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Abstract
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1 Introduction
Banach’s contraction principle [] is remarkable in its simplicity, yet it is perhaps the most
widely applied fixed point theorem in all of analysis. This is because the contractive con-
dition on the mapping is simple and easy to test, it requires only a complete metric space
for its setting, and it finds almost canonical applications in the theory of differential and
integral equations. Over the years, many mathematicians tried successfully to extend this
fundamental theorem. Recently a version of this theorem was given in partially ordered
metric spaces [, ] and in metric spaces with a graph []. In this work, we discuss the
case of quasi-contractive mappings defined in partially ordered metric spaces and modu-
lar metric spaces endowed with a graph.

For more on metric fixed point theory, the reader may consult the book [].

2 Graph basic definitions
The terminology of graph theory instead of partial ordering gives a wider picture and yield
interesting generalization of the Banach contraction principle. In this section, we give the
basic graph theory definitions and notations which will be used throughout.

A graph is an ordered pair (V , E) where V is a set and E is a binary relation on V (E ⊆ V ×
V ). Elements of E are called edges. We are concerned here with directed graphs (digraphs)
that have a loop at every vertex (i.e., (a, a) ∈ E for each a ∈ V ). Such digraphs are called
reflexive. In this case E ⊆ V ×V corresponds to a reflexive (and symmetric) binary relation
on V . Moreover, we may treat G as a weighted graph by assigning to each edge the distance
between its vertices. By G– we denote the conversion of a graph G, i.e., the graph obtained
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from G by reversing the direction of edges. Thus we have

E
(
G–) =

{
(y, x) | (x, y) ∈ E(G)

}
.

A digraph G is called an oriented graph if whenever (u, v) ∈ E(G), then (v, u) /∈ E(G). The
letter G̃ denotes the undirected graph obtained from G by ignoring the direction of edges.
Actually, it will be more convenient for us to treat G̃ as a directed graph for which the set
of its edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E
(
G–).

Given a digraph G = (V , E), a (di)path of G is a sequence a, a, . . . , an, . . . with (ai, ai+) ∈
E(G) for each i = , , , . . . . A finite path (a, a, . . . , an) is said to have length n +  for n ∈N.
A closed directed path of length n >  from x to y, i.e., x = y, is called a directed cycle. An
acyclic digraph is a digraph that has no directed cycle. A digraph is connected if there is a
finite (di)path joining any two of its vertices and it is weakly connected if G̃ is connected.

Definition . A digraph G is transitive if

(x, y) ∈ E(G) and (y, z) ∈ E(G) ⇒ (x, z) ∈ E(G) for all x, y, z ∈ V (G).

As Jachymski [] did, we introduce the following property.
Let (X, d) be a metric space and G be a reflexive digraph defined on X. We say that E(G)

has property (∗) if

(∗) For any (xn)n≥ in X , if xn → x and (xn, xn+) ∈ E(G) for n ≥ , then there is a subse-
quence (xkn )n≥ with (xkn , x) ∈ E(G) for n ≥ .

Note that if G is a reflexive transitive digraph defined on X, then property (∗) implies the
following property:

(∗∗) For any (xn)n≥ in X , if xn → x and (xn, xn+) ∈ E(G) for n ≥ , then (xn, x) ∈ E(G) for
every n ≥ .

Let us finish this section with the following example of a transitive cyclic digraph which
cannot be a partial order. Therefore our approach is different from the one used in []
which is based on the use of a partial order in Banach and metric spaces.

Example . Let (R, d) be the Euclidean plane. Define the digraph G on R
 by:

(x, y) ∈ E(G) if and only if x ≤ y, where x = (x, x) and y = (y, y) are in R
.

Then G is reflexive, transitive for which G-intervals are closed. Note that G contains cycles.
Indeed, we have (x, y) ∈ E(G) and (y, x) ∈ E(G), where

x = (, ) and y = (, ).

Therefore the graph G will not be generated by a partial order.

For more examples on the use of graph theory with fixed point theory, the reader may
see [].
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3 G-Monotone quasi-contraction mappings in metric spaces
As a generalization to the Banach contraction principle, Ćirić [] introduced the concept
of quasi-contraction mappings. In this section, we investigate monotone mappings which
are quasi-contraction mappings. Throughout this section we assume that (X, d) is a metric
space and G is a reflexive transitive digraph defined on X. Moreover, we assume that E(G)
has property (∗) and G-intervals are closed. Recall that a G-interval is any of the subsets
[a,→) = {x ∈ C; (a, x) ∈ E(G)} and (←, b] = {x ∈ C; (x, b) ∈ E(G)} for any a, b ∈ C.

Definition . Let C be a nonempty subset of X. A mapping T : C → C is called:
() G-monotone if T is edge preserving, i.e., (T(x), T(y)) ∈ E(G) whenever (x, y) ∈ E(G)

for any x, y ∈ C.
() G-monotone quasi-contraction if T is G-monotone and there exists k <  such that

for any x, y ∈ C, (x, y) ∈ E(G), we have

d
(
T(x), T(y)

) ≤ k max
(
d(x, y); d

(
x, T(x)

)
; d

(
y, T(y)

)
; d

(
x, T(y)

)
; d

(
y, T(x)

))
.

The point x ∈ C is called a fixed point of T if T(x) = x. The set of fixed points of T will
be denoted by Fix(T).

In the sequel we prove an existence fixed point theorem for such mappings. First, let T
and C be as in Definition .. For any x ∈ C, define the orbit O(x) = {x, T(x), T(x), . . .}, and
its diameter by

δ(x) = sup
{

d
(
Tn(x), Tm(x)

)
: n, m ∈N

}
.

The following technical lemma is crucial to prove the main result of this section.

Lemma . Let (X, d) and G be as above. Let C be a nonempty subset of X and T : C → C
be a G-monotone quasi-contraction mapping. Let x ∈ C be such that (x, T(x)) ∈ E(G) and
δ(x) < ∞. Then, for any n ≥ , we have

δ
(
Tn(x)

) ≤ knδ(x),

where k <  is the constant associated with the G-monotone quasi-contraction definition
of T . Moreover, we have

d
(
Tn(x), Tn+m(x)

) ≤ knδ(x)

for any n, m ∈N.

Proof Since T is G-monotone, then (Tn(x), Tn+(x)) ∈ E(G) for any n ∈ N. By transitivity
of the graph G, we have (Tn(x), Tm(x)) ∈ E(G) for any n, m ∈N. Hence

d
(
Tn(x), Tm(x)

) ≤ k max
(
d
(
Tn–(x), Tm–(x)

)
; d

(
Tn–(x), Tn(x)

)
;

d
(
Tm–(x), Tm(x)

)
; d

(
Tn–(x), Tm(x)

)
; d

(
Tn(x), Tm–(x)

))
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for any n, m ≥ . This obviously implies that

δ
(
Tn(x)

) ≤ kδ
(
Tn–(x)

)
, n ≥ .

Hence

δ
(
Tn(x)

) ≤ knδ(x), n ≥ .

This will imply

d
(
Tn(x), Tn+m(x)

) ≤ δ
(
Tn(x)

) ≤ knδ(x)

for any n, m ∈ N. �

Using Lemma ., we prove the main result of this section.

Theorem . Let (X, d) and G be as above. Assume that (X, d) is complete. Let C be a
closed nonempty subset of X and T : C → C be a G-monotone quasi-contraction mapping.
Let x ∈ C be such that (x, T(x)) ∈ E(G) and δ(x) < ∞. Then:

(i) {Tn(x)} converges to ω ∈ C which is a fixed point of T and (x,ω) ∈ E(G). Moreover,
we have

d
(
Tn(x),ω

) ≤ knδ(x), n ≥ .

(ii) If z is a fixed point of T such that (x, z) ∈ E(G), then z = ω.

Proof Let us prove (i). Lemma . implies that {Tn(x)} is Cauchy. Since X is complete and
C is closed, then there exists ω ∈ C such that {Tn(x)} converges to ω. Since

d
(
Tn(x), Tn+m(x)

) ≤ knδ(x), n, m ∈N,

we let m → ∞ to get

d
(
Tn(x),ω

) ≤ knδ(x), n ≥ .

Since T is G-monotone, we get (Tn(x), Tn+(x)) ∈ E(G) for any n ≥ . By property (∗∗), we
conclude that (Tn(x),ω) ∈ E(G) for any n ≥ . In particular, we have (x,ω) ∈ E(G). In order
to show that ω is a fixed point of T , note that we have

d
(
Tn(x), T(ω)

) ≤ k max
(
d
(
Tn–(x),ω

)
; d

(
Tn–(x), Tn(x)

)
;

d
(
ω, T(ω)

)
; d

(
Tn–(x), T(ω)

)
; d

(
Tn(x),ω

))

for any n ≥ . If we let n → +∞, we get d(ω, T(ω)) ≤ kd(ω, T(ω)), which forces d(ω, T(ω)) =
 since k < . Therefore we have T(ω) = ω.

Next we show (ii). Let z ∈ C be a fixed point of T such that (x, z) ∈ E(G). Then we have

d
(
Tn(x), z

) ≤ k max
(
d
(
Tn–(x), z

)
; d

(
Tn–(x), Tn(x)

)
; d

(
Tn(x), z

))
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for any n ≥ . If we let n → +∞, we get

d(ω, z) = lim sup
n→∞

d
(
Tn(x), z

) ≤ k lim sup
n→∞

d
(
Tn(x), z

)
= kd(ω, z).

Since k < , we get d(ω, z) = , i.e., ω = z. �

In the next section, we discuss the validity of Theorem . in modular metric spaces.
This is a very important class of spaces since they are similar to metric spaces in their
structure but without the triangle inequality and offer a wide range of applications.

4 G-Monotone quasi-contraction mappings in modular metric spaces
Let X be a nonempty set. Throughout this section for a function ω : (,∞) × X × X →
(,∞), we will write

ωλ(x, y) = ω(λ, x, y)

for all λ >  and x, y ∈ X.

Definition . [, ] A function ω : (,∞) × X × X → [,∞] is said to be a modular
metric on X if it satisfies the following axioms:

(i) x = y if and only if ωλ(x, y) =  for all λ > ;
(ii) ωλ(x, y) = ωλ(y, x) for all λ >  and x, y ∈ X ;

(iii) ωλ+μ(x, y) ≤ ωλ(x, z) + ωμ(z, y) for all λ,μ >  and x, y, z ∈ X .
If instead of (i) we have only the condition (i′)

ωλ(x, x) =  for all λ > , x ∈ X,

then ω is said to be a pseudomodular (metric) on X. A modular metric ω on X is said to
be regular if the following weaker version of (i) is satisfied

x = y if and only if ωλ(x, y) =  for some λ > .

Finally, ω is said to be convex if for λ,μ >  and x, y, z ∈ X, it satisfies the inequality

ωλ+μ(x, y) ≤ λ

λ + μ
ωλ(x, z) +

μ

λ + μ
ωμ(z, y).

Note that for a metric pseudomodular ω on a set X, and any x, y ∈ X, the function λ →
ωλ(x, y) is nonincreasing on (,∞). Indeed, if  < μ < λ, then

ωλ(x, y) ≤ ωλ–μ(x, x) + ωμ(x, y) = ωμ(x, y).

Definition . [, ] Let ω be a pseudomodular on X. Fix x ∈ X. The two sets

Xω = Xω(x) =
{

x ∈ X : ωλ(x, x) →  as λ → ∞}
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and

X∗
ω = X∗

ω(x) =
{

x ∈ X : ∃λ = λ(x) >  such that ωλ(x, x) < ∞}

are said to be modular spaces (around x).

We obviously have Xω ⊂ X∗
ω . In general this inclusion may be proper. It follows from

[, ] that if ω is a modular on X, then the modular space Xω can be equipped with a
(nontrivial) metric, generated by ω and given by

dω(x, y) = inf
{
λ >  : ωλ(x, y) ≤ λ

}

for any x, y ∈ Xω . If ω is a convex modular on X, according to [, ] the two modular
spaces coincide, i.e., X∗

ω = Xω , and this common set can be endowed with the metric d∗
ω

given by

d∗
ω(x, y) = inf

{
λ >  : ωλ(x, y) ≤ 

}

for any x, y ∈ Xω . These distances will be called Luxemburg distances.
First attempts to generalize the classical function spaces of the Lebesgue type Lp were

made in the early s by Orlicz and Birnbaum in connection with orthogonal expan-
sions. Their approach consisted in considering spaces of functions with some growth
properties different from the power type growth control provided by the Lp-norms.
Namely, they considered the function spaces defined as follows:

Lϕ =
{

f : R →R;∃λ >  : ρ(λf ) =
∫

R

ϕ
(
λ
∣∣f (x)

∣∣)dx < ∞
}

,

where ϕ : [,∞] → [,∞] was assumed to be a convex function increasing to infinity, i.e.,
the function which to some extent behaves similarly to power functions ϕ(t) = tp.

Modular function spaces Lϕ furnish a wonderful example of a modular metric space.
Indeed define the function ω by

ωλ(f , g) = ρ

(
f – g

λ

)
=

∫

R

ϕ

( |f (x) – g(x)|
λ

)
dx

for all λ >  and f , g ∈ Lϕ , then ω is a modular metric on Lϕ . Moreover, the distance d∗
ω is

exactly the distance generated by the Luxemburg norm on Lϕ .
For more examples on modular function spaces, the reader my consult the book of

Kozlowski [] and for modular metric spaces [, ].

Definition . Let Xω be a modular metric space.
() The sequence {xn}n∈N in Xω is said to be ω-convergent to x ∈ Xω if and only if

ω(xn, x) →  as n → ∞. x will be called the ω-limit of {xn}.
() The sequence {xn}n∈N in Xω is said to be ω-Cauchy if ω(xm, xn) →  as m, n → ∞.
() A subset M of Xω is said to be ω-closed if the ω-limit of a ω-convergent sequence of

M always belongs to M.
() A subset M of Xω is said to be ω-complete if any ω-Cauchy sequence in M is a

ω-convergent sequence and its ω-limit is in M.
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() A subset M of Xω is said to be ω-bounded if we have

δω(M) = sup
{
ω(x, y); x, y ∈ M

}
< ∞.

() ω is said to satisfy the Fatou property if and only if for any sequence {xn}n∈N in Xω

ω-convergent to x, we have

ω(x, y) ≤ lim inf
n→∞ ω(xn, y)

for any y ∈ Xω .

In general if limn→∞ ωλ(xn, x) =  for some λ > , then we may not have limn→∞ ωλ(xn,
x) =  for all λ > . Therefore, as it is done in modular function spaces, we will say that ω

satisfies �-condition if this is the case, i.e., limn→∞ ωλ(xn, x) =  for some λ >  implies
limn→∞ ωλ(xn, x) =  for all λ > . In [] and [], one will find a discussion about the con-
nection between ω-convergence and metric convergence with respect to the Luxemburg
distances. In particular, we have

lim
n→∞ dω(xn, x) =  if and only if lim

n→∞ωλ(xn, x) =  for all λ > 

for any {xn} ∈ Xω and x ∈ Xω . And in particular we have ω-convergence and dω conver-
gence are equivalent if and only if the modular ω satisfies the �-condition. Moreover, if
the modular ω is convex, then we know that d∗

ω and dω are equivalent, which implies

lim
n→∞ d∗

ω(xn, x) =  if and only if lim
n→∞ωλ(xn, x) =  for all λ > 

for any {xn} ∈ Xω and x ∈ Xω [, ]. Throughout this section, we assume that ω satisfies
the Fatou property.

Let (X,ω) be a modular metric space and G be a reflexive digraph defined on X.

Definition . Let (X,ω) and G be as above. Let C be a nonempty subset of X. The map-
ping T : C → C is said to be:

(i) G-monotone if T is edge preserving, i.e., (T(x), T(y)) ∈ E(G) whenever (x, y) ∈ E(G)
for any x, y ∈ C;

(ii) G-monotone ω-quasi-contraction if T is G-monotone and there exists k <  such
that for any x, y ∈ C, (x, y) ∈ E(G), we have

ω
(
T(x), T(y)

) ≤ k max
(
ω(x, y);ω

(
x, T(x)

)
;ω

(
y, T(y)

)
;

ω
(
x, T(y)

)
;ω

(
y, T(x)

))
.

Let (X,ω) be a modular metric space and G be a reflexive digraph defined on X. We say
that E(G) has property (∗∗∗) if

(∗∗∗) For any (xn)n≥ in X , if xn ω-converges to x and (xn, xn+) ∈ E(G) for n ≥ , then there
is a subsequence (xkn )n≥ with (xkn , x) ∈ E(G) for n ≥ .

Note that if G is a reflexive transitive digraph defined on X, then property (∗∗∗) implies
the following property:
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For any (xn)n≥ in X , if xn ω-converges to x and (xn, xn+) ∈ E(G) for n ≥ , then
(xn, x) ∈ E(G) for every n ≥ .

Throughout this section, we assume that (X,ω) is a modular metric space, G is a reflexive
transitive digraph defined on X and E(G) has property (∗∗∗).

In the sequel we prove an analogue to Theorem . in modular metric spaces. For any
x ∈ C, define the orbit O(x) = {x, T(x), T(x), . . .}, and its diameter by

δω(x) = sup
{
ω

(
Tn(x), Tm(x)

)
: n, m ∈N

}
.

Throughout we assume that ω is regular and satisfies the Fatou property. The following
technical lemma is crucial to prove the main result of this section. It is the modular version
of Lemma .. Its proof will be omitted.

Lemma . Let (X,ω) and G be as above. Let C be a nonempty subset of X and T : C → C
be a G-monotone ω-quasi-contraction mapping. Let x ∈ C be such that (x, T(x)) ∈ E(G)
and δω(x) < ∞. Then, for any n ≥ , we have

δω

(
Tn(x)

) ≤ knδω(x),

where k <  is the constant associated with the G-monotone ω-quasi-contraction definition
of T . Moreover, we have

ω
(
Tn(x), Tn+m(x)

) ≤ knδω(x)

for any n, m ∈N.

Using Lemma ., we prove the main result of this section.

Theorem . Let (X,ω) and G be as above. Let C be a nonempty subset of X which is
ω-complete. Let T : C → C be a G-monotone ω-quasi-contraction mapping. Let x ∈ C be
such that (x, T(x)) ∈ E(G) and δω(x) < ∞. Then:

(i) {Tn(x)} ω-converges to z ∈ C which is a fixed point of T and (x, z) ∈ E(G), provided
ω(z, T(z)) < ∞ and ω(x, T(z)) < ∞. Moreover, we have

ω
(
Tn(x), z

) ≤ knδω(x), n ≥ .

(ii) If w is a fixed point of T such that (x, w) ∈ E(G) and ω(Tn(x), w) < ∞ for any n ≥ ,
then z = w.

Proof Let us prove (i). Lemma . implies that {Tn(x)} is ω-Cauchy. Since C is ω-complete,
then there exists z ∈ C such that {Tn(x)} ω-converges to z. Since

ω
(
Tn(x), Tn+m(x)

) ≤ knδω(x)

for any n, m ∈ N, the Fatou property (once we let m → ∞) will imply

ω
(
Tn(x), z

) ≤ knδω(x), n ≥ .
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Since T is G-monotone, we have (Tn(x), Tn+(x)) ∈ E(G) for any n ≥ . Using property
(∗∗∗), we get (Tn(x), z) ∈ E(G) for any n ≥ N. In particular, we have (x, z) ∈ E(G). Next we
assume ω(z, T(z)) < ∞ and ω(x, T(z)) < ∞. Let us prove that z is a fixed point of T . By
induction, we have ω(Tn(x), T(z)) < ∞, and

(♦) ω
(
Tn(x), T(z)

) ≤ k max
(
ω

(
Tn–(x), z

)
;ω

(
Tn–(x), Tn(x)

)
;

ω
(
T(z), z

)
;ω

(
Tn–(x), T(z)

)
;ω

(
Tn(x), z

))

for any n ≥ . Consider r(y) = lim supn→+∞ ω(Tn(x), y) for y ∈ C. From (♦), we get

ω
(
Tn(x), T(z)

) ≤ k max
(
kn–δω(x);ω

(
T(z), z

)
;ω

(
Tn–(x), T(z)

)
; knδω(x)

)

= k max
(
kn–δω(x);ω

(
T(z), z

)
;ω

(
Tn–(x), T(z)

))

≤ knδω(x) + kω
(
T(z), z

)
+ kω

(
Tn–(x), T(z)

)

≤ δω(x) + ω
(
T(z), z

)
+ kω

(
Tn–(x), T(z)

)

for any n ≥ . By induction, we obtain

ω
(
Tn(x), T(z)

) ≤ 
 – k

(
δω(x) + ω

(
T(z), z

))
+ knω

(
x, T(z)

)

for any n ≥ , which implies

r
(
T(z)

) ≤ 
 – k

(
δω(x) + ω

(
T(z), z

))
< +∞.

So if we let n → +∞ in the inequality

ω
(
Tn(x), T(z)

) ≤ k max
(
kn–δω(x);ω

(
T(z), z

)
;ω

(
Tn–(x), T(z)

))
,

we get

r
(
T(z)

) ≤ k max
(
ω

(
z, T(z)

)
, r

(
T(z)

))
.

Since ω satisfies the Fatou property, we get ω(z, T(z)) ≤ r(T(z)), which implies

r
(
T(z)

) ≤ k max
(
ω

(
z, T(z)

)
, r

(
T(z)

))
= kr

(
T(z)

)
.

Since k < , we conclude r(T(z)) = , which implies ω(z, T(z)) = . Since ω is regular, we
get T(z) = z.

Next we show (ii). Let w ∈ C be a fixed point of T such that (x, w) ∈ E(G) and
ω(Tn(x), w) < ∞ for any n ≥ . Then by induction we get

ω
(
Tn(x), w

) ≤ k max
(
ω

(
Tn–(x), w

)
;ω

(
Tn–(x), Tn(x)

)
;ω

(
Tn(x), w

))

for any n ≥ . Note that if

max
(
ω

(
Tn–(x), w

)
;ω

(
Tn–(x), Tn(x)

)
;ω

(
Tn(x), w

))
= ω

(
Tn(x), w

)
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for some n ≥ , we get ω(Tn(x), w) ≤ kω(Tn(x), w). Since k < , we get ω(Tn(x), w) = .
So Tn(x) = w, which implies Tn+m(x) = w for any m ≥  since w is a fixed point of T . This
clearly will force z = w. Assume otherwise that

max
(
ω

(
Tn–(x), w

)
;ω

(
Tn–(x), Tn(x)

)
;ω

(
Tn(x), w

)) �= ω
(
Tn(x), w

)

for any n ≥ . In this case, we get

ω
(
Tn(x), w

) ≤ k max
(
ω

(
Tn–(x), w

)
; kn–δω(x)

)

for any n ≥ . Hence

ω
(
Tn(x), w

) ≤ kω
(
Tn–(x), w

)
+ knδω(x) ≤ kω

(
Tn–(x), w

)
+ δω(x),

which implies by induction

ω
(
Tn(x), w

) ≤ knω(x, w) +


 – k
δω(x)

for any n ≥ . In particular, we have lim supn→∞ ω(Tn(x), w) < +∞. Using the inequality

ω
(
Tn(x), w

) ≤ k max
(
ω

(
Tn–(x), w

)
; kn–δω(x)

)

for any n ≥ , we obtain

lim sup
n→∞

ω
(
Tn(x), w

) ≤ k lim sup
n→∞

ω
(
Tn(x), w

)
.

Since k < , we get lim supn→∞ ω(Tn(x), w) = , i.e., {Tn(x)} converges to w. The unique-
ness of the limit implies that z = w. Indeed, we have

ω(z, w) ≤ ω
(
Tn(x), z

)
+ ω

(
Tn(x), w

)
, n ≥ .

If we let n → +∞, we get ω(z, w) = . Since ω is regular, we get z = w. �

Note that under the assumptions of Theorem ., if w is another fixed point of T such
that (w, z) ∈ E(G) and ω(z, w) < ∞, then we have

ω(z, w) = ω
(
T(z), T(w)

) ≤ kω(z, w),

which implies z = w, since k < .
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