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Abstract
We prove �-convergence theorems of Mann type to the set of attractive points of
normally generalized hybrid mappings in CAT(0) spaces. Consequently, our main
result can be applied to the result of Takahashi, Wong and Yao (Journal of Nonlinear
and Convex Analysis 15:1087-1103, 2014, Theorem 5.1).
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1 Introduction
In , Takahashi and Takeuchi [] introduced the notion of attractive points for nonlin-
ear mappings in a Hilbert space: Let H be a Hilbert space and C be a nonempty subset of
H . Let T be a mapping from C into H . Let A(T) denote the set of all attractive points of
T , i.e.

A(T) =
{

z ∈ H : ‖z – Ty‖ ≤ ‖z – y‖,∀y ∈ H
}

.

In , Takahashi et al. [] introduced the class of normally generalized hybrid map-
pings in a Hilbert space which contains the class of generalized hybrid mappings and the
class of contractive mappings.

Definition . A mapping T : C −→ H is called normally generalized hybrid if there exist
α,β ,γ , δ ∈R such that

() α + β + γ + δ ≥ ;
() α + β >  or α + γ > ; and
() α‖Tx – Ty‖ + β‖x – Ty‖ + γ ‖Tx – y‖ + δ‖x – y‖ ≤ , ∀x, y ∈ C.

Such a mapping T can be called an (α,β ,γ , δ)-normally generalized hybrid mapping.

The authors also proved the weak convergence theorems of Mann type for normally gen-
eralized hybrid mappings in Hilbert spaces without convexity assumption on the domain
of mappings.
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Theorem . ([], Theorem .) Let H be a Hilbert space and C be a convex subset of H . Let
T : C → C be a normally generalized hybrid mapping with A(T) 	= ∅. Let PA(T) be the metric
projection of H onto A(T). Let {αn} be a sequence of real numbers such that  ≤ αn ≤ 
and lim infn→∞ αn( – αn) > . Suppose that {xn} is the sequence generated by x = x ∈ C
and xn+ = αnxn + ( – αn)Txn, n ∈ N. Then {xn} converges weakly to v in A(T), where v =
limn→∞ PA(T)xn.

In , Kakavandi [] introduced the so-called half-space topology such that conver-
gence in this topology is equivalent to �-convergence for any sequence in a complete
CAT() space. The author’s results answered positively open questions in []. Moreover,
the concepts of (S) property and (Q) condition are also introduced in a complete CAT()
space.

In this paper, motivated by [], we consider the concept of attractive points in CAT()
spaces and prove �-convergence theorems of Mann type for normally generalized hybrid
mappings in such spaces satisfying the (S) property and the (Q) condition.

2 Preliminaries
Let (X, d) be a metric space and C be a nonempty subset of X. A mapping T : C −→ X is
called nonexpansive if

d(Tx, Ty) ≤ d(x, y), ∀x, y ∈ X.

In , Kohsaka and Takahashi [] introduced the class of nonspreading mappings in
a Hilbert space H , i.e. a mapping T : C −→ H is called nonspreading if

‖Tx – Ty‖ ≤ ‖Tx – y‖ + ‖Ty – x‖, ∀x, y ∈ C.

In , Takahashi [] and Kocourek et al. [] introduced the wider class of nonspread-
ing mappings in Hilbert spaces as follows. A mapping T : C −→ H is called hybrid [] if

‖Tx – Ty‖ ≤ ‖x – y‖ + ‖Tx – y‖ + ‖Ty – x‖, ∀x, y ∈ C.

A mapping T : C −→ H is called an (α,β)-generalized hybrid [] if there exist α,β ∈ R

such that

α‖Tx – Ty‖ + ( – α)‖x – Ty‖ ≤ β‖Tx – y‖ + ( – β)‖x – y‖, ∀x, y ∈ C.

We can see that (, ), (, ) and ( 
 , 

 )-generalized hybrid mappings are nonexpansive
mappings, nonspreading mappings and hybrid mappings, respectively. Moreover, if α +
β = –γ – δ = , then an (α,β ,γ , δ)-normally generalized hybrid mapping is a generalized
hybrid mapping.

In , Takahashi and Toyoda [] proved the following result.

Lemma . ([]) Let C be a nonempty closed convex subset of a Hilbert space H . Let P be
the metric projection from H onto C. Let {un} be a sequence in H . If ‖un+ – u‖ ≤ ‖un – u‖
for all u ∈ C and n ∈N, then {Pun} converges strongly to some u ∈ C.
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The following result is obtained by Takahashi et al. [].

Lemma . ([]) Let C be a nonempty subset of a real Hilbert space H . Let T : C → C
be an (α,β ,γ , δ)-normally generalized hybrid mapping. If {xn} converges weakly to z and
xn – Txn → , then z ∈ A(T).

It is worth mentioning that the related recent results are obtained in [, ] and [].
We recall the concept of Banach limit which plays a major role in our results. Let l∞

be the Banach space of bounded sequences with supremum norm. Let μ be an element
of the dual metric space (l∞)∗ of the space l∞. We denote by μ(f ) the value of μ at f =
(x, x, x, . . .) ∈ l∞. We sometimes denote by μn(xn) the value μ(f ). A linear functional μ

is called a mean if μ(e) = ‖μ‖ = , where e = (, , , . . .). Moreover, a mean μ is called a
Banach limit on l∞ if μn(xn+) = μn(xn) and we know that there exists a Banach limit on
l∞ (see [] for more details). If μ is a Banach limit on l∞, then for any (x, x, x, . . .) ∈ l∞,

lim inf
n→∞ xn ≤ μn(xn) ≤ lim sup

n→∞
xn.

Let (X, d) be a metric space. A geodesic path (or geodesic) joining x to y in X is a map
c from a closed interval [, l] ⊆ R to X such that c() = x, c(l) = y and d(c(s), c(t)) = |s – t|
for all s, t ∈ [, l]. In particular, the mapping c is an isometry and d(x, y) = l. The image of
c is called a geodesic segment joining x and y when it is unique and denoted by [x, y]. We
denote the unique point z ∈ [x, y] such that d(x, z) = αd(x, y) and d(y, z) = ( – α)d(x, y) by
( – α)x ⊕ αy, where  ≤ α ≤ .

The metric space (X, d) is called a geodesic space if any two points of X are joined by a
geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining x
and y for each x, y ∈ X.

A geodesic triangle �(x, x, x) in a geodesic space (X, d) consists of three points in X
(the vertices of �) and a geodesic segment between each pair of points (the edges of �).
A comparison triangle for �(x, x, x) in (X, d) is a triangle �̄(x, x, x) := �(x̄, x̄, x̄) in
the Euclidean plane R

 such that dR (x̄i, x̄j) = d(xi, xj) for all i, j ∈ {, , }.
A geodesic space X is called a CAT() space if all geodesic triangles of appropriate size

satisfy the following comparison axiom:
Let � be a geodesic triangle in X and let �̄ be a comparison triangle in R

. Then the
triangle � is said to satisfy the CAT() inequality if

d(x, y) ≤ dR (x̄, ȳ),

for all x, y ∈ � and all comparison points x̄, ȳ ∈ �̄.
It is well known that any complete simply connected Riemannian manifold having non-

positive sectional curvature is a CAT() space. Other examples include Hilbert spaces,
pre-Hilbert spaces, R-trees (see []), Euclidean buildings (see []), the complex Hilbert
ball with a hyperbolic metric (see []), and many others.

If x, y, y are points in a CAT() space and if y is the midpoint of the segment y, y,
then the CAT() inequality implies the so-called (CN) inequality of Bruhat and Tits [],
i.e.

d(x, y) ≤ 


d(x, y) +



d(x, y) –



d(y, y).
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Moreover, a uniquely geodesic space is a CAT() space if and only if it satisfies the (CN)
inequality (see [] for more details).

The following results are important to our theorems.

Lemma . ([]) Let X be a CAT() space, x, x, y, y ∈ X and α ∈ [, ]. Then

d
(
αx ⊕ ( – α)y,αx ⊕ ( – α)y

) ≤ αd(x, x) + ( – α)d(y, y).

From the above lemma, it is easy to see that for x, y, z ∈ X and α ∈ [, ],

d
(
αx ⊕ ( – α)y, z

) ≤ αd(x, z) + ( – α)d(y, z).

Lemma . ([]) Let X be a CAT() space, x, y, z ∈ X and α ∈ [, ]. Then

d(αx ⊕ ( – α)y, z
) ≤ αd(x, z) + ( – α)d(y, z) – α( – α)d(x, y).

In , Kirk and Panyanak [] specialized Lim’s concept [] of �-convergence in a
general metric spaces to CAT() spaces and showed that many results in Banach spaces
involving weak convergence have precise analogs in this setting.

Let {xn} be a bounded sequence in a CAT() space (X, d). For x ∈ X, we set

r
(
x, {xn}

)
:= lim sup

n
d(x, xn).

The asymptotic radius of {xn} is given by

r
({xn}

)
:= inf

x∈X
r
(
x, {xn}

)
.

The asymptotic center of {xn} is given by

A
({xn}

)
:=

{
x ∈ X : r

(
x, {xn}

)
= r

({xn}
)}

.

It is known from [] that in a CAT() space, A({xn}) consists of exactly one point. A
sequence {xn} ⊂ X is said to �-converge to x ∈ X if A({xnk }) = {x} for every subsequence
{xnk } of {xn}. In this case, we write �-limn→∞ xn = x. The uniqueness of asymptotic center
implies that the CAT() space X satisfies Opial’s property, i.e. for given {xn} ⊂ X such that
{xn} �-converges to x and given y ∈ X with y 	= x,

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y).

We also know the following results.

Lemma . ([]) Every bounded sequence in a complete CAT() space always has a �-
convergent subsequence.

Lemma . ([]) If C is a closed convex subset of a complete CAT() space (X, d) and {xn}
is a bounded sequence in C, then A({xn}) ∈ C.
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It is well known that a norm linear space satisfies the CAT() inequality if and only if it
satisfies the parallelogram identity, i.e. it is a pre-Hilbert space; hence it is usual to have
an inner product-like notion in complete CAT() spaces. In , Berg and Nikolaev []
introduced the concept of quasilinearization along these lines.

Let
–→
ab denote a pair (a, b) ∈ X × X, and it is called a vector. Then the quasilinearization

mapping 〈·, ·〉 : (X × X) × (X × X) →R is defined by

〈–→ab, –→uv〉 =


(
d(a, v) + d(b, u) – d(a, u) – d(b, v)

)

for any a, b, u, v ∈ X.
We say that (X, d) satisfies the Cauchy-Schwarz inequality if

〈–→ab, –→uv〉 ≤ d(a, b)d(u, v) for all a, b, u, v ∈ X.

The following lemma was also proved in [].

Lemma . ([]) A geodesically connected metric space is a CAT() space if and only if it
satisfies the Cauchy-Schwarz inequality.

Consider the map � : R× X × X −→ C(X;R) defined by

�(t, a, b)(x) = t〈–→ab, –→ax〉 for all x ∈ X,

where C(X;R) is the space of all continuous real-valued functions on X. Then the Cauchy-
Schwarz inequality implies that �(t, a, b) is the Lipschitz function with the Lipschitz semi-
norm L(�(t, a, b)) = td(a, b) (t ∈ R, a, b ∈ X), where L(ϕ) = sup{ ϕ(x)–ϕ(y)

d(x,y) : x, y ∈ X, x 	= y} is
the Lipschitz semi-norm for any function ϕ : X −→R.

In , Kakavandi and Amini [] defined a pseudometric D on R× X × X by

D
(
(t, a, b), (s, u, v)

)
= L

(
�(t, a, b) – �(s, u, v)

)
.

Lemma . ([]) Let X be a complete CAT() space. Let (t, a, b), (s, u, v) ∈ R × X × X.
Then D((t, a, b), (s, u, v)) =  if and only if t〈–→ab, –→xy〉 = s〈–→uv, –→xy〉 for all x, y ∈ X.

Therefore, D defines an equivalent relation on R× X × X, where the equivalent class of
(t, a, b) is

[t
–→
ab] =

{
s–→uv : t〈–→ab, –→xy〉 = s〈–→uv, –→xy〉,∀x, y ∈ X

}
.

Let X∗ = {[t–→
ab] : (t, a, b) ∈ R × X × X}. Then (X∗, D) is a metric space and it is called the

dual metric space of (X, d).
In , Kakavandi [] introduced the concept of (S) property for a complete CAT()

space as follows.

Definition . ([]) A complete CAT() space (X, d) satisfies the (S) property if for any
(x, y) ∈ X × X there exists a point yx ∈ X such that [–→xy] = [––→yxx].



Kaewkhao et al. Fixed Point Theory and Applications  (2015) 2015:96 Page 6 of 14

There are many CAT() spaces satisfying the (S) property; for example, Hilbert spaces
and symmetric Hadamard manifolds including hyperbolic spaces []. Moreover, Kaka-
vandi also proved the characterization of �-convergence for CAT() spaces satisfying the
(S) property as follows.

Lemma . ([]) Let (X, d) be a complete CAT() space, {xn} be a bounded sequence
in X and x ∈ X. If X satisfies the (S) property, then �-limn→∞ xn = x if and only if
limn→∞〈––→xxn, –→xy〉 =  for all y ∈ X.

In , Kirk and Panyanak [] introduced a geometric condition on CAT() spaces
called the (Q) condition.

(Q) A CAT() space (X, d) is said to satisfy the (Q) condition if ∀x, y, p, q ∈ X

d(p, x) < d(x, q) and d(p, y) < d(y, q) imply d(p, m) < d(m, q), ∀m ∈ [x, y].

The authors mentioned that this condition holds in many CAT() spaces including
Hilbert spaces and R-trees. Furthermore, in , Espínola and Fernández-León []
proved that any CAT() space of constant curvature satisfies the (Q) condition but any
CAT() gluing space containing two spaces of constant but different curvatures fails to
satisfy this condition.

In , Kakavandi [] modified the (Q) condition as follows.

(Q) A CAT() space (X, d) is said to satisfy the (Q) condition if for any x, y, p, q ∈ X ,

d(p, x) ≤ d(x, q) and d(p, y) ≤ d(y, q) imply d(p, m) ≤ d(m, q), ∀m ∈ [x, y].

We can see that Hilbert spaces, R-trees and every CAT() space of constant curva-
ture satisfy the (Q) condition. Anyway, since (Q) implies (Q), there are some complete
CAT() spaces that do not satisfy such a condition.

3 Main results
In this section, we prove �-convergence theorems of Mann type [] to the set of attrac-
tive points of normally generalized hybrid mappings in CAT() spaces satisfying the (S)
property and the (Q) condition. First of all, we consider the notion of the set of attractive
points for any mapping T : C → X, where X is a metric space and C is a nonempty subset
of X defined as

A(T) =
{

z ∈ X : d(z, Ty) ≤ d(z, y),∀y ∈ C
}

.

Moreover, in metric spaces, a normally generalized hybrid mapping is defined analo-
gously to Definition . as follows:

A mapping T : C −→ X is called normally generalized hybrid if there exist α,β ,γ , δ ∈R

such that
() α + β + γ + δ ≥ ;
() α + β >  or α + γ > ; and
() αd(Tx, Ty) + βd(x, Ty) + γ d(Tx, y) + δd(x, y) ≤ , ∀x, y ∈ C.
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Before proving our main theorem, we need the following lemmas which we proved in
[], but for the sake of completeness, we give a short proof.

Lemma . ([]) Let (X, d) be a complete CAT() space satisfying the (Q) condition. Let
C be a nonempty subset of X. Then, for any mapping T : C → X, A(T) is closed and convex.

Proof Let {xn} be a sequence in A(T) such that xn −→ x ∈ X as n −→ ∞.
For any n ∈ N and y ∈ C, we have d(xn, Ty) ≤ d(xn, y). Then

lim
n→∞ d(xn, Ty) ≤ lim

n→∞ d(xn, y),

d(x, Ty) ≤ d(x, y).

This implies that A(T) is a closed subset of X. Let z, z ∈ A(T), then for any y ∈ C, we
have d(z, Ty) ≤ d(z, y) and d(z, Ty) ≤ d(z, y). Since X satisfies the (Q) condition, we
have d(m, Ty) ≤ d(m, y) for all m ∈ [z, z]. This implies that A(T) is a convex subset of X.
Therefore, A(T) is closed and convex. �

Lemma . ([]) Let C be a nonempty subset of a CAT() space X. Let {xn} be a bounded
sequence in C. Let T be a mapping from C into itself such that d(xn, Txn) −→ . Then

() the sequences {d(xn, y)} and {d(Txn, y)} are bounded for all y ∈ C;
() μnd(xn, y) = μnd(Txn, y) for any Banach limit μ on l∞.

Proof Let n ∈N and y ∈ C. By the triangle inequality, we have

d(xn, y) ≤ d(xn, x) + d(x, y).

Since {xn} is bounded, the sequence {d(xn, y)} is bounded. Since d(xn, Txn) −→  and
{d(xn, y)} is bounded, the sequence {d(Txn, y)} is also bounded.

Let y ∈ C. Then

d(xn, y) ≤ d(xn, Txn) + d(Txn, y) (.)

and

d(Txn, y) ≤ d(Txn, xn) + d(xn, y). (.)

Since d(xn, Txn) −→ , by applying a Banach limit μ to both sides of (.) and (.), we can
conclude that

μnd(xn, y) = μnd(Txn, y). �

Next, we prove the analogous result to Lemma . in complete CAT() spaces satisfying
the (S) property.

Lemma . Let (X, d) be a complete CAT() space satisfying the (S) property. Let C be
a nonempty subset of X and let T : C → C be an (α,β ,γ , δ)-normally generalized hybrid
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mapping. Let {xn} be a bounded sequence in C such that xn
�−→ z and d(xn, Txn) −→ .

Then z ∈ A(T).

Proof Since T is an (α,β ,γ , δ)-normally generalized hybrid mapping,

αd(Tx, Ty) + βd(x, Ty) + γ d(Tx, y) + δd(x, y) ≤ , ∀x, y ∈ C.

We have from Lemma . that {d(xn, y)} and {d(Txn, y)} are bounded for all y ∈ C.
If α + β > , then

αd(Txn, Ty) + βd(xn, Ty) + γ d(Txn, y) + δd(xn, y) ≤ ,

(α + β)μnd(xn, Ty) ≤ –(γ + δ)μnd(xn, y)

for all y ∈ C. Since α + β + γ + δ ≥  and α + β > ,

μnd(xn, Ty) ≤ –(γ + δ)
α + β

μnd(xn, y)

≤ μnd(xn, y).

If α + γ > , then

αd(Ty, Txn) + βd(y, Txn) + γ d(Ty, xn) + δd(y, xn) ≤ ,

(α + γ )μnd(Ty, xn) ≤ –(β + δ)μnd(y, xn)

for all y ∈ C. It follows from α + β + γ + δ ≥  and α + γ >  that

μnd(Ty, xn) ≤ –(β + δ)
α + γ

μnd(y, xn)

≤ μnd(y, xn).

Therefore,

μnd(xn, Ty) ≤ μnd(xn, y) (.)

for all y ∈ C. Furthermore, Lemma . and xn
�−→ z imply that

lim
n→∞

(
d(xn, z) – d(xn, y) + d(z, y)

)
= 

for all y ∈ X. Thus,

μn
(
d(xn, z) – d(xn, y) + d(z, y)

)
=  (.)

for all y ∈ X. From (.), we have

–μnd(xn, y) ≤ –μnd(xn, Ty).
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By adding μn(d(xn, z) + d(z, y) + d(z, Ty)) to the both sides of the above inequality, we
assert that

–μnd(xn, y) + μn
(
d(xn, z) + d(z, y) + d(z, Ty)

)

≤ –μnd(xn, Ty) + μn
(
d(xn, z) + d(z, y) + d(z, Ty)

)
,

d(z, Ty) + μn
(
d(xn, z) – d(xn, y) + d(z, y)

)

≤ d(z, y) + μn
(
d(xn, z) – d(xn, Ty) + d(z, Ty)

)
.

From (.), we have d(z, Ty) ≤ d(z, y) and hence z ∈ A(T). �

We prove the analogous result to Lemma . in complete CAT() spaces as follows.

Lemma . Let (X, d) be a complete CAT() space and C be a closed convex subset of X. Let
{xn} be a bounded sequence in X. If d(xn+, z) ≤ d(xn, z) for all z ∈ C, then PCxn −→ z ∈ C,
where PC is the metric projection from X onto C.

Proof Since d(xn+, z) ≤ d(xn, z) for all z ∈ C,

d(xn+, PCxn+) ≤ d(xn+, PCxn)

≤ d(xn, PCxn).

Then {d(xn, PCxn)} is decreasing and bounded, which implies that limn→∞ d(xn, PCxn) ex-
ists.

In order to show that {PCxn} is a Cauchy sequence in C, let m, n ∈N be such that m < n.
Put y = 

 PCxm ⊕ 
 PCxn. By the (CN) inequality, we have

d(xn, y) ≤ 


d(xn, PCxm) +



d(xn, PCxn) –



d(PCxm, PCxn).

Then

d(PCxm, PCxn) ≤ d(xn, PCxm) + d(xn, PCxn) – d(xn, y).

Since –d(xn, y) ≤ –d(xn, PCxn),

d(PCxm, PCxn) ≤ d(xn, PCxm) + d(xn, PCxn) – d(xn, PCxn)

= d(xn, PCxm) – d(xn, PCxn).

By the assumption, we can conclude that

d(PCxm, PCxn) ≤ d(xm, PCxm) – d(xn, PCxn).

Since limn→∞ d(xn, PCxn) exists, {PCxn} is a Cauchy sequence.
Therefore, PCxn −→ z for some z ∈ C. �

In , Dehghan and Rooin [] proved the following lemma. Now, we give another
proof.
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Lemma . ([]) Let (X, d) be a complete CAT() space and C be a closed convex subset
of X. Let x ∈ X and y ∈ C. Then y = PCx if and only if 〈–→xy, –→yz〉 ≥  for all z ∈ C.

Proof Let z ∈ C. Suppose that y = PCx. Let  < λ <  and m = λz ⊕ ( – λ)y.
By Lemma ., we have

d(x, m) ≤ λd(x, z) + ( – λ)d(x, y) – λ( – λ)d(z, y).

Then

d(x, m)
λ

–
 – λ

λ
d(x, y) + ( – λ)d(z, y) ≤ d(x, z). (.)

From (.) and 〈–→xy, –→yz〉 = d(x, z) – d(x, y) – d(z, y), we have

〈–→xy, –→yz〉 ≥ d(x, m)
λ

–
 – λ

λ
d(x, y) + ( – λ)d(z, y) – d(x, y) – d(z, y)

=
d(x, m)

λ
–

d(x, y)
λ

– λd(z, y).

Since y = PCx, d(x, y) ≤ d(x, m). Therefore,

〈–→xy, –→yz〉 ≥ d(x, y)
λ

–
d(x, y)

λ
– λd(z, y)

= –λd(z, y).

By letting λ −→ , we assert that 〈–→xy, –→yz〉 ≥  for all z ∈ C.
Conversely, suppose that 〈–→xy, –→yz〉 ≥  for all z ∈ C.
For any z ∈ C, we have

 ≤ 〈–→xy, –→yz〉
= d(x, z) – d(x, y) – d(y, z)

≤ d(x, z) – d(x, y).

Then d(x, y) ≤ d(x, z) and hence y = PCx. �

We are now in a position to prove our main theorem.

Theorem . Let (X, d) be a complete CAT() space satisfying the (S) property and the
(Q) condition. Let C be a convex subset of X and T : C → C be a normally generalized
hybrid mapping with A(T) 	= ∅. Let {αn} be a sequence of real numbers such that  ≤ αn ≤ 
and lim infn→∞ αn( – αn) > . Suppose that {xn} is the sequence generated by x = x ∈ C
and

xn+ = αnxn ⊕ ( – αn)Txn, n ∈ N.

Then xn
�−→ v ∈ A(T), where v = limn→∞ PA(T)xn and PA(T) is the metric projection from X

onto A(T).
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Proof Claim . We show that limn→∞ d(u, xn) exists for all u ∈ A(T).
By Lemma ., we have

d(u, xn+) = d
(
u,αnxn ⊕ ( – αn)Txn

)

≤ αnd(u, xn) + ( – αn)d(u, Txn).

Since u ∈ A(T),

d(u, xn+) ≤ αnd(u, xn) + ( – αn)d(u, xn)

= d(u, xn)

for all n ∈N. Then {d(u, xn)} is a decreasing and bounded sequence.
Therefore, limn→∞ d(u, xn) exists and {xn} is bounded.
Claim . We show that d(xn, Txn) −→  as n −→ ∞. Choose z ∈ A(T).
By Lemma ., we have

d(z, xn+) = d(z,αnxn ⊕ ( – αn)Txn
)

≤ αnd(z, xn) + ( – αn)d(z, Txn) – αn( – αn)d(xn, Txn).

Then

αn( – αn)d(xn, Txn) ≤ αnd(z, xn) + ( – αn)d(z, Txn) – d(z, xn+).

Since z ∈ A(T),

αn( – αn)d(xn, Txn) ≤ αnd(z, xn) + ( – αn)d(z, xn) – d(z, xn+)

= d(z, xn) – d(z, xn+).

By the existence of limn→∞ d(z, xn), it follows that

lim inf
n→∞ αn( – αn)d(xn, Txn) ≤ lim inf

n→∞
(
d(z, xn) – d(z, xn+)

)
= .

Since lim infn→∞ αn( – αn) > , we have d(xn, Txn) −→ .
Claim . The sequence {xn} �-converges to an element in A(T). Indeed, since {xn} is

bounded, we can assume that A({xn}) = {v} for some v ∈ X. It is sufficient to show that
A({xnk }) = {v} for any subsequence {xnk } of {xn}. Let {xnk } be a subsequence of {xn} with
A({xnk }) = {w}. Since {xnk } is bounded, there exists a subsequence {xnk′ } of {xnk } such that

xnk′
�−→ z for some z ∈ X.

By Lemma . and Claim , we have z ∈ A(T) and hence limn→∞ d(z, xn) exists. If z 	= w,
then it follows from the uniqueness of asymptotic center that

lim
n→∞ d(z, xn) = lim sup

k′→∞
d(z, xnk′ )

< lim sup
k′→∞

d(w, xn′
k
)
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≤ lim sup
k→∞

d(w, xnk )

< lim sup
k→∞

d(z, xnk )

= lim
n→∞ d(z, xn),

which is a contradiction. Therefore, w = z ∈ A(T).
Suppose that v 	= w. Then

lim
n→∞ d(w, xn) = lim sup

k→∞
d(w, xnk )

< lim sup
k→∞

d(v, xnk )

≤ lim sup
n→∞

d(v, xn)

< lim sup
n→∞

d(w, xn)

= lim
n→∞ d(w, xn).

This leads to a contradiction and hence v = w ∈ A(T).

Therefore, xn
�−→ v ∈ A(T).

Claim . We show that v = limn→∞ PA(T)xn.
We can conclude from Claim  that d(xn+, z) ≤ d(xn, z) for all z ∈ A(T) and n ∈ N. Fur-

thermore, we obtain from Lemma . that PA(T)xn −→ p for some p ∈ A(T). It is sufficient
to show that 〈–→vp, –→pz〉 ≥  for all z ∈ A(T).

First, we show that limn→∞ d(xn, p) = limn→∞ d(xn, PA(T)xn).
From Claim , we have that limn→∞ d(p, xn) exists.
Since

d(xn+, PA(T)xn+) ≤ d(xn+, PA(T)xn)

≤ d(xn, PA(T)xn)

for all n ∈N, then limn→∞ d(xn, PA(T)xn) exists. By the triangle inequality, we have

d(xn, p) ≤ d(xn, PA(T)xn) + d(PA(T)xn, p)

≤ d(xn, p) + d(PA(T)xn, p).

Since limn→∞ d(PA(T)xn, p) = , we have

lim
n→∞ d(xn, p) ≤ lim

n→∞ d(xn, PA(T)xn) ≤ lim
n→∞ d(xn, p).

This implies that

lim
n→∞ d(xn, p) = lim

n→∞ d(xn, PA(T)xn).

Moreover, we can apply Lemma . to conclude that

lim
n→∞

(
d(xn, v) – d(xn, z) + d(v, z)

)
= 
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for all z ∈ X. Consider

 = lim
n→∞

(
d(xn, v) – d(xn, p) + d(v, p)

)
,

–d(v, p) = lim
n→∞

(
d(xn, v) – d(xn, p)

)
,

–d(v, p) = lim
n→∞

(
d(xn, v) – d(xn, p) – d(v, p)

)

= lim
n→∞

(
d(xn, v) – d(xn, PA(T)xn) – d(v, PA(T)xn)

)

= lim
n→∞〈––––––––→xnPA(T)xn, –––––––→PA(T)xnv〉.

By Lemma ., we have

〈––––––––→xnPA(T)xn, –––––––→PA(T)xnv〉 ≥ ,

which implies that d(v, p) ≤  and hence v = p.

Therefore, xn
�−→ v, where v = limn→∞ PA(T)xn. �

It is known that a Hilbert space satisfies both the (S) property and the (Q) condition.
Furthermore, �-convergence and weak convergence are the same in a Hilbert space. Con-
sequently, we can conclude that the result of Takahashi, Wong and Yao [], Theorem .,
is an application of Theorem ..

Moreover, the following example shows that there is a CAT() space satisfying both the
(S) property and the (Q) condition but it is not a Hilbert space. Thus, our main theorem
is a strict generalization of the result of Takahashi, Wong and Yao [], Theorem ..

Example . Consider the subset H of R

H =
{

(x, y) ∈ R
|y – x =  and y > 

}
.

In other words, H is the upper curve of the hyperbolic {(x, y) ∈ R
|y – x = }. Let d be

a metric defined by the function d : H × H → R that assigns to each pair of vectors u =
(u, u) and v = (v, v) the unique nonnegative number d(u, v) ≥  such that

cosh d(u, v) = uv – uv.

It is known that, in general, the metric space (H, d) is a CAT() space and also a one-
dimensional hyperbolic space viewed from a hyperboloid model (for more details, see
[]). Then (H, d) satisfies the (S) property. Furthermore, it is easy to see that (H, d) is an
R-tree. Hence (H, d) satisfies the (Q) condition.
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