, ∂M), which solves
the variational inequality

〈
f (x) – x, p – x

〉 ≤ , p ∈ Fix
(
G′) ∩

N⋂
i=

VI(H ,∇Wi, ∂M).
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Proof Put M = ∂M, A = ∇A, B = ∇B, Ai = ∇Wi for each i ∈ {, , . . . , N} in Theorem ..
Then we get the desired conclusions immediately. �

5 Numerical examples
The purpose of this section is to give two numerical examples supporting Theorem ..

Example . Let R be a real line with the Euclidean norm. For all x ∈ R, let A, B, M, f :
R → R be defined by Ax = 

 x, Bx = 
 x, Mx = x and f (x) = 

 x, respectively. For each i ∈
{, , . . . , N}, let Ai : R → R be defined by Aix = i

 x for all x ∈ R. Let a = 
 , λ = , μ = ,

λi = 
i + 

NN for each i ∈ {, , . . . , N}, and en = e
n (i = , , . . .), where |e| < ∞. Let the

sequence {xn} be generated iteratively by (.), where αn = 
n and rn = 

n+ + 
N . Then the

sequence {xn} converges strongly to .

Solution: It can be observed that all the assumptions of Theorem . are satisfied. It is
also easy to check that

Fix(G) ∩
N⋂

i=

VI(E, Ai, M) = {}.

We rewrite (.) as follows:

xn+ =


n
xn +

(
 –


n

)
(n + )N

n(N + ) + N + 

×
[




xn –
(


n + 

+

N

) N∑
i=

(

i +


NN

)
i


xn +

e

n

]
. (.)

Using algorithm (.) and choosing e = x =  with N =  and N =  (see Table ), we
see that Figure  and numerical results demonstrate Theorem ..

Next, we present a numerical example in R
 that also supports our result.

Example . Let the inner product 〈·, ·〉 : R × R
 → R be defined by 〈x, y〉 = x · y = x ·

y + x · y + x · y and the usual norm ‖ · ‖ : R → R be defined by ‖x‖ =
√

x
 + x

 + x


Table 1 The values of the sequence {xn}
n N = 1 N = 100

xn xn

1 5.000000000000000 5.000000000000000
2 2.500000000000000 2.500000000000000
3 1.012731481481481 1.352926587301587
4 0.398516414141414 0.708148944121956
5 0.185768821022727 0.395562727289485
...

...
...

50 0.001141959256001 0.002664953434053
...

...
...

96 0.000306349806735 0.000718002934223
97 0.000300029191229 0.000703224190461
98 0.000293902199966 0.000688897141470
99 0.000287961003866 0.000675003563404
100 0.000282198165612 0.000661526142407
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Figure 1 The convergence of {xn} with initial values e1 = x1 = 5.

Table 2 The values of the sequence {xn}
n x1

n x2
n x3

n

1 1.000000000000000 6.000000000000000 12.000000000000000
2 0.166666666666667 1.000000000000000 2.000000000000000
3 0.123544973544974 0.741269841269841 1.482539682539682
4 0.078950180010786 0.473701080064716 0.947402160129433
5 0.051217417354718 0.307304504128309 0.614609008256618
...

...
...

...
50 0.000476097239794 0.002856583438761 0.005713166877522
...

...
...

...
96 0.000128869584585 0.000773217507511 0.001546435015021
97 0.000126223335925 0.000757340015550 0.001514680031100
98 0.000123657771457 0.000741946628743 0.001483893257487
99 0.000121169643936 0.000727017863616 0.001454035727232
100 0.000118755867858 0.000712535207149 0.001425070414298

for all x = (x, x, x), y = (y, y, y) ∈ R
. Let A, B, M, f : R → R

 be defined by Ax = 
 x,

Bx = f x = 
 x and Mx = x for all x ∈R

, respectively. For each i ∈ {, , . . . , N}, let Ai : R →
R

 be defined by Aix = i
 x for all x ∈ R

. Let a = 
 , λ = , μ = , λi = 

i + 
NN for each

i ∈ {, , . . . , N} and en = e
n (n = , , . . .), where e ∈ R

 and ‖e‖ < ∞. Let the sequence
{xn} be generated iteratively by (.), where αn = 

n and rn = 
n+ + 

N . Then the sequence
{xn} converges strongly to .

Solution: It can be observed that all the assumptions of Theorem . are satisfied. It is
also easy to check Fix(G) ∩ ⋂N

i= VI(E, Ai, M) = {}.
We rewrite (.) as follows:

xn+ =


n
xn +

(
 –


n

)
(n + )N

n(N + ) + N + 

×
[




xn –
(


n + 

+

N

) N∑
i=

(

i +


NN

)
i


xn +

e

n

]
. (.)

Utilizing algorithm (.) and choosing x = e = (, , ) with N = , we report the
numerical results in Table . In addition, Figure  also demonstrates Theorem ..
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Figure 2 The convergence of {xn} with initial values x1 = e1 = (1, 6, 12) and N = 100.
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