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1 Introduction
There appears in literature several generalizations of the famous Banach contraction prin-
ciple. One such generalization was given by Presic [, ] as follows.

Theorem . [] Let (X, d) be a metric space, k be a positive integer, T : Xk → X be a
mapping satisfying the following condition:

d
(
T(x, x, . . . , xk), T(x, x, . . . , xk+)

)

≤ q · d(x, x) + q · d(x, x) + · · · + qk · d(xk , xk+), (.)

where x, x, . . . , xk+ are arbitrary elements in X and q, q, . . . , qk are nonnegative constants
such that q +q + · · ·+qk < . Then there exists some x ∈ X such that x = T(x, x, . . . , x). More-
over, if x, x, . . . , xk are arbitrary points in X and for n ∈ N , xn+k = T(xn, xn+, . . . , xn+k–),
then the sequence 〈xn〉 is convergent and lim xn = T(lim xn, lim xn, . . . , lim xn).

Note that for k =  the above theorem reduces to the well-known Banach contraction
principle. Ciric and Presic [] generalizing the above theorem proved the following.

Theorem . [] Let (X, d) be a metric space, k be a positive integer, T : Xk → X be a
mapping satisfying the following condition:

d
(
T(x, x, . . . , xk), T(x, x, . . . , xk+)

)

≤ λ · max
{

d(x, x), d(x, x), . . . , d(xk , xk+)
}

, (.)
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where x, x, . . . , xk+ are arbitrary elements in X and λ ∈ (, ). Then there exists some
x ∈ X such that x = T(x, x, . . . , x). Moreover, if x, x, . . . , xk are arbitrary points in X and
for n ∈ N , xn+k = T(xn, xn+, . . . , xn+k–), then the sequence 〈xn〉 is convergent and lim xn =
T(lim xn, lim xn, . . . , lim xn). If in addition T satisfies D(T(u, u, . . . , u), T(v, v, . . . , v)) < d(u, v)
for all u, v ∈ X, then x is the unique point satisfying x = T(x, x, . . . , x).

In [, ] Pacurar gave a classic generalization of the above results. Later the above re-
sults were further extended and generalized by many authors (see [–]). Generalizing
the concept of metric space, Bakhtin [] introduced the concept of b-metric space which
is not necessarily Hausdorff and proved the Banach contraction principle in the setting
of a b-metric space. Since then several papers have dealt with fixed point theory or the
variational principle for single-valued and multi-valued operators in b-metric spaces (see
[–] and the references therein). In this paper we have proved common fixed point
theorems for the generalized Presic-Hardy-Rogers contraction and Ciric-Presic contrac-
tion for two mappings in a b-metric space. Our results extend and generalize many well-
known results. As an application, we have derived some convergence results for a class
of nonlinear matrix equations. Numerical experiments are also presented to illustrate the
convergence algorithms.

2 Preliminaries
Definition . [] Let X be a nonempty set and d : X × X → [,∞) satisfy:

(bM) d(x, y) =  if and only if x = y for all x, y ∈ X ;
(bM) d(x, y) = d(y, x) for all x, y ∈ X ;
(bM) there exists a real number s ≥  such that d(x, y) ≤ s[d(x, z) + d(z, y)] for all

x, y, z ∈ X .
Then d is called a b-metric on X and (X, d) is called a b-metric space (in short bMS) with
coefficient s.

Convergence, Cauchy sequence and completeness in b-metric space are defined as fol-
lows.

Definition . [] Let (X, d) be a b-metric space, {xn} be a sequence in X and x ∈ X.
Then:

(a) The sequence {xn} is said to be convergent in (X, d), and it converges to x if for every
ε >  there exists n ∈N such that d(xn, x) < ε for all n > n, and this fact is
represented by limn→∞ xn = x or xn → x as n → ∞.

(b) The sequence {xn} is said to be Cauchy sequence in (X, d) if for every ε >  there
exists n ∈N such that d(xn, xn+p) < ε for all n > n, p >  or, equivalently, if
limn→∞ d(xn, xn+p) =  for all p > .

(c) (X, d) is said to be a complete b-metric space if every Cauchy sequence in X
converges to some x ∈ X .

Definition . [] Let (X, d) be a metric space, k be a positive integer, T : Xk → X and
f : X → X be mappings.

(a) An element x ∈ X is said to be a coincidence point of f and T if and only if
f (x) = T(x, x, . . . , x). If x = f (x) = T(x, x, . . . , x), then we say that x is a common fixed
point of f and T . If w = f (x) = T(x, x, . . . , x), then w is called a point of coincidence of
f and T .



Pathak et al. Fixed Point Theory and Applications  (2015) 2015:101 Page 3 of 17

(b) Mappings f and T are said to be commuting if and only if
f (T(x, x, . . . , x)) = T(fx, fx, . . . , fx) for all x ∈ X .

(c) Mappings f and T are said to be weakly compatible if and only if they commute at
their coincidence points.

Remark . For k =  the above definitions reduce to the usual definition of commuting
and weakly compatible mappings in a metric space.

The set of coincidence points of f and T is denoted by C(f , T).

Lemma . [] Let X be a nonempty set, k be a positive integer and f : Xk → X, g : X → X
be two weakly compatible mappings. If f and g have a unique point of coincidence y =
f (x, x, . . . , x) = g(x), then y is the unique common fixed point of f and g .

Khan et al. [] defined the set function θ : [,∞) → [,∞) as follows:
. θ is continuous,
. for all t, t, t, t ∈ [,∞), θ (t, t, t, t) =  ⇔ tttt = .

3 Main results
Throughout this paper we assume that the b-metric d : X × X → [,∞) is continuous
on X.

Theorem . Let (X, d) be a b-metric space with coefficient s ≥ . For any positive integer
k, let f : Xk → X and g : X → X be mappings satisfying the following conditions:

f
(
Xk) ⊆ g(X), (.)

d
(
f (x, x, . . . , xk), f (x, x, . . . , xk+)

)

≤
k∑

i=

αid(gxi, gxi+) +
k+∑

i=

k+∑

j=

βi,jd
(
gxi, f (xj, xj, . . . , xj)

)

+ L · θ(
d
(
gx, f (xk+, xk+, xk+, . . . , xk+)

)
, d

(
gxk+, f (x, x, x, . . . , x)

)
,

d
(
gx, f (x, x, . . . , x)

)
, d

(
gxk+, f (xk+, xk+, . . . , xk+)

))
, (.)

where x, x, . . . , xk+ are arbitrary elements in X and αi, βij, L are nonnegative constants
such that

∑k
n= sk+–n[αn +

∑k+
i=

∑k+
j= βi,j] <  and

g(X) is complete. (.)

Then f and g have a unique coincidence point, i.e., C(f , g) �= ∅. In addition, if f and g are
weakly compatible, then f and g have a unique common fixed point. Moreover, for any
x ∈ X, the sequence {yn} defined by yn = g(xn) = f (xn–, xn–, . . . , xn–) = Fxn– converges to
the common fixed point of f and g .

Proof Let x ∈ X, then f (x, x, . . . , x) ∈ f (Xk) ⊂ g(X). So there exists x ∈ X such that
f (x, x, . . . , x) = g(x). Now f (x, x, . . . , x) ∈ f (Xk) ⊂ g(X) and so there exists x ∈ X such
that f (x, x, . . . , x) = g(x). Continuing this process we define the sequence 〈yn〉 in g(X) as
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yn = g(xn) = f (xn–, xn–, . . . , xn–) = Fxn–, n = , , . . . , k + , where F is the associate opera-
tor for f . Let dn = d(yn, yn+) = d(gxn, gxn+) and Dij = d(gxi, f (xj, xj, . . . , xj)).

Then we have

dn+ = d
(
g(xn+), g(xn+)

)

= d(Fxn, Fxn+)

= d
(
f (xn, xn, . . . , xn), f (xn+, xn+, . . . , xn+)

)

≤ sd
(
f (xn, xn, . . . , xn), f (xn, xn, . . . , xn+)

)

+ sd
(
f (xn, xn, . . . , xn+), f (xn, xn, . . . , xn+, xn+)

)

+ sd
(
f (xn, xn, . . . , xn+, xn+), f (xn, . . . , xn+, xn+, xn+)

)
+ · · ·

+ skd
(
f (xn, xn+, . . . , xn+, xn+), f (xn+, . . . , xn+, xn+, xn+)

)
.

Using (.) we get

dn+ ≤ s

{

αkdn +

[ k∑

j=

β,j +
k∑

j=

β,j + · · · +
k∑

j=

βkj

]

Dn,n

+

[ k∑

i=

βi,k+

]

Dn,n+ +

[ k∑

j=

βk+,j

]

Dn+,n + βk+,k+Dn+,n+

}

+ s

{

αk–dn +

[ k–∑

j=

β,j +
k–∑

j=

β,j + · · · +
k–∑

j=

βk–,j

]

Dn,n

+

[ k–∑

i=

βi,k +
k–∑

i=

βi,k+

]

Dn,n+ +

[ k–∑

j=

βk,j +
k–∑

j=

βk+,j

]

Dn+,n

+

[ k+∑

j=k

βk,j +
k+∑

j=k

βk+,j

]

Dn+,n+

}

+ · · · + sk

{

αdn + β,Dn,n +

[ k+∑

j=

β,j

]

Dn,n+ +

[ k+∑

i=

βi,

]

Dn+,n

+

[ k+∑

j=

β,j +
k+∑

j=

β,j + · · · +
k+∑

j=

βk+,j

]

Dn+,n+

}

+ L · θ(
d
(
gxn, (fxn+, xn+, xn+, . . . , xn+)

)
, d

(
gxn+, f (xn, xn, xn, . . . , xn)

)
,

d
(
gxn, f (xn, xn, . . . , xn)

)
, d

(
gxn+, f (xn+, xn+, . . . , xn+)

))
,

i.e.,

dn+ ≤ [
sαk + sαk– + sαk– + · · · + skα

]
dn + s

{[ k∑

i=

k∑

j=

βi,j

]

Dn,n

+

[ k∑

i=

βi,k+

]

Dn,n+ +

[ k∑

j=

βk+,j

]

Dn+,n + βk+,k+Dn+,n+

}
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+ s

{[ k–∑

i=

k–∑

j=

βi,j

]

Dn,n +

[ k–∑

i=

k+∑

j=k

βi,j

]

Dn,n+ +

[ k+∑

i=k

k–∑

j=

βi,j

]

Dn+,n

+

[ k+∑

i=k

k+∑

j=k

βi,j

]

Dn+,n+

}

+ · · · + sk

{

β,Dn,n +

[ k+∑

j=

β,j

]

Dn,n+

+

[ k+∑

i=

βi,

]

Dn+,n +

[ k+∑

i=

k+∑

j=

βi,j

]

Dn+,n+

}

+ L · ,

i.e.,

dn+ ≤ [
sαk + sαk– + sαk– + · · · + skα

]
dn

+

[

s
k∑

i=

k∑

j=

βi,j + s
k–∑

i=

k–∑

j=

βi,j + · · · + sk–
∑

i=

∑

j=

βi,j + skβ,

]

Dn,n

+

[

s
k∑

i=

βi,k+ + s
k–∑

i=

k+∑

j=k

βi,j + · · · + sk–
∑

i=

k+∑

j=

βi,j + sk
k+∑

j=

β,j

]

Dn,n+

+

[

s
k∑

j=

βk+,j + s
k+∑

i=k

k–∑

j=

βi,j + · · · + sk–
k+∑

i=

∑

j=

βi,j + sk
k+∑

i=

βi,

]

Dn+,n

+

[

sk
k+∑

i=

k+∑

j=

βi,j + sk–
k+∑

i=

k+∑

j=

βi,j + · · · + s
k+∑

i=k

k+∑

j=k

βi,j + sβk+,k+

]

Dn+,n+

= Adn + BDn,n + CDn,n+ + EDn+,n + FDn+,n+,

where A, B, C, E and F are the coefficients of dn, Dn,n, Dn,n+, Dn+,n and Dn+,n+ respectively
in the above inequality. By the definition, Dn,n = d(gxn, f (xn, xn, . . . , xn)) = d(gxn, gxn+) =
dn, Dn,n+ = d(gxn, f (xn+, xn+, . . . , xn+)) = d(gxn, gxn+), Dn+,n = d(gxn+, f (xn, xn, . . . , xn)) =
d(gxn+, gxn+) = , Dn+,n+ = d(gxn+, f (xn+, xn+, . . . , xn+)) = d(gxn+, gxn+) = dn+; there-
fore,

dn+ ≤ Adn + Bdn + Cd(gxn, gxn+) + Fdn+

≤ Adn + Bdn + Csd(gxn, gxn+) + Csd(gxn+, gxn+) + Fdn+

= (A + B + Cs)dn + (Cs + F)dn+,

i.e., ( – Cs – F)dn+ ≤ (A + B + Cs)dn. Again, interchanging the role of xn and xn+ and
repeating the above process, we obtain ( – Es – B)dn+ ≤ (A + F + Es)dn. It follows that

(
 – (C + E)s – F – B

)
dn+ ≤ (

A + B + F + s(C + E)
)
dn

dn+ ≤ A + B + F + s(C + E)
 – B – F – (C + E)s

dn

dn+ ≤ λdn,

where λ = A+B+F+s(C+E)
–B–F–(C+E)s . Thus we have

dn+ ≤ λn+d for all n ≥ . (.)
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We will show that λ <  and sλ < . We have

A + B + F + s(C + E)

≤ s[A + B + C + E + F]

= s
[
sαk + sαk– + sαk– + · · · + skα

]

+ s

[

s
k∑

i=

k∑

j=

βi,j + s
k–∑

i=

k–∑

j=

βi,j + · · · + sk–
∑

i=

∑

j=

βi,j + skβ,

]

+ s

[

s
k∑

i=

βi,k+ + s
k–∑

i=

k+∑

j=k

βi,j + · · · + sk–
∑

i=

k+∑

j=

βi,j + sk
k+∑

j=

β,j

]

+ s

[

s
k∑

j=

βk+,j + s
k+∑

i=k

k–∑

j=

βi,j + · · · + sk–
k+∑

i=

∑

j=

βi,j + sk
k+∑

i=

βi,

]

+ s

[

sβk+,k+ + s
k+∑

i=k

k+∑

j=k

βi,j + · · · + sk–
k+∑

i=

k+∑

j=

βi,j + sk
k+∑

i=

k+∑

j=

βi,j

]

=
[
sαk + sαk– + sαk– + · · · + sk+α

]
+ s

k+∑

i=

k+∑

j=

βi,j + s
k+∑

i=

k+∑

j=

βi,j

+ s
k+∑

i=

k+∑

j=

βi,j + · · · + sk+
k+∑

i=

k+∑

j=

βi,j

=
[
sαk + sαk– + sαk– + · · · + sk+α

]

+
[
s + s + s + · · · + sk+]

k+∑

i=

k+∑

j=

βi,j

≤ [
sαk + sαk– + sαk– + · · · + sk+α

]

+
[
s + s + s + · · · + sk+]

k+∑

i=

k+∑

j=

βi,j

=
k∑

n=

sk+–n

[

αn +
k+∑

i=

k+∑

j=

βi,j

]

< ,

and so λ < . We also have sA + sB + sF + s(C + E) = s(A + B + F + C + E) <  (proved above)
and

sA + B + F + s(C + E)

≤ s[A + B + C + E + F]

= s[sαk + sαk– + sαk– + · · · + skα
]

+ s

[

s
k∑

i=

k∑

j=

βi,j + s
k–∑

i=

k–∑

j=

βi,j + · · · + sk–
∑

i=

∑

j=

βi,j + skβ,

]

+ s

[

s
k∑

i=

βi,k+ + s
k–∑

i=

k+∑

j=k

βi,j + · · · + sk–
∑

i=

k+∑

j=

βi,j + sk
k+∑

j=

β,j

]
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+ s

[

s
k∑

j=

βk+,j + s
k+∑

i=k

k–∑

j=

βi,j + · · · + sk–
k+∑

i=

∑

j=

βi,j + sk
k+∑

i=

βi,

]

+ s

[

sβk+,k+ + s
k+∑

i=k

k+∑

j=k

βi,j + · · · + sk–
k+∑

i=

k+∑

j=

βi,j + sk
k+∑

i=

k+∑

j=

βi,j

]

=
[
sαk + sαk– + sαk– + · · · + sk+α

]
+ s

k+∑

i=

k+∑

j=

βi,j + s
k+∑

i=

k+∑

j=

βi,j

+ s
k+∑

i=

k+∑

j=

βi,j + · · · + sk+
k+∑

i=

k+∑

j=

βi,j

=
[
sαk + sαk– + sαk– + · · · + sk+α

]

+
[
s + s + s + · · · + sk+]

k+∑

i=

k+∑

j=

βi,j

=
k∑

n=

sk+–n

[

αn +
k+∑

i=

k+∑

j=

βi,j

]

< ,

and so sλ < .
Thus, for all n, p ∈ N ,

d(gxn, gxn+p) ≤ sd(gxn, gxn+) + sd(gxn+, gxn+) + · · · + sp–d(gxn+(p–), gxn+p)

= sdn + sdn+ + · · · + sp–dn+(p–)

≤ sλnd + sλn+d + · · · + sp–λn+(p–)d

≤ sλn

 – sλ
d →  as n → ∞.

Thus {gxn} is a Cauchy sequence. By completeness of g(X), there exists u ∈ X such that

lim
n→∞ gxn = u and there exists p ∈ X such that g(p) = u. (.)

We shall show that u is the fixed point of f and g . Using a similar process as the one used
in the calculation of dn+, we obtain

d
(
g(p), f (p, . . . , p)

) ≤ s
[
d
(
g(p), yn+

)
+ d

(
yn+, f (p, p, . . . , p)

)]

≤ s
[
d
(
g(p), yn+

)
+ d(Fxn, Fp)

]

≤ s
[
d
(
g(p), yn+

)
+ Ad(gxn, gp) + Bd

(
gxn, f (xn, xn, . . . , xn)

)

+ Cd
(
gxn, f (p, p, . . . , p)

)

+ Ed
(
gp, f (xn, xn, . . . , xn)

)
+ Fd

(
gp, f (p, p, . . . , p)

)]
.

It follows from (.) that

d
(
g(p), f (p, . . . , p)

) ≤ s(C + F)d
(
gp, f (p, p, . . . , p)

)
. (.)
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As s(C + F) < , we obtain F(p) = g(p) = f (p, p, . . . , p) = u Thus, u is a point of coincidence
of f and g . If u′ is another point of coincidence of f and g , then there exists p′ ∈ X such
that F(p′) = g(p′) = f (p′, p′, . . . , p′) = u′.

Then we have

d
(
u, u′) = d

(
Fp, Fp′)

≤ Ad
(
gp, gp′) + Bd

(
gp, f (p, p, . . . , p)

)

+ Cd
(
gp, f

(
p′, p′, . . . , p′))

+ Ed
(
gp′, f (p, p, . . . , p)

)
+ Fd

(
gp′, f

(
p′, p′, . . . , p′))

= Ad
(
u, u′) + Bd(u, u) + Cd

(
u, u′) + Ed

(
u′, u

)
+ Fd

(
u′, u

)

= (A + C + E + F)d
(
u, u′).

As A + C + E + F < , we obtain from the above inequality that d(u, u′) = , that is, u = u′.
Thus the point of coincidence u is unique. Further, if f and g are weakly compatible, then
by Lemma ., u is the unique common fixed point of f and g . �

Remark . Taking s = , g = I and θ (t, t, t, t) =  in Theorem ., we get Theorem 
of Shukla et al. [].

Remark . For s = , g = I , i = j, βij = δk+, ∀i, L = , we obtain Theorem . of Khan et al.
[].

Remark . For s = , g = I , βij = , ∀i, j ∈ {, , . . . , k + } and θ (t, t, t, t) = min{(t, t,
t, t)}, we obtain the result of Pacurar [].

Remark . For s = , g = I , αi = , i = j, βij = a, L = , we obtain the result of Pacurar [].

Remark . For s = , g = I , βij = , ∀i, j ∈ {, , . . . , k + }, L = , we obtain the result of
Presic [].

Next we prove a generalized Ciric-Presic type fixed point theorem in a b-metric space.
Consider a function φ : Rk → R such that

. φ is an increasing function, i.e., x < y, x < y, . . . , xk < yk implies
φ(x, x, . . . , xk) < φ(y, y, . . . , yk);

. φ(t, t, t, . . .) ≤ t for all t ∈ X ;
. φ is continuous in all variables.

Theorem . Let (X, d) be a b-metric space with s ≥ . For any positive integer k, let f :
Xk → X and g : X → X be mappings satisfying the following conditions:

f
(
Xk) ⊆ g(X), (.)

d
(
f (x, x, . . . , xk), f (x, x, . . . , xk+)

)

≤ λφ
(
d(gx, gx), d(gx, gx), d(gx, gx), . . . , d(gxk , gxk+)

)
, (.)
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where x, x, . . . , xk+ are arbitrary elements in X, λ ∈ (, 
sk ),

g(X) is complete (.)

and

d
(
f (u, u, . . . , u), f (v, v, . . . , v)

)
< d(gu, gv) (.)

for all u, v ∈ X. Then f and g have a coincidence point, i.e., C(f , g) �= ∅. In addition, if f and
g are weakly compatible, then f and g have a unique common fixed point. Moreover, for
any x ∈ X, the sequence {yn} defined by yn = g(xn) = f (xn, xn+, . . . , xn+k–) converges to the
common fixed point of f and g .

Proof For arbitrary x, x, . . . , xk in X, let

R = max

(
d(gx, gx)

θ
,

d(gx, gx)
θ , . . . ,

d(gxk , f (x, x, . . . , xk))
θ k

)
, (.)

where θ = λ

k . By (.) we define the sequence 〈yn〉 in g(X) as yn = gxn for n = , , . . . , k and

yn+k = g(xn+k) = f (xn, xn+, . . . , xn+k–), n = , , . . . .
Let αn = d(yn, yn+). By the method of mathematical induction, we will prove that

αn ≤ Rθn for all n. (.)

Clearly, by the definition of R, (.) is true for n = , , . . . , k. Let the k inequalities αn ≤
Rθn,αn+ ≤ Rθn+, . . . ,αn+k– ≤ Rθn+k– be the induction hypothesis. Then we have

αn+k = d(yn+k , yn+k+)

= d
(
f (xn, xn+, . . . , xn+k–), f (xn+, xn+, . . . , xn+k)

)

≤ λφ
(
d(gxn, gxn+), d(gxn+, gxn+), . . . , d(gxn+k–, gxn+k),

d
(
gxn, f (xn, xn, . . . , xn)

)
, d

(
gxn+k , f (xn+k , xn+k , . . . , xn+k)

))

= λφ(αn,αn+, . . . ,αn+k–)

≤ λφ
(
Rθn, Rθn+, . . . , Rθn+k–)

≤ λφ
(
Rθn, Rθn, . . . , Rθn)

≤ λRθn

= Rθn+k .

Thus the inductive proof of (.) is complete. Now, for n, p ∈ N , we have

d(yn, yn+p) ≤ sd(yn, yn+) + sd(yn+, yn+) + · · · + sp–d(yn+p–, yn+p),

≤ sRθn + sRθn+ + · · · + sp–Rθn+p–

≤ sRθn( + sθ + sθ + · · · )

=
sRθn

 – sθ
.
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Hence the sequence 〈yn〉 is a Cauchy sequence in g(X) and since g(X) is complete, there
exist v, u ∈ X such that limn→∞ yn = v = g(u),

d
(
gu, f (u, u, . . . , u)

) ≤ s
[
d(gu, yn+k) + d

(
yn+k , f (u, u, . . . , u)

)]

= s
[
d(gu, yn+k) + d

(
f (xn, xn+, . . . , xn+k–), f (u, u, . . . , u)

)]

= sd(gu, yn+k) + sd
(
f (xn, xn+, . . . , xn+k–), f (u, u, . . . , u)

)

≤ sd(gu, yn+k) + sd
(
f (u, u, . . . , u), f (u, u, . . . , xn)

)

+ sd
(
f (u, u, . . . , xn), f (u, u, . . . , xn, xn+)

)

+ · · · + sk–d
(
f (u, xn, . . . , xn+k–), f (xn, xn+, . . . , xn+k–)

)

≤ sd(gu, yn+k) + sλφ
{

d(gu, gu), d(gu, gu), . . . , d(gu, gxn)
}

+ sλφ
{

d(gu, gu), d(gu, gu), . . . , d(gu, gxn), d(gxn, gxn+)
}

+ · · ·
+ sk–λφ

{
d(gu, gxn), d(gxn, gxn+), . . . , d(gxn+k–, gxn+k–)

}

= sd(gu, yn+k) + sλφ
(
, , . . . , d(gu, gxn)

)

+ sλφ
(
, , . . . , d(gu, gxn), d(gxn, gxn+)

)
+ · · ·

+ sk–λφ
(
d(gu, gxn), d(gxn, gxn+), . . . , d(gxn+k–, gxn+k–)

)
.

Taking the limit when n tends to infinity, we obtain d(gu, f (u, u, . . . , u)) ≤ . Thus gu =
f (u, u, u, . . . , u), i.e., C(g, f ) �= ∅. Thus there exist v, u ∈ X such that limn→∞ yn = v = g(u) =
f (u, u, u, . . . , u). Since g and f are weakly compatible, g(f (u, u, . . . , u)) = f (gu, gu, gu, . . . , gu).
By (.) we have that

d(ggu, gu) = d
(
gf (u, u, . . . , u), f (u, u, . . . , u)

)

= d
(
f (gu, gu, gu, . . . , gu), f (u, u, . . . , u)

)

< d(ggu, gu)

implies d(ggu, gu) =  and so ggu = gu. Hence we have gu = ggu = g(f (u, u, . . . , u)) = f (gu, gu,
gu, . . . , gu), i.e., gu is a common fixed point of g and f , and limn→∞ yn = g(u). Now suppose
that x, y are two fixed points of g and f . Then

d(x, y) = d
(
f (x, x, x, . . . , x), f (y, y, y, . . . , y)

)

< d(gx, gy)

= d(x, y).

This implies x = y. Hence the common fixed point is unique. �

Remark . Taking s = , g = I and φ(x, x, . . . , xk) = max{x, x, . . . , xk} in Theorem .,
we obtain Theorem ., i.e., the result of Ciric and Presic [].

Remark . For λ ∈ (, 
sk+ ), we can drop the condition (.) of Theorem .. In fact we

have the following.
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Theorem . Let (X, d) be a b-metric space with s ≥ . For any positive integer k, let
f : Xk → X and g : X → X be mappings satisfying conditions (.), (.) and (.) with
λ ∈ (, 

sk+ ). Then all conclusions of Theorem . hold.

Proof As proved in Theorem ., there exist v, u ∈ X such that limn→∞ yn = v = g(u) =
f (u, u, . . . , u), i.e., C(g, f ) �= ∅. Since g and f are weakly compatible, g(f (u, u, . . . , u)) =
f (gu, gu, gu, . . . , gu). By (.) we have

d(ggu, gu) = d
(
gf (u, u, . . . , u), f (u, u, . . . , u)

)

= d
(
f (gu, gu, gu, . . . , gu), f (u, u, . . . , u)

)

≤ sd
(
f (gu, gu, gu, . . . , gu), f (gu, gu, . . . , gu, u)

)

+ sd
(
f (gu, gu, . . . , gu, u), f (gu, gu, . . . , u, u)

)

+ · · · + sk–d
(
f (gu, gu, . . . , u, u), f (u, u, . . . , u)

)

+ sk–d
(
f (gu, u, . . . , u, u), f (u, u, . . . , u)

)

≤ sλφ
(
d(ggu, ggu), . . . , d(ggu, ggu), d(ggu, gu)

)

+ sλφ
(
d(ggu, ggu), . . . , d(ggu, gu), d(gu, gu)

)

+ · · · + sk–λφ
(
d(ggu, gu), . . . , d(gu, gu), d(gu, gu)

)

= sλφ
(
, , , . . . , d(ggu, gu)

)
+ sλφ

(
, , . . . , , d(ggu, gu), 

)

+ · · · + sk–λφ
(
d(ggu, gu), , , . . . , 

)

= sλ
[
 + s + s + s + · · · + sk– + sk–]d(ggu, gu)

≤ sλ
[
 + s + s + s + · · · + sk– + sk–]d(ggu, gu)

= sλ
sk – 
s – 

d(ggu, gu).

sλ sk–
s– <  implies d(ggu, gu) =  and so ggu = gu. Hence we have gu = ggu = g(f (u, u,

. . . , u)) = f (gu, gu, gu, . . . , gu), i.e., gu is a common fixed point of g and f , and limn→∞ yn =
g(u). Now suppose that x, y are two fixed points of g and f . Then

d(x, y) = d
(
f (x, x, x, . . . , x), f (y, y, y, . . . , y)

)

≤ sd
(
f (x, x, . . . , x), f (x, x, . . . , x, y)

)
+ sd

(
f (x, x, . . . , x, y),

f (x, x, x, . . . , x, y, y)
)

+ · · · + sk–d
(
f (x, x, y, . . . , y), f (y, y, . . . , y)

)

+ sk–d
(
f (x, y, y, . . . , y), f (y, y, . . . , y)

)

≤ sλφ
{

d(fx, fx), d(fx, fx), . . . , d(fx, fy)
}

+ sλφ
{

d(fx, fx),

d(fx, fx), . . . , d(fx, fy), d(fy, fy)
}

+ · · · + sk–λφ
{

d(fx, fy), d(fy, fy), . . . , d(fy, fy)
}

= sλφ
(
, , . . . , d(fx, fy)

)
+ sλφ

(
, , . . . , d(fx, fy), 

)
+ · · ·

+ sk–λφ
(
d(fx, fy), , , , . . . , 

)
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= λ
[
s + s + s + · · · + sk– + sk–]d(fx, fy)

= sλ
[
 + s + s + s + · · · + sk– + sk–]d(fx, fy)

≤ sλ
[
 + s + s + s + · · · + sk– + sk–]d(fx, fy)

= sλ
sk – 
s – 

d(fx, fy).

= sλ
sk – 
s – 

d(x, y).

This implies x = y. Hence the common fixed point is unique. �

Example . Let X = R and d : X ×X → X such that d(x, y) = |x–y|. Then d is a b-metric
on X with s = . Let f : X → X and g : X → X be defined as follows:

f (x, y) =
x + y


+




if (x, y) ∈ R,

gx = x –  if x ∈ R.

We will prove that f and g satisfy condition (.):

d
(
f (x, y), f (y, z)

)
=

∣∣f (x, y) – f (y, z)
∣∣

=
∣∣
∣∣
x – z



∣∣
∣∣



=
∣∣
∣∣
x – y + y – z



∣∣
∣∣



≤ 
(∣∣∣

∣
x – y



∣∣∣
∣



+
∣∣∣
∣
y – z



∣∣∣
∣

)

=




[∣∣x – y∣∣ +
∣
∣y – z∣∣]

=





[∣∣x – y∣∣ +

∣∣y – z∣∣]

≤ 
 max

{∣∣x – y∣∣,
∣
∣y – z∣∣}

=


 max
{

d(gx, gy), d(gy, gz)
}

.

Thus, f and g satisfy condition (.) with λ = 
 ∈ (, 

 ). Clearly C(f , g) = , f and g
commute at . Finally,  is the unique common fixed point of f and g . But f and g do
not satisfy condition (.) as at x = – and y = , d(f (x, x), f (y, y)) = d(f (–, –), f (, )) =
d( 

 + 
 , 

 + 
 ) =  = d(–, –) = d(g(–), g()) = d(gx, gy).

4 Application to matrix equation
In this section we have applied Theorem . to study the existence of solutions of the
nonlinear matrix equation

X = Q +
m∑

i=

AiXδi A∗
i ,  < |δi| < , (.)

where Q is an n × n positive semidefinite matrix and Ai ’s are nonsingular n × n matrices,
or Q is an n×n positive definite matrix and Ai ’s are arbitrary n×n matrices, and a positive
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definite solution X is sought. Here A∗
i denotes the conjugate transpose of the matrix Ai.

The existence and uniqueness of positive definite solutions and numerical methods for
finding a solution of (.) have recently been studied by many authors (see [–]). The
Thompson metric on the open convex cone P(N) (N ≥ ), the set of all N × N Hermitian
positive definite matrices, is defined by

d(A, B) = max
{
log M(A/B), log M(B/A)

}
, (.)

where M(A/B) = inf{λ >  : A ≤ λB} = λmax(B–/AB–/), the maximal eigenvalue of
B–/AB–/. Here X ≤ Y means that Y – X is positive semidefinite and X < Y means
that Y – X is positive definite. Thompson [] has proved that P(N) is a complete met-
ric space with respect to the Thompson metric d and d(A, B) = ‖ log(A–/BA–/)‖, where
‖·‖ stands for the spectral norm. The Thompson metric exists on any open normal convex
cone of real Banach spaces [, ]; in particular, the open convex cone of positive definite
operators of a Hilbert space. It is invariant under the matrix inversion and congruence
transformations:

d(A, B) = d
(
A–, B–) = d

(
MAM∗, MBM∗) (.)

for any nonsingular matrix M. One remarkable and useful result is the nonpositive curva-
ture property of the Thompson metric:

d
(
Xr , Y r) ≤ rd(X, Y ), r ∈ [, ]. (.)

By the invariant properties of the metric, we then have

d
(
MXrM∗, MY rM∗) = |r|d(X, Y ), r ∈ [–, ] (.)

for any X, Y ∈ P(N) and a nonsingular matrix M. Proceeding as in [] we prove the fol-
lowing lemma.

Lemma . For any A, A, . . . , Ak ∈ P(N), B, B, . . . , Bk ∈ P(N), d(A + A + · · · + Ak , B +
B + · · · + Bk) ≤ max{d(A, B), d(A, B), . . . , d(Ak , Bk)}.

Proof Without loss of generality we can assume that d(A, B) ≤ d(A, B) ≤ · · · ≤
d(Ak , Bk) = log r. Then B ≤ rA, B ≤ rA, . . . , Bk ≤ rAk and A ≤ rB, A ≤ rB, . . . , Ak ≤
rBk , and thus B + A ≤ r(A + B), B + A ≤ r(A + B), . . . , Bk + Ak ≤ r(Ak + Bk).
Hence A + A + · · · + Ak ≤ r[B + B + · · · + Bk] and B + B + · · · + Bk ≤ r[A +
A + · · · + Ak]. Hence d(A + A + · · · + Ak , B + B + · · · + Bk) ≤ log r = d(Ak , Bk) =
max{d(A, B), d(A, B), . . . , d(Ak , Bk)}. �

For arbitrarily chosen positive definite matrices Xn–r , Xn–(r–), . . . , Xn, consider the itera-
tive sequence of matrices, given by

Xn+ = Q + A∗
 Xα

n–rA + A∗
Xα

n–(r–)A + · · · + A∗
r+Xαr+

n Ar+, (.)

α,α, . . . ,αr+ are real numbers.
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Theorem . Suppose that λ = max{|α|, |α|, . . . , |αr+|} ∈ (, ).
(i) Equation (.) has a unique equilibrium point in P(N), that is, there exists unique

U ∈ P(N) such that

U = Q + A∗
 Uα A + A∗

Uα A + · · · + A∗
r+Uαr+ Ar+. (.)

(ii) The iterative sequence {Xn} defined by (.) converges to a unique solution of (.).

Proof Define the mapping f : P(N) × P(N) × P(N) × · · · × P(N) → P(N) by

f (X, X, Xn–(r–), . . . , Xk) = Q + A∗
 Xα

 A + A∗
Xα

 A + · · · + A∗
r+Xαr+

k Ar+, (.)

where X, X, . . . , Xk ∈ P(N).
For all Xn–r , Xn–(r–), Xn–(r–), . . . , Xn+ ∈ P(N), we have

d
(
f (Xn–r , Xn–(r–), Xn–(r–), . . . , Xn), f (Xn–(r–), Xn–(r–), Xn–(r–), . . . , Xn+)

)

= d
(
Q + A∗

 Xα
n–rA + A∗

Xα
n–(r–)A + · · · + A∗

r+Xαr+
n Ar+,

Q + A∗
Xα

n–(r–)A + A∗
Xα

n–(r–)A + · · · + A∗
r+Xαr+

n+ Ar+
)

≤ d
(
A∗

 Xα
n–rA + A∗

Xα
n–(r–)A + · · · + A∗

r+Xαr+
n Ar+,

A∗
Xα

n–(r–)A + A∗
Xα

n–(r–)A + · · · + A∗
r+Xαr+

n+ Ar+
)

≤ max
{

d
(
A∗

 Xα
n–rA, A∗

Xα
n–(r–)A

)
, d

(
A∗

Xα
n–(r–)A, A∗

Xα
n–(r–)A

)
,

. . . , d
(
A∗

r+Xαr+
n Ar+, A∗

r+Xαr+
n+ Ar+

)}

≤ max
{|α|d(Xn–r , Xn–(r–)), |α|d(Xn–(r–), Xn–(r–)),

. . . , |αr+|d(Xn, Xn+)
}

≤ max
{|α|, |α|, . . . , |αr+|

}
max

{
d(Xn–r , Xn–(r–)), d(Xn–(r–), Xn–(r–)),

. . . , d(Xn, Xn+)
}

≤ λmax
{

d(Xn–r , Xn–(r–)), d(Xn–(r–), Xn–(r–)), . . . , d(Xn, Xn+)
}

(.)

for all Xn–r , Xn–(r–), Xn–(r–), . . . , Xn+ ∈ P(N). X, Y ∈ P(N), we have

d
(
f (X, X, . . . , X), f (Y , Y , . . . , Y )

)

= d
(
Q + A∗

 Xα A + A∗
Xα A + · · · + A∗

r+Xαr+ Ar+,

Q + A∗
Y α A + A∗

Y α A + · · · + A∗
r+Y αr+ Ar+

)

≤ d
(
A∗

 Xα A + A∗
Xα A + · · · + A∗

r+Xαr+ Ar+,

A∗
Y α A + A∗

Y α A + · · · + A∗
r+Y αr+ Ar+

)

≤ max
{

d
(
A∗

 Xα A, A∗
Y α A

)
, d

(
A∗

Xα A, A∗
Y α A

)
,

. . . , d
(
A∗

r+Xαr+ Ar+, A∗
r+Y αr+ Ar+

)}

≤ max
{|α|d(X, Y ), |α|d(X, Y ), . . . , |αr+|d(X, Y )

}
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≤ max
{|α|, |α|, . . . , |αr+|

}
max

{
d(X, Y ), d(X, Y ), . . . , d(X, Y )

}

≤ λmax
{

d(X, Y ), d(X, Y ), . . . , d(X, Y )
}

< d(X, Y ).

Since λ ∈ (, ), (i) and (ii) follow immediately from Theorem . with s =  and g = I . �

Numerical experiment illustrating the above convergence algorithm
Consider the nonlinear matrix equation

X = Q + A∗X

 A + B∗X


 B + C∗X


 C, (.)

where

A =

⎛

⎜
⎝

/ / /
/ / /
/ / /

⎞

⎟
⎠ , B =

⎛

⎜
⎝

/ / /
/ / /
/ / /

⎞

⎟
⎠ ,

C =

⎛

⎜
⎝

/ / /
/ / /
/ / /

⎞

⎟
⎠ , Q =

⎛

⎜
⎝

  
  
  

⎞

⎟
⎠ .

We define the iterative sequence {Xn} by

Xn+ = Q + A∗X



n–A + B∗X



n–B + C∗X



n C. (.)

Let Rm (m ≥ ) be the residual error at the iteration m, that is, Rm = ‖Xm+ –(Q+A∗X



m+A+

B∗X



m+B + C∗X



m+C)‖, where ‖ · ‖ is the spectral norm. For initial values

X =

⎛

⎜
⎝

  
  
  

⎞

⎟
⎠ , X =

⎛

⎜
⎝

  
  
  

⎞

⎟
⎠ ,

X =

⎛

⎜
⎝

  –
–  
–  

⎞

⎟
⎠ ,

we computed the successive iterations and the error Rm using MATLAB and found that
after thirty five iterations the sequence given by (.) converges to

U = X =

⎛

⎜
⎝

. . .
. . .

. . .

⎞

⎟
⎠ ,

which is clearly a solution of (.). The convergence history of algorithm (.) is given
in Figure .
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Figure 1 Convergence history for Equation (4.11).
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