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Abstract
The purpose of this paper is to introduce the concepts of multi-valued SCC-, SKC-,
KSC-, SCS- and C-type mappings and propose a classical Kuhfitting-type iteration
(Kuhfitting in Pac. J. Math. 97(1):137-139, 1981) for finding a common fixed point of
the SKC-, KSC-, SCS- and C-type multi-valued mappings in the setting of hyperbolic
spaces. Under suitable conditions some �-convergence theorems and strong
convergence theorems for the iterative sequence generated by the proposed
scheme to approximate a common fixed point of a finite family of SKC-, KSC-, SCS-
and C-type multi-valued mappings are proved. The results presented in the paper
extend and improve some recent results announced in the current literature.
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1 Introduction and preliminaries
In , Suzuki [] introduced a class of single-valued mappings satisfying the following
condition (C):



‖x – Tx‖ ≤ ‖x – y‖ implies ‖Tx – Ty‖ ≤ ‖x – y‖. (C)

Such mappings lie between the class of nonexpansiveness and quasi-nonexpansiveness.
Later, this kind of mappings were called Suzuki-type nonexpansive mappings (or single-
valued C-type generalized nonexpansive mappings). In [], the author proved the existence
of a fixed point for such kind of mappings.

In , Nanjaras et al. [] gave some characterization of existing fixed points for map-
pings with condition (C) in the framework of CAT() spaces. In , Dhompongsa et
al. [] proved some strong convergence theorems for multi-valued nonexpansive map-
pings in CAT() space. In , the notion of C-condition was generalized by Karapinar
and Tas [], and some new fixed point theorems were obtained in the setting of Banach
spaces.

© 2015 Chang et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13663-015-0339-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13663-015-0339-9&domain=pdf
mailto:Agarwal@tamuk.edu


Chang et al. Fixed Point Theory and Applications  (2015) 2015:83 Page 2 of 17

More recently, in Ghoncheh and Razani [], the notion of C-condition introduced in []
was generalized to the case of multi-valued version and some existence theorems of fixed
point for these mappings were proved in a Ptolemy metric space.

The purpose of this paper is first to introduce the concepts of multi-valued SCC-, SKC-,
KSC-, SCS- and C-type mappings and then to propose a classical Kuhfitting-type itera-
tion [] for finding a common fixed point for such kind of multi-valued mappings in the
setting of hyperbolic spaces (see the definition below). Under suitable conditions some
�-convergence theorem and strong convergence theorems are proved for the iterative se-
quence generated by the proposed scheme to approximate a common fixed point. The
results presented in the paper extend and improve some recent results announced in the
current literature [–].

For the purpose let us first recall some definitions, notations and conclusions which will
be needed in proving our main results.

A hyperbolic space is a metric space (X, d) together with a mapping W : X × [, ] → X
satisfying

(i) d(u, W (x, y,α)) ≤ αd(u, x) + ( – α)d(u, y),
(ii) d(W (x, y,α), W (x, y,β)) = |α – β|d(x, y),

(iii) W (x, y,α) = W (y, x, ( – α)),
(iv) d(W (x, z,α), W (y, w,α)) ≤ ( – α)d(x, y) + αd(z, w),

for all x, y, z, w ∈ X and α,β ∈ [, ].
A nonempty subset K of a hyperbolic space X is said to be convex if W (x, y,α) ∈ K for

all x, y ∈ K and α ∈ [, ]. The class of hyperbolic spaces contains normed spaces and con-
vex subsets thereof, the Hilbert ball equipped with the hyperbolic metric [], Hadamard
manifolds as well as CAT() spaces in the sense of Gromov (see []).

A hyperbolic space is uniformly convex [] if for any given r >  and ε ∈ (, ], there
exists δ ∈ (, ] such that for all u, x, y ∈ X,

d
(

W
(

x, y,



)
, u

)
≤ ( – δ)r,

provided d(x, u) ≤ r, d(y, u) ≤ r and d(x, y) ≥ εr.
A map η : (,∞) × (, ] → (, ], which provides such δ = η(r, ε) for given r >  and

ε ∈ (, ], is known as a modulus of uniform convexity of X. η is said to be monotone if
it decreases with r (for fixed ε), i.e., for any given ε >  and for any r ≥ r > , we have
η(r, ε) ≤ η(r, ε).

In the sequel, let (X, d) be a metric space and K be a nonempty subset of X. We shall
denote by F(T) = {x ∈ K : Tx = x} the fixed point set of a mapping T .

If T : K → K is a multi-valued mapping, we shall use F(T) = {x ∈ K : x ∈ Tx} to denote
the fixed point set of T in K .

K is said to be proximal, if for each x ∈ X, there exists an element y ∈ K such that

d(x, y) = d(x, K) := inf
z∈K

d(x, z).

Remark . It is well known that each weakly compact convex subset of a Banach space
is proximal. As well as each closed convex subset of a uniformly convex Banach space is
also proximal.
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In the sequel, we denote by CB(X) and P(X) the collection of all nonempty and closed
bounded subsets and the collection of all nonempty proximal bounded and closed subsets
of X, respectively. The Hausdorff metric H on CB(X) is defined by

H(A, B) := max
{

sup
x∈A

d(x, B), sup
y∈B

d(y, A)
}

, ∀A, B ∈ CB(X).

Definition . A multi-valued mapping T : K → CB(K) is said to be
(i) nonexpansive if for all x, y ∈ K ,

H(Tx, Ty) ≤ d(x, y);

(ii) quasi-nonexpansive, if F(T) 	= ∅ and

H(Tx, Tp) ≤ d(x, p), ∀p ∈ F(T), x ∈ K .

Definition . Let T : K → CB(K) be a multi-valued mapping.
(i) T is said to be SCC-type if




d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ M(x, y), ∀x, y ∈ K ,

where

M(x, y) = max
{

d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)
}

;

(ii) T is said to be SKC-type if




d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ N(x, y), ∀x, y ∈ K ,

where

N(x, y) = max

{
d(x, y),



{

d(x, Tx) + d(y, Ty)
}

,


{

d(x, Ty) + d(y, Tx)
}}

;

(iii) T is said to be KSC-type if




d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ 

{

d(x, Tx) + d(y, Ty)
}

, ∀x, y ∈ K ;

(iv) T is said to be CSC-type if




d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ 

{

d(x, Ty) + d(y, Tx)
}

, ∀x, y ∈ K ;

(v) T is said to be C-type if




d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ d(x, y), ∀x, y ∈ K .

Remark .
. It is obvious that each SKC-type, KSC-type, CSC-type and C-type multi-valued

mapping is a special case of an SCC-type multi-valued mapping. As well as each
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KSC-type, CSC-type and C-type multi-valued mapping is a special case of an
SKC-type multi-valued mapping.

. Each multi-valued nonexpansive mapping is a special case of a C-type multi-valued
mapping, so it is a special case of SKC-type and SCC-type multi-valued mappings.

Proposition . If T : K → CB(K) is a multi-valued SKC-type mapping with F(T) 	= ∅,
then T is a multi-valued quasi-nonexpansive mapping.

Proof For any p ∈ F(T) and x ∈ K , we have




d(p, Tp) =  ≤ d(p, x).

Since T is a multi-valued SKC-type mapping, it follows that

H(Tp, Tx) ≤ N(p, x)

:= max

{
d(p, x),



{

d(p, Tp) + d(x, Tx)
}

,


{

d(x, Tp) + d(p, Tx)
}}

. (.)

(a) If N(p, x) = d(p, x), then H(Tp, Tx) ≤ d(p, x). The conclusion holds.
(b) If N(p, x) = 

 {d(p, Tp) + d(x, Tx)}, then

H(Tp, Tx) ≤ 

{

d(p, Tp) + d(x, Tx)
}

=



d(x, Tx)

≤ 

{

d(x, Tp) + H(Tp, Tx)
} ≤ 


{

d(x, p) + H(Tp, Tx)
}

.

Simplifying we have

H(Tp, Tx) ≤ d(p, x).

The conclusion holds.
(c) If N(p, x) = 

 {d(x, Tp) + d(p, Tx)}, then

H(Tp, Tx) ≤ 

{

d(x, Tp) + d(p, Tx)
} ≤ 


{

d(x, p) + d(p, Tp) + H(Tp, Tx)
}

≤ 

{

d(x, p) + H(Tp, Tx)
}

.

Simplifying we have

H(Tp, Tx) ≤ d(p, x).

This completes the proof of Proposition .. �

Remark . Since each KSC-type, CSC-type and C-type multi-valued mapping is an
SKC-type multi-valued mapping, it follows from Proposition . that if their fixed point
set is nonempty, then all of them are multi-valued quasi-nonexpansive mappings.



Chang et al. Fixed Point Theory and Applications  (2015) 2015:83 Page 5 of 17

Example . (Examples of SKC-type multi-valued mapping []) Consider the space

X =
{

(, ), (, ), (, ), (, )
}

with l∞ metric: d
(
(x, y), (x, y)

)
= max

{|x – x|, |y – y|
}

,

∀(x, y), (x, y) ∈ X. (.)

Define a multi-valued mapping T on X by

T(a, b) =

{
{(, ), (, )} if (a, b) 	= (, ),
{(, )} if (a, b) = (, ).

(.)

Now we prove that T is an SKC-type mapping. In fact, suppose x = (, ) and y = (, ),
thus Tx = {(, )}, Ty = {(, ), (, )} and (, ) is a fixed point of T in X. Hence we have




d(x, Tx) =



d
(
(, ), (, )

)
=




≤ d(x, y) = d
(
(, ), (, )

)
= ,

H(Tx, Ty) = H
({

(, )
}

,
{

(, ), (, )
})

= d
(
(, ),

{
(, ), (, )

})
= 

(.)

and

N(x, y) = max

{
d
(
(, ), (, )

)
,



{

d
(
(, ), T

(
(, )

))
+ d

(
(, ), T(, )

)}
,



{

d
(
(, ), T

(
(, )

))
+ d

(
(, ), T(, )

)}}

= max

{
,



{

d
(
(, ), (, )

)
+ d

(
(, ),

{
(, ), (, )

})}
,



{

d
(
(, ),

{
(, )(, )

})
+ d

(
(, ), (, )

)}}

= max

{
,




,



}
= . (.)

Therefore we have

H(Tx, Ty) ≤ N(x, y).

By the same way we can prove that the SKC condition holds for the other points in X. This
implies that T is an SKC-type multi-valued mapping and (, ) is the unique fixed point of
T in X. Therefore T is also a quasi-nonexpansive mapping.

In order to introduce the concept of �-convergence in the general setting of hyperbolic
spaces [], we first recall some definition and conclusions.

Let {xn} be a bounded sequence in a hyperbolic space X. For x ∈ X, we define a contin-
uous functional r(·, {xn}) : X → [,∞) by

r
(
x, {xn}

)
= lim sup

n→∞
d(xn, x). (.)
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The asymptotic radius r({xn}) of {xn} is given by

r
({xn}

)
= inf

{
r
(
x, {xn}

)
: x ∈ X

}
. (.)

The asymptotic center AK ({xn}) of a bounded sequence {xn} with respect to K ⊂ X is the
set

AK
({xn}

)
=

{
x ∈ X : r

(
x, {xn}

) ≤ r
(
y, {xn}

)
,∀y ∈ K

}
.

This shows that the asymptotic center AK ({xn}) of a bounded sequence is the set of min-
imizers of the functional r(·, {xn}) on K . If the asymptotic center is taken with respect to
X, then it is simply denoted by A({xn}).

It is known that each uniformly convex Banach space and each CAT() space enjoy the
property that ‘each bounded sequence has a unique asymptotic center with respect to
closed convex subsets.’ This property also holds in a complete uniformly convex hyper-
bolic space. This can been seen from the following.

Lemma . [] Let (X, d, W ) be a complete uniformly convex hyperbolic space with a
monotone modulus of uniform convexity η. Then every bounded sequence {xn} in X has a
unique asymptotic center with respect to any nonempty closed convex subset K of X.

Recall that a sequence {xn} in X is said to ‘�-converge to x ∈ X ’ if x is the unique asymp-
totic center of {un} for every subsequence {un} of {xn}. In this case, we write �-limn→∞ xn =
x and call x the �-limit of {xn}.

Lemma . [] Let (X, d, W ) be a uniformly convex hyperbolic space with a mono-
tone modulus of uniform convexity η. Let x ∈ X and {αn} be a sequence in [a, b] for
some a, b ∈ (, ). If {xn} and {yn} are sequences in X such that lim supn→∞ d(xn, x) ≤ c,
lim supn→∞ d(yn, x) ≤ c, limn→∞ d(W (xn, yn,αn), x) = c for some c ≥ , then

lim
n→∞ d(xn, yn) = .

Lemma . Let (X, d, W ) be a complete uniformly convex hyperbolic space with a mono-
tone modulus of uniform convexity η, then X possesses the Opial property, i.e., for any se-
quence {xn} ⊂ X with �-limn→∞ xn = x and for any y ∈ X with x 	= y, then

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y).

Proof In fact, the conclusion of Lemma . can be obtained from the uniqueness of the
asymptotic center for each complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity. �

By a similar method as given in [], we can also prove the following lemma.

Lemma . Let (X, d, W ) be a complete uniformly convex hyperbolic space with a mono-
tone modulus of uniform convexity η and {xn} be a bounded sequence in X with A({xn}) =
{p}. Suppose that {un} is a subsequence of {xn} with A({un}) = {u}, and the sequence
{d(xn, u)} is convergent, then p = u.
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In the sequel, we always assume that (X, d, W ) is a complete uniformly convex hyperbolic
space with a monotone modulus of uniform convexity η and K is a nonempty closed subset
of X, and T : K → P(K) is an SKC-type multi-valued mapping. For any given x, y ∈ K , since
Tx and Ty both are nonempty bounded proximal subsets in K , there exist ux ∈ Tx, uy ∈ Ty
such that

d(x, ux) = d(x, Tx), d(y, uy) = d(y, Ty). (.)

Lemma . Let (X, d, W ), K , T be the same as above. For any given x, y ∈ K , let ux ∈ Tx,
uy ∈ Ty be the points satisfying (.). Then the following conclusions hold:

() H(Tx, Tux) ≤ d(x, Tx) = d(x, ux);
() either 

 d(x, Tx) ≤ d(x, y) or 
 d(ux, Tux) ≤ d(y, ux);

() either H(Tx, Ty) ≤ N(x, y) or H(Ty, Tux) ≤ N(y, ux), where

⎧⎪⎨
⎪⎩

N(x, y) := max{d(x, y), 
 {d(x, Tx) + d(y, Ty)}, 

 {d(x, Ty) + d(y, Tx)}},
N(y, ux) := max{d(y, ux), 

 {d(y, Ty) + d(ux, Tux)},

 {d(y, Tux) + d(ux, Ty)}}.

(.)

Proof For given x ∈ K , since Tx is a nonempty bounded and proximal subset of K , there
exists ux ∈ Tx such that d(x, ux) = d(x, Tx). Since 

 d(x, Tx) ≤ d(x, ux) and T is an SKC-type
multi-valued mapping, we have

H(Tx, Tux) ≤ N(x, ux)

= max

{
d(x, ux),



{

d(x, Tx) + d(ux, Tux)
}

,


{

d(x, Tux) + d(ux, Tx)
}}

= max

{
d(x, ux),



{

d(x, Tx) + d(ux, Tux)
}

,



d(x, Tux)
}

. (.)

(a) If N(x, ux) = d(x, ux), then H(Tx, Tux) ≤ d(x, ux). The conclusion of Lemma . holds.
(b) If N(x, ux) = 

 {d(x, Tx) + d(ux, Tux)}, then we have

H(Tx, Tux) ≤ 

{

d(x, Tx) + d(ux, Tx) + H(Tx, Tux)
}

=


{

d(x, Tx) + H(Tx, Tux)
}

.

Simplifying we have

H(Tx, Tux) ≤ d(x, Tx).

(c) If N(x, ux) = 
 d(x, Tux), then we have

H(Tx, Tux) ≤ 


d(x, Tux) ≤ 

{

d(x, Tx) + H(Tx, Tux)
}

.

Simplifying we have

H(Tx, Tux) ≤ d(x, Tx).

Conclusion () is proved.
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It is obvious that conclusion () is a consequence of conclusion ().
Next we prove conclusion ().
In fact, if 

 d(x, Tx) > d(x, y) and 
 d(ux, Tux) > d(ux, y), then from conclusion () we have

d(x, ux) ≤ d(x, y) + d(y, ux)

<


{

d(x, Tx) + d(ux, Tux)
}

≤ 

{

d(x, Tx) + d(ux, Tx) + H(Tx, Tux)
}

≤ 

{

d(x, Tx) +  + d(x, Tx)
}

(by the conclusion ()) = d(x, Tx),

which is a contradiction. Therefore the conclusion of Lemma . is proved. �

Lemma . Let (X, d, W ), K , T be the same as in Lemma .. For any given x, y ∈ K , the
following conclusion holds:

d(x, Ty) ≤ d(x, Tx) + d(x, y). (.)

Proof By conclusion () in Lemma ., for any x, y ∈ K , we have

either H(Tx, Ty) ≤ N(x, y) or H(Ty, Tux) ≤ N(y, ux),

where

N(x, y) := max

{
d(x, y),



{

d(x, Tx) + d(y, Ty)
}

,


{

d(x, Ty) + d(y, Tx)
}}

,

N(y, ux) := max

{
d(y, ux),



{

d(y, Ty) + d(ux, Tux)
}

,


{

d(y, Tux) + d(ux, Ty)
}}

,

and ux ∈ Tx, uy ∈ Ty are the points satisfying (.).
(I) Now we consider the first case: H(Tx, Ty) ≤ N(x, y).
(a) If N(x, y) = d(x, y), then H(Tx, Ty) ≤ d(x, y). Hence we have

d(x, Ty) ≤ d(x, Tx) + H(Tx, Ty) ≤ d(x, Tx) + d(x, y).

(b) If N(x, y) = 
 {d(x, Tx) + d(y, Ty)}, then H(Tx, Ty) ≤ 

 {d(x, Tx) + d(y, Ty)}. Hence we
have

d(x, Ty) ≤ d(x, Tx) + H(Tx, Ty) ≤ d(x, Tx) +


{

d(x, Tx) + d(y, Ty)
}

=



d(x, Tx) +


{

d(x, Ty) + d(x, y)
}

.

Simplifying we have

d(x, Ty) ≤ d(x, Tx) + d(x, y).
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(c) If N(x, y) = 
 {d(x, Ty) + d(y, Tx)}, then we have H(Tx, Ty) ≤ 

 {d(x, Ty) + d(y, Tx)}. This
implies that

d(x, Ty) ≤ d(x, Tx) + H(Tx, Ty) ≤ d(x, Tx) +


{

d(x, Ty) + d(y, Tx)
}

≤ d(x, Tx) +


{

d(x, Ty) + d(x, y) + d(x, Tx)
}

.

Simplifying we have

d(x, Ty) ≤ d(x, Tx) + d(x, y).

This implies that in the first case, the conclusion of Lemma . is true.
(II) Now we consider the second case, i.e., H(Ty, Tux) ≤ N(y, ux).
(a) If N(y, ux) = d(y, ux), then H(Ty, Tux) ≤ d(y, ux). By using Lemma .(), we have

d(x, Ty) ≤ d(x, Tx) + H(Tx, Tux) + H(Tux, Ty) ≤ d(x, Tx) + d(x, Tx) + d(y, ux)

≤ d(x, Tx) + d(x, y) + d(x, ux) = d(x, Tx) + d(x, y).

(b) If N(y, ux) = 
 {d(y, Ty) + d(ux, Tux)}, then H(Ty, Tux) ≤ 

 {d(y, Ty) + d(ux, Tux)}. By
using Lemma .() again, we have

d(x, Ty) ≤ d(x, Tx) + H(Tx, Tux) + H(Tux, Ty)

≤ d(x, Tx) + d(x, Tx) +


{

d(y, Ty) + d(ux, Tux)
}

≤ d(x, Tx) +


{

d(y, x) + d(x, Ty) + d(ux, Tx) + H(Tx, Tux)
}

≤ d(x, Tx) +


{

d(y, x) + d(x, Ty) +  + d(x, Tx)
}

.

Simplifying we have

d(x, Ty) ≤ d(x, Tx) + d(x, y).

(c) If N(y, ux) = 
 {d(y, Tux) + d(ux, Ty)}, then H(Ty, Tux) ≤ 

 {d(y, Tux) + d(ux, Ty)}. By
using Lemma .() again, we have

d(x, Ty) ≤ d(x, Tx) + H(Tx, Tux) + H(Tux, Ty)

≤ d(x, Tx) + d(x, Tx) +


{

d(y, Tux) + d(ux, Ty)
}

≤ d(x, Tx) +


{

d(y, x) + d(x, Tx) + H(Tx, Tux) + d(x, ux) + d(x, Ty)
}

= d(x, Tx) +


{

d(x, y) + d(x, Tx) + d(x, Tx) + d(x, Tx) + d(x, Ty)
}

.

Simplifying we have

d(x, Ty) ≤ d(x, Tx) + d(x, y).

This completes the proof of Lemma .. �
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Lemma . Let (X, d, W ) be a complete uniformly convex hyperbolic space with a mono-
tone modulus of uniform convexity η, K be a nonempty closed and convex subset of X and
T : K → P(K) be an SKC-type multi-valued mapping with convex values. Suppose {xn} is
a sequence in K such that �-limn→∞ xn = z and limn→∞ d(xn, Txn) = . Then z is a fixed
point of T .

Proof By the assumption, Tz is a convex and proximal subset of K . Hence, for each xn,
n ≥ , there exists a point uzn ∈ Tz such that

d(xn, uzn ) = d(xn, Tz), ∀n ≥ .

Taking x = xn, y = z in Lemma ., by Lemma . we have

d(xn, uzn ) = d(xn, Tz) ≤ d(xn, Txn) + d(xn, z). (.)

Since {uzn} is a bounded sequence in Tz, by Lemma ., there exists a subsequence {uznk
} ⊂

{uzn} such that �-limk→∞ uznk
= uz ∈ Tz. Hence we have

d(xnk , uz) ≤ d(xnk , uzn ) + d(uzn , uz) ≤ d(xnk , Txnk ) + d(xnk , z) + d(uzn , uz).

Taking the superior limit on the both sides of the above inequality, we get

lim sup
k→∞

d(xnk , uz) ≤ lim sup
k→∞

{
d(xnk , Txnk ) + d(xnk , z)

}

≤ lim sup
k→∞

d(xnk , z).

Hence by Lemma ., uz = z. Thus z ∈ Tz and the proof is completed. �

2 Main results
Now we are in a position to give the following existence and approximation results.

Theorem . Let (X, d, W ) be a complete uniformly convex hyperbolic space with a mono-
tone modulus of uniform convexity η and K be a nonempty closed convex subset of X.
Let Ti : K → P(K) (i = , , . . . , m) be a finite family of SKC-type multi-valued mappings
with convex values. Suppose that F =

⋂m
i= F(Ti) 	= ∅ and Ti(p) = {p} for each p ∈ F . Let

{αn,i} ⊂ [a, b] ⊂ (, ) (i = , , . . . , m). For arbitrarily chosen x ∈ K , let {xn} be the classical
Kuhfitting-type iteration [] defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yn, = W (xn, zn,,αn,),
yn, = W (xn, zn,,αn,),
...
yn,m– = W (xn, zn,m–,αn,m–),
xn+ = W (xn, zn,m,αn,m), n ≥ ,

(.)

where zn, ∈ T(xn) and zn,k ∈ Tk(yn,k–) for k = , , . . . , m. Then the sequence {xn} defined
by (.) �-converges to a point in F .
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Proof The proof of Theorem . is divided into three steps as follows.
Step . First we prove that limn→∞ d(xn, p) exists for each p ∈F .
In fact, it follows from Proposition . that each SKC-type multi-valued mapping T with

F(T) 	= ∅ is a multi-valued quasi-nonexpansive mapping. Hence, for any p ∈F , by (.) we
have

d(yn,, p) = d
(
W (xn, zn,,αn,), p

)
≤ ( – αn,)d(xn, p) + αn,d(zn,, p)

≤ ( – αn,)d(xn, p) + αn,d(zn,, Tp)

≤ ( – αn,)d(xn, p) + αn,H
(
T(xn), Tp

)
≤ d(xn, p) (.)

and

d(yn,, p) = d
(
W (xn, zn,,αn,), p

)
≤ ( – αn,)d(xn, p) + αn,d(zn,, p)

≤ ( – αn,)d(xn, p) + αn,H
(
T(yn,), Tp

)
≤ ( – αn,)d(xn, p) + αn,d(yn,, p)

≤ d(xn, p). (.)

Similarly, we can also have

d(yn,k , p) ≤ d(xn, p) (k = , , . . . , m – ) (.)

and

d(xn+, p) = d
(
W (xn, zn,m,αn,m), p

)
≤ ( – αn,m)d(xn, p) + αn,md(zn,m, p)

≤ ( – αn,m)d(xn, p) + αn,mH
(
T(yn,m–), Tmp

)
≤ ( – αn,m)d(xn, p) + αn,md(yn,m–, p)

≤ d(xn, p). (.)

This implies that limn→∞ d(xn, p) exists for each p ∈F . And so {xn} is bounded.
Step . Now we prove that

lim
n→∞ d(xn, Tixn) = , for each i = , , . . . , m. (.)

In fact, since for each p ∈ F the limit limn→∞ d(xn, p) exists, without loss of generality,
we may assume that limn→∞ d(xn, p) = c ≥ . If c = , then

d(xn, Tixn) ≤ d(xn, p) + d(p, Tixn) = d(xn, p) + H(Tip, Tixn)

≤ d(xn, p) →  (as n → ∞).
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Therefore conclusion (.) holds. If c > , from (.) we have

lim sup
n→∞

d(yn,k , p) ≤ c (k = , , . . . , m – ). (.)

Furthermore, since for k = , , . . . , m,

d(zn,k , p) = d(zn,k , Tkp) ≤ H
(
Tk(yn,k–), Tkp

) ≤ d(yn,k–, p).

We have

lim sup
n→∞

d(zn,k , p) ≤ c (k = , , . . . , m). (.)

Since

lim
n→∞ d(xn+, p) = lim

n→∞ d
(
W (xn, zn,m,αn,m), p

)
= c, (.)

it follows from (.), (.) and Lemma . that

lim
n→∞ d(xn, zn,m) = . (.)

On the other hand, it follows from (.) that

d(xn, p) ≤ d(xn, p) – d(xn+, p)
αn,m

+ d(yn,m–, p)

≤ d(xn, p) – d(xn+, p)
a

+ d(yn,m–, p). (.)

Let n → ∞ and taking lower limit on both sides of the above inequality, we have

c ≤ lim inf
n→∞ d(yn,m–, p). (.)

By (.) and (.) we have that

lim
n→∞ d(yn,m–, p) = c. (.)

It follows from (.), (.) and Lemma . that

lim
n→∞ d(xn, zn,m–) = . (.)

Since

d(yn,m–, p) ≤ ( – αn,m–)d(xn, p) + αn,m–d(yn,m–, p),

we have

d(xn, p) ≤ d(xn, p) – d(yn,m–, p)
αn,m–

+ d(yn,m–, p)

≤ d(xn, p) – d(yn,m–, p)
α

+ d(yn,m–, p). (.)
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Let n → ∞ and taking lower limit on both sides of the above inequality, by (.), we have

c ≤ lim inf
n→∞ d(yn,m–, p). (.)

By (.) and (.) we have that

lim
n→∞ d(yn,m–, p) = c. (.)

It follows from (.), (.) and Lemma . that

lim
n→∞ d(xn, zn,m–) = . (.)

Similarly, we can also have

lim
n→∞ d(yn,k , p) = c (k = , , . . . , m – ) (.)

and

lim
n→∞ d(xn, zn,k) =  (k = , , . . . , m – ). (.)

Thus, for each k = , , . . . , m – , we have

d(yn,k , xn) = d
(
W (xn, zn,k ,αn,k), xn

) ≤ αn,kd(zn,k , xn) →  (as n → ∞) (.)

and

lim
n→∞ d

(
xn, Tk(yn,k)

) ≤ lim
n→∞ d(xn, zn,k–) = . (.)

By virtue of (.), (.), (.)-(.) and Lemma ., we have

d
(
xn, Tk(xn)

) ≤ d(xn, yn,k) + d
(
yn,k , Tk(xn)

)
≤ d(xn, yn,k) + d(yn,k , Tkyn,k) + d(yn,k , xn)

≤ d(xn, yn,k) + 
{

d(yn,k , xn) + d(xn, Tkyn,k)
}

→  (as n → ∞) (for k = , , . . . , m). (.)

This completes the proof of (.).
Step . Finally, we prove that the sequence {xn}�-converges to a common fixed point

of F .
Denote by Wω(xn) =

⋃
{un}⊂{xn} A({un}). Firstly, we show that Wω(xn) ⊂ F . Indeed, if

u ∈ Wω(xn), then there exists a subsequence {un} of {xn} such that A({un}) = {u}. By
Lemma ., there exists a subsequence {unk } of {un} such that �-limk→∞ unk = p ∈ K .
Since limn→∞ d(xn, Tixn) =  (i = , , . . . , m), it follows from Lemma . that p ∈ F .
So limn→∞ d(xn, p) exists. By Lemma ., we have that p = u ∈ F . This implies that
Wω(xn) ⊂F .
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Next, let {un} be a subsequence of {xn} with A({un}) = {u} and A{xn} = {v}. Since u ∈
Wω(xn) ⊂ F , and limn→∞ d(xn, u) exists, by Lemma . it follows that v = u. This implies
that Wω(xn) contains only one point. Again since Wω(xn) ⊂ F and Wω(xn) contains only
one point and limn→∞ d(xn, q) exists for each q ∈F , we known that {xn} �-converges to a
common fixed point of Ti (i = , , . . . , m). The proof is completed. �

Theorem . Let (X, d, W ) be a complete uniformly convex hyperbolic space with a mono-
tone modulus of uniform convexity η and K be a nonempty compact convex subset of X. Let
Ti : K → CB(K) (i = , , . . . , m) be a finite family of SKC-type multi-valued mappings with
nonempty convex-values. Suppose that F =

⋂m
i= F(Ti) 	= ∅ and Ti(p) = {p} for each p ∈ F .

Let {αn,i} ⊂ [a, b] ⊂ (, ) (i = , , . . . , m) and {xn} be the sequence as given in Theorem ..
Then {xn} converges strongly to a point in F .

Proof By the assumption that for each x ∈ K and each i = , , . . . , m, Tix is a bounded
closed and convex subset of K . Since K is compact, Tix is a nonempty compact and convex
subset, it is a bounded proximal subset in K , i.e., Ti : K → P(K) (i = , , . . . , m). Therefore
all conditions in Theorem . are satisfied. It follows from (.) and (.) that for each
p ∈F and for each i = , , . . . , m, the following limit

lim
n→∞ d(xn, p) exists and lim

n→∞ d(xn, Tixn) = . (.)

Furthermore, since K is compact, there exists a subsequence {xnk } ⊂ {xn} such that xnk →
p∗ (some point in K ). Since Ti, i = , , . . . , m, is an SKC-type multi-valued mapping, it
follows from Lemma . that

d
(
xnk , Tip∗) ≤ d(xnk , Txnk ) + d

(
xnk , p∗).

Letting k → ∞, from (.) we have that d(p∗, Tip∗) = . Hence p∗ ∈ Tip∗, for each i =
, , . . . , m, i.e., p∗ ∈F , and xn → p∗.

This completes the proof. �

Lemma . [] Let (X, d, W ) be a complete hyperbolic space, K be a nonempty closed
convex subset of X. Let T : K → P(K) be a multi-valued mapping with F(T) 	= ∅. Let PT :
K → K be a multi-valued mapping defined by

PT (x) :=
{

y ∈ Tx : d(x, y) = d(x, Tx)
}

, x ∈ K . (.)

Then the following conclusions hold:
() F(T) = F(PT );
() PT (p) = {p} for each p ∈ F(T);
() for each x ∈ K , PT (x) is a closed subset of T(x);
() d(x, Tx) = d(x, PT (x)) for each x ∈ K ;
() PT is a multi-valued mapping from K to P(K).

Theorem . Let (X, d, W ) be a complete uniformly convex hyperbolic space with a mono-
tone modulus of uniform convexity η and K be a nonempty closed convex subset of X. Let
Ti : K → CB(K) (i = , , . . . , m) be a finite family of multi-valued mappings with convex
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value and F =
⋂m

i= F(Ti) 	= ∅. Let PTi , i = , , . . . , m, be an SKC-type multi-valued map-
ping which is defined by (.). Let {αn,i} ⊂ [a, b] ⊂ (, ) (i = , , . . . , m). For arbitrarily
chosen x ∈ K , let {xn} be the classical Kuhfitting-type iteration defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yn, = W (xn, zn,,αn,),
yn, = W (xn, zn,,αn,),
...
yn,m– = W (xn, zn,m–,αn,m–),
xn+ = W (xn, zn,m,αn,m), n ≥ ,

(.)

where zn, ∈ PT (xn) and zn,k ∈ PTk (yn,k–) for k = , , . . . , m. Then the sequence {xn} �-con-
verges to a point in F .

Proof By virtue of Lemma ., we know that the mapping PTi , i = , , . . . , m, defined
by (.) possesses the following properties: for each i = , , . . . , m, PTi : K → P(K) is
an SKC-type multi-valued mapping with F =

⋂m
i= F(PTi ) =

⋂m
i= F(Ti) 	= ∅ and for each

i = , , . . . , m, PTi (p) = {p} for each p ∈ F . Replacing the mappings Ti by PTi in Theo-
rem ., i = , , . . . , m, then all the conditions in Theorem . are satisfied. Therefore the
conclusion of Theorem . can be obtained from Theorem . immediately. �

3 An application to the image recovery
The image recovery problem is formulated as to find the nearest point in the intersection
of a family of closed convex subsets from a given point by using corresponding metric
projection of each subset. In this section, we consider this problem for two subsets of a
complete CAT() space.

Theorem . Let (X, d) be a complete CAT() space. Let C and C be nonempty closed
convex subsets of X such that C ∩ C 	= ∅. Let P and P be metric projections from X onto
C and C, respectively. Let {αn,i} ⊂ [a, b] ⊂ (, ) (i = , ). For arbitrarily chosen x ∈ X, let
{xn} be the iteration defined by

{
yn, = αn,xn ⊕ ( – αn,)Pxn,
xn+ = αn,xn ⊕ ( – αn,)Pyn,, n ≥ .

(.)

Then {xn} �-converges to a fixed point of the intersection of C and C.

Proof Since (X, d) is a CAT() space, it is a uniformly convex hyperbolic space with a
monotone modulus of uniform convexity η = ε

 , and W (x, y,α) = αx ⊕ ( – α)y for all
x, y ∈ X and α ∈ [, ]. Further, since P and P are metric projections, they are single-
valued SKC-type mappings. Further, we also get F(P) = C and F(P) = C. Thus, letting
T = P and T = P in Theorem ., we know that all conditions in Theorem . are satis-
fied. Therefore the desired result can be obtained from Theorem . immediately. �

4 A numerical example
Let (X, d) = R with d(x, y) = |x – y| and K = [, 

 ]. Denote by

W (x, y,α) := αx + ( – α)y, ∀x, y ∈ X and α ∈ [, ],
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then (X, d, W ) is a complete uniformly convex hyperbolic space with a monotone modulus
of uniform convexity and K is a nonempty closed and convex subset of X. Let T : K → P(K)
be a multi-valued mapping defined by

T(x) =

{
[, x

 ] if x 	= 
 ;

{} if x = 
 .

(.)

It is easy to prove that (also see [, ]) T : K → P(K) is a C-type multi-valued mapping
with convex-values and  ∈ K is the unique fixed point of T in K and T() = {}. Therefore
T is an SKC-type multi-valued mapping with convex-values and satisfies all conditions in
Theorem .. Let {αn} be a constant sequence such that αn = 

 , ∀n ≥ . For any given
x ∈ [, 

 ] (for the sake of simplicity, we can assume that x = ). By the same method as
given in (.) (with m = ), we can define a sequence {xn} as follows.

For x = , we have Tx = T() = [, 
 ]. Taking z = 

 ∈ T(x), we define

x =



x +



z =



(
 +




)
.

For x = 
 ( + 

 ), we have

T(x) =
[

,
x



]
=

[
,

 + 


 × 

]
.

Taking z = 
× ∈ Tx, we define

x =



x +



z =




(
 +




+




)
.

For x, we have Tx = [, x
 ] = [, 

 ( 
 ( + 

 + 
 ))]. Taking z = 

× ∈ Tx, we define

x =



x +



z =




(
 +




+


 +




)
.

Inductively, we can define

xn+ =



xn +



zn =


n+

n+∑
i=


i , ∀n ≥ , (.)

where

{
xn = 

n ( + 
 + 

 + 
 + · · · + 

n ),
zn = 

n×n+ ∈ Txn.
(.)

From (.) we have that limn→∞ xn =  ∈ F(T). This completes the proof.
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