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Abstract
We present results on approximate solutions to variational inequality problems for an
injective inverse strongly monotone operator. Our results are based on Edelstein’s
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1 Introduction
In this paper, we consider iterative algorithms for solving the variational inequality prob-
lem for a monotone operator A over a nonempty closed convex subset C of a real Hilbert
space H with the inner product 〈·, ·〉 and its induced norm ‖ · ‖,

find z ∈ C such that 〈y – z, Az〉 ≥  for all y ∈ C. ()

We denote the set of solutions of Problem () by VI(C, A). This sort of problem was first
studied by Lions and Stampacchia [] and is central to the study of nonlinear analysis.
Problem () can be solved by using convex optimization techniques. A typical iterative
procedure for doing so is the projected gradient method (PGM) [, ], expressed as follows.

Theorem . ([]) Let C be a closed convex subset of a Hilbert space H and A be an L-
Lipschitz continuous and β-strongly monotone operator sending C into H . Furthermore,
let {xn} be a sequence in C defined by x ∈ C and

xn+ = PC(I – aA)xn

for n = , , . . . , where PC is the metric projection onto C, I is the identity mapping on H ,
and a ∈ (, β/L). Then {xn} converges strongly to a unique v ∈ VI(C, A).

As (PGM) requires repetitive use of PC , it works only when the explicit form of PC is
known (e.g., C is a closed ball or a closed cone). The following method, called the hybrid
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steepest descent method (HSDM) [], enables us to consider the case in which C has a more
complicated form.

Theorem . ([]) Let H be a Hilbert space and S be a nonexpansive mapping on H with
Fix(S) := {x ∈ H : Sx = x} �= ∅. Furthermore, let A be an L-Lipschitz continuous and β-
strongly monotone operator on H . In addition, let a ∈ (, β/L) and {cn} be a sequence
in (, ] with limn→∞ cn = , and let {un} be a sequence in H defined by u ∈ H and

un = (I – cnaA)Sun

for n = , , . . . . Then {un} converges strongly to a unique v ∈ VI(Fix(S), A).

Theorem . (HSDM []) Let H be a Hilbert space and S be a nonexpansive mapping on H
with Fix(S) �= ∅. Furthermore, let A be an L-Lipschitz continuous and β-strongly monotone
operator on H , a ∈ (, β/L), and {cn} be a sequence in (, ] that satisfies

(i) lim
n→∞ cn = , (ii)

∞∑

n=

cn = ∞, (iii) lim
n→∞

cn – cn+

c
n+

= .

Let {xn} be a sequence in H defined by x ∈ H and

xn+ = (I – cnaA)Sxn

for n = , , . . . . Then {xn} converges strongly to a unique v ∈ VI(Fix(S), A).

In , Xu and Kim [] replaced condition (iii) in Theorem . with limn→∞(cn/
cn+) = , which includes the case of cn = /n. The proofs of Theorems ., . are based
on the Banach contraction mapping principle []. In the Hilbert space setting, the Banach
contraction mapping principle is as follows.

Theorem . ([]) Let C be a closed subset of a Hilbert space H and S be a strictly con-
tractive mapping of C into H ; that is, there exists r ∈ [, ) such that

‖Sx – Sy‖ ≤ r‖x – y‖

for any x, y ∈ C. Let {xn} be a sequence in C defined by x ∈ C and xn+ = Sxn for n = , , . . . .
Then {xn} converges strongly to a unique fixed point v ∈ C of S.

Motivated by the above theorems, we present some results on approximate solutions
of variational inequality problems for an injective inverse strongly monotone operator.
Our approach is as follows: Theorems .-. deal with the case in which A is L-Lipschitz
continuous and β-strongly monotone; that is, there exist L ∈ (,∞) and β ∈ (, ) such
that

‖Ax – Ay‖ ≤ L‖x – y‖ and β‖x – y‖ ≤ 〈x – y, Ax – Ay〉
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for all x, y in the domain of A. Accordingly, we know that A is injective and β/L-inverse
strongly monotone, that is,

β

L ‖Ax – Ay‖ ≤ 〈x – y, Ax – Ay〉

for all x, y in the domain of A, and that A– is also injective and β-inverse strongly mono-
tone; see Section  for more details. Therefore, to find solutions to the variational inequal-
ity problem, we only need assume that A is injective and inverse strongly monotone. Our
results are based on the following theorem, which is known as Edelstein’s theorem [].

Theorem . ([]) Let C be a compact subset of a Hilbert space H and S be a contractive
mapping of C into H , that is,

‖Sx – Sy‖ < ‖x – y‖

for x, y ∈ C with x �= y. Furthermore, let {xn} be a sequence in C defined by u ∈ C and
xn+ = Sxn for n = , , . . . . Then {xn} converges strongly to a unique fixed point v ∈ C of S.

2 Preliminaries
We denote the set of real numbers by R and the set of positive integers by N. Furthermore,
we denote a real Hilbert space by H , its inner product by 〈·, ·〉, and the norm derived from
the inner product by ‖ · ‖. Let C be a subset of a Hilbert space H . We denote the identity
mapping on H by I . Let T be a mapping of C into H . Then T is said to be

(i) firmly nonexpansive if for any x, y ∈ C,

‖Tx – Ty‖ ≤ 〈x – y, Tx – Ty〉;

(ii) nonexpansive if for any x, y ∈ C,

‖Tx – Ty‖ ≤ ‖x – y‖;

(iii) L-Lipschitz continuous if there exists L ∈ (,∞) such that for any x, y ∈ C,

‖Tx – Ty‖ ≤ L‖x – y‖;

(iv) strictly contractive if there exists r ∈ [, ) such that for any x, y ∈ C,

‖Tx – Ty‖ ≤ r‖x – y‖;

(v) contractive if for any x, y ∈ C with x �= y,

‖Tx – Ty‖ < ‖x – y‖.

Obviously, a firmly nonexpansive mapping is also nonexpansive, and strict contractivity
implies contractivity. We denote by R(T) the range of T and by Fix(T) the set of fixed
points of T , that is, Fix(T) = {x ∈ C : Tx = x}. Fix(T) is closed and convex when T is non-
expansive [–]. In the Hilbert space setting, there is a fixed point existence result for
nonexpansive mappings, which was proved by Browder [, ], Göhde [] and Kirk [].
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Theorem . ([–]) Let C be a bounded closed convex subset of a Hilbert space H and
S be a nonexpansive self-mapping on C. Then Fix(S) �= ∅.

Let C be a closed and convex subset of H . Then, for every point x ∈ H , there exists a
unique nearest point in C, denoted by PC(x), such that ‖x – PC(x)‖ ≤ ‖x – y‖ for all y ∈ C.
PC is called the metric projection of H onto C. We know that PC is a firmly nonexpansive
mapping of H onto C.

Let a ∈ (,∞). Let A be an operator sending C into H . Then A is said to be
(i) monotone if for any x, y ∈ C,

〈x – y, Ax – Ay〉 ≥ ;

(ii) β-strongly monotone if there exists β ∈ (, ) such that for any x, y ∈ C,

β‖x – y‖ ≤ 〈x – y, Ax – Ay〉;

(iii) β-inverse strongly monotone if there exists β ∈ (, ) such that for any x, y ∈ C,

β‖Ax – Ay‖ ≤ 〈x – y, Ax – Ay〉.

We know that if A is β-inverse strongly monotone, for any a ∈ (, β), I – aA is a nonex-
pansive mapping of C into H .

Let A be an injective mapping of C into H . Then there is an inverse mapping A– of A
such that, for x ∈ C and y ∈ R(A), A–y = x if Ax = y. It is obvious that A– is also injective.
Let A be β-strongly monotone of C into H . Then A is injective. To see this, let us assume
that Ax = Ay for x, y ∈ C with x �= y. Then, from the strong monotonicity of A, we have

β‖x – y‖ ≤ 〈x – y, Ax – Ay〉 = ,

and hence x = y. This is a contradiction. So, Ax �= Ay. This means that A is injective. If A is
also L-Lipschitz continuous, A is β/L-inverse strongly monotone because

β

L ‖Ax – Ay‖ ≤ β

L L‖x – y‖ = β‖x – y‖ ≤ 〈x – y, Ax – Ay〉.

Many methods for solving the variational inequality problem are based on the following
(see [, ] for instance).

Lemma . ([, ]) Let C be a closed and convex subset of a Hilbert space H and A be a
mapping of C into H and a ∈ (,∞). Then Fix(PC(I – aA)) = VI(C, A).

The following lemmas are presented without proof. The first lemma is known as Brow-
der’s demiclosedness principle [, ] (see also [, ]).

Lemma . Let C be a closed and convex subset of a Hilbert space H and S be a nonexpan-
sive mapping of C into itself. Let {xn} be a sequence in C which converges weakly to u ∈ C
and satisfies limn ‖Sxn – xn‖ = . Then u ∈ Fix(S).

The next lemma is also well known.
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Lemma . ([]) Let {xn} be a sequence in a Hilbert space H . Assume that there is a point
z ∈ H such that any subsequence {xnj} of {xn} has a subsequence which converges strongly
(resp. weakly) to z. Then {xn} itself converges strongly (resp. weakly) to z.

3 Injective β-inverse strongly monotone operators
As preparation for the next section, here we study the properties of injective β-inverse
strongly monotone operators.

Lemma . Let C be a subset of a Hilbert space H and A be a β-inverse strongly monotone
operator sending C into H . Then, for a ∈ (, β),

‖Aax – Aay‖ ≤ ‖x – y‖ – a(β – a)‖Ax – Ay‖

for x, y ∈ C, where Aa = I – aA. If A is also injective, then Aa is contractive.

Proof We have that for any x, y ∈ C,

‖Aax – Aay‖ =
∥∥(I – aA)x – (I – aA)y

∥∥

=
∥∥(x – y) – a(Ax – Ay)

∥∥

= ‖x – y‖ + a‖Ax – Ay‖ – a〈x – y, Ax – Ay〉
≤ ‖x – y‖ + a‖Ax – Ay‖ – aβ‖Ax – Ay‖

= ‖x – y‖ – a(β – a)‖Ax – Ay‖.

When A is injective, we have from a ∈ (, β) that for x, y ∈ C with x �= y,

‖Aax – Aay‖ ≤ ‖x – y‖ – a(β – a)‖Ax – Ay‖ < ‖x – y‖,

and hence Aa is contractive. �

Corollary . Let C be a subset of a Hilbert space H . Furthermore, S be a nonexpansive
mapping of H into C and A be a β-inverse strongly monotone operator sending R(S) into H .
Then, for a ∈ (, β),

‖Uax – Uay‖ ≤ ‖x – y‖ – a(β – a)‖ASx – ASy‖

for x, y ∈ H , where Ua = (I – aA)S. If A is also injective, then Ua is contractive.

Proof Putting Aa = I – aA, we have from Lemma . and the nonexpansivity of S that for
any x, y ∈ H ,

‖Uax – Uay‖ = ‖AaSx – AaSy‖

≤ ‖Sx – Sy‖ – a(β – a)‖ASx – ASy‖

≤ ‖x – y‖ – a(β – a)‖ASx – ASy‖. ()

If A is injective, it is sufficient to check for x, y ∈ H with x �= y, as follows:
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(a) If Sx = Sy, it follows that ‖Uax – Uay‖ = . So, ‖Uax – Uay‖ < ‖x – y‖ for x, y ∈ H
with x �= y.

(b) If Sx �= Sy, ASx �= ASy. So, it follows from () and a ∈ (, β) that

‖Uax – Uay‖ ≤ ‖x – y‖ – a(β – a)‖ASx – ASy‖ < ‖x – y‖. �

Lemma . Let C be a closed convex subset of a Hilbert space H . Furthermore, let A be
an injective β-inverse strongly monotone operator sending C into H and PC be the metric
projection of H onto C. Then, for a ∈ (, β), PC(I – aA) is contractive on C.

Proof Putting Aa = I – aA, we have from Lemma . and the nonexpansivity of PC that for
x, y ∈ C with x �= y,

‖PCAax – PCAay‖ ≤ ‖Aax – Aay‖ < ‖x – y‖.

Thus, PC(I – aA) is contractive. �

Lemma . Let C be a closed convex subset of a Hilbert space H and A be an injective
β-inverse strongly monotone operator sending C into H with VI(C, A) �= ∅. Then VI(C, A)
is a singleton.

Proof Assume that there exist x, y ∈ VI(C, A) with x �= y. Let a ∈ (, β). Then it follows
from Lemma . that x, y ∈ Fix(PCAa), where Aa = I – aA. Moreover, since A is injective,
we can easily verify from Lemma . that

‖x – y‖ = ‖PCAax – PCAay‖ < ‖x – y‖.

This is a contradiction. Accordingly, we have the desired result. �

Finally, we give an example of an injective inverse strongly monotone operator in R

which is not strongly monotone.

Example  Let {an} ⊂ (, ] be a monotone decreasing sequence such that a =  and
an → , and let {bn} ⊂ [, ) be a monotone increasing sequence such that b =  and
bn → . Put rn := an –an+ and sn := bn+ –bn for each n ∈N. Define a function f : [, ] →R

by

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

– 
sn

(x – bn+) + (bn+ – ) (x ∈ [bn, bn+]),

 (x = ),


rn
(x – an+) + (an+ – ) (x ∈ [an+, an]).

Obviously, f is continuous and inverse strongly monotone, but not differentiable at an and
bn for all n ≥ . Furthermore, f – is not Lipschitz continuous; that is, f is not strongly
monotone.

In the above example, it is difficult to apply Newton’s method and (HSDM), which are
valid for continuous and differentiable mappings, or strongly monotone and Lipschitz
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continuous operators. Hence, there will be many injective inverse strongly monotone op-
erators which are not strongly monotone. Our main results in the next section are effective
for such operators.

4 Main results
In this section, we present iterative algorithms for solving the variational inequality prob-
lem for an injective inverse strongly monotone operator and their convergence analyses.

Theorem . Let C be a closed convex subset of a Hilbert space H and A be an injective
β-inverse strongly monotone operator sending C into H with VI(C, A) �= ∅. Let a ∈ (, β).
Let {un} be a sequence generated by u ∈ C and

un+ = PC(I – aA)un

for all n ∈ N. Then {Aun} converges strongly to x ∈ H such that A–x is the unique point
in VI(C, A).

Proof From Lemma ., VI(C, A) is a singleton. Let {v} = VI(C, A), x = Av and Aa = I – aA
for a ∈ (, β). Then, from Lemma ., we know that {v} = VI(C, A) = Fix(PCAa). More-
over, from Lemma ., we can see that, for any n ∈N,

‖un+ – v‖ = ‖PCAaun – PCAav‖ ≤ ‖Aaun – Aav‖

≤ ‖un – v‖ – a(β – a)‖Aun – Av‖

= ‖un – v‖ – a(β – a)‖Aun – x‖.

Then {‖un – v‖} is nonincreasing, and hence {‖un – v‖} has a limit. Furthermore, it fol-
lows that for any n ∈N,

a(β – a)‖Aun – x‖ ≤ ‖un – v‖ – ‖un+ – v‖.

From a(β – a) > , we get limn→∞ ‖Aun – x‖ = . �

The following are direct consequences of Theorem ..

Corollary . Let C be a bounded closed and convex subset of a Hilbert space H and A
be an injective β-inverse strongly monotone operator sending C into H . Let a ∈ (, β). Let
{un} be a sequence generated by u ∈ C and

un+ = PC(I – aA)un

for all n ∈ N. Then {Aun} converges strongly to x ∈ H such that A–x is the unique point
in VI(C, A).

Proof Since PC(I – aA) is nonexpansive for a ∈ (, β), it follows from Theorem . and
Lemma . that ∅ �= Fix(PC(I – aA)) = VI(C, A). From Theorem ., we reach the conclu-
sion. �
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Corollary . Let C be a closed convex subset of a Hilbert space H and A be an injective
β-inverse strongly monotone operator sending C into H with VI(C, A) �= ∅ whose inverse is
continuous on R(A). Let a ∈ (, β). Let {un} be a sequence generated by u ∈ C and

un+ = PC(I – aA)un

for all n ∈N. Then {un} converges strongly to the unique point in VI(C, A).

Proof From Theorem ., {Aun} converges strongly to x, where A–x is the unique point
in VI(C, A). Then it follows from the continuity of A– that

lim
n→∞

∥∥un – A–x
∥∥ = lim

n→∞
∥∥A–Aun – A–x

∥∥ = .

This completes the proof. �

The following theorem is derived directly from Theorem . and Lemma ..

Theorem . Let C be a compact convex subset of a Hilbert space H and A be an injec-
tive β-inverse strongly monotone operator sending C into H . Let a ∈ (, β). Let {un} be a
sequence in C generated by u ∈ C and

un+ = PC(I – aA)un

for all n ∈N. Then {un} converges strongly to the unique point in VI(C, A).

Proof From Lemma ., PC(I – aA) is a contractive self-mapping on C. Then, by The-
orem ., {un} converges strongly to the unique fixed point v in Fix(PC(I – aA)). From
Lemma ., we know Fix(PC(I – aA)) = VI(C, A). Thus, v is the unique point in VI(C, A).

�

Finally, the following theorem due to Yamada [] is connected with Theorem ..

Theorem . Let C be a bounded subset of a Hilbert space H and S be a nonexpansive
mapping of H into C. Let A be an injective operator sending C into H and β-inverse strongly
monotone on R(S). Let {cn} be a sequence in (, β) with limn→∞ cn = . Let {un} be a se-
quence in H generated by

un = (I – cnA)Sun

for all n ∈N. Then {ASun} converges strongly to x ∈ H such that A–x is the unique point
in VI(Fix(S), A).

Proof Put Ucn := (I –cnA)S for all n ∈N. From the boundedness of C and the Lipschitz con-
tinuity of A, R(A) is bounded. Then

⋃
a∈[,] aR(A) and C –

⋃
a∈[,] aR(A) are also bounded.

So, there exists r >  such that

Fix(S) ⊂ R(S) ⊂ C ⊂ C –
⋃

a∈[,]

aR(A) ⊂ Br ,
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where Br is a closed ball with center  and radius r. Accordingly, we can consider S and
each Ucn to be self-mappings on Br . From Theorem ., it follows that Fix(S) is nonempty,
bounded, closed and convex. From Lemma ., we also know that VI(Fix(S), A) is a sin-
gleton in Fix(S). From Corollary ., each Ucn is a contractive self-mapping on Br ; that
is, each Ucn has a unique fixed point in Br . Then we can take a sequence {un} ⊂ Br such
that Ucn un = un. From the boundedness of {un}, {ASun} is also bounded. Let {ASunj} be
any subsequence of {ASun}. Then, from the boundedness of {unj}, there exists a weakly
convergent subsequence of {unj}. By passing to subsequences, we may assume that {unj}
itself converges weakly to some u ∈ Br . We have that for any n ∈N,

‖Sun – un‖ = ‖Sun – Ucn un‖ =
∥∥Sun – (I – cnA)Sun

∥∥ = cn‖ASun‖.

Since {ASun} is bounded and limn→∞ cn = , we find that

lim
n→∞‖Sun – un‖ = . ()

From the demiclosedness of S, we get u ∈ Fix(S). Let {v} = VI(Fix(S), A) and x = Av. Since
v ∈ Fix(S), we also know that for any n ∈N,

Ucn v – v = (I – cnA)Sv – v = (I – cnA)v – v = –cnAv.

Corollary . implies that for any j ∈N,

cnj (β – cnj )‖ASunj – Av‖ = cnj (β – cnj )‖ASunj – ASv‖

≤ ‖unj – v‖ – ‖Ucnj
unj – Ucnj

v‖

= ‖unj – v‖ –
∥∥unj – (I – cnj A)Sv

∥∥

= ‖unj – v‖ –
∥∥unj – (I – cnj A)v

∥∥

= ‖unj – v‖ – 〈unj – v + cnj Av, unj – v + cnj Av〉
= ‖unj – v‖ – ‖unj – v‖ – 〈unj – v, cnj Av〉 – c

nj
‖Av‖

= –cnj〈unj – v, Av〉 – c
nj
‖Av‖.

From cnj > , we get

β – cnj


‖ASunj – Av‖ +

cnj


‖Av‖ ≤ –〈unj – v, Av〉.

Since {unj} converges weakly to u ∈ Fix(S), v ∈ VI(Fix(S), A), limj→∞ cnj =  and the bound-
edness of ‖ASunj – Av‖, we also get

β lim sup
j→∞

‖ASunj – Av‖ ≤ –〈u – v, Av〉 ≤ .

So, we have that {ASunj} converges strongly to Av. This means that any subsequence of
{ASun} has a subsequence which converges strongly to Av. Thus, from Lemma ., {ASun}
itself converges strongly to Av = x, where v is the unique point in VI(Fix(S), A). �
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Corollary . Let C be a bounded subset of a Hilbert space H and S be a nonexpansive
mapping of H into C. Let A be an injective operator sending C into H and β-inverse strongly
monotone on R(S) whose inverse is continuous on R(A). Let {cn} be a sequence in (, β) with
limn→∞ cn = . Let {un} be a sequence in H generated by

un = (I – cnA)Sun

for all n ∈N. Then {un} converges strongly to the unique point in VI(Fix(S), A).

Proof By Theorem ., {ASun} converges strongly to x, where A–x =: v is the unique
solution of VI(Fix(S), A). From the continuity of A–, we have

lim
n→∞‖Sun – v‖ = lim

n→∞
∥∥A–ASun – A–x

∥∥ = .

Accordingly, we have that for all n ∈N,

‖un – v‖ ≤ ‖un – Sun‖ + ‖Sun – v‖.

Thus, from (), we find that limn→∞ ‖un – v‖ = , and we have reached the conclusion.
�

Remark . The conditions of A in Theorem . and Corollary . are weaker than that
of A in Theorem . of []. However, we assumed that C is bounded.
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