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1 Introduction and preliminaries
Very recently, we studied in [] the existence and uniqueness of fixed points for self-
operators defined in a metric space and belonging to the class of (α,ψ)-type contraction
mappings (see [–] for some works in this direction). We proved that the class of α-ψ-
type contractions includes large classes of contraction-type operators, whose fixed points
can be obtained by means of the Picard iteration. The aim of this paper is to extend the
obtained results in [] to self-operators defined in a b-metric space.

We start by recalling the following definition.

Definition . ([]) Let X be a nonempty set. A mapping d : X × X → [,∞) is called
b-metric if there exists a real number b ≥  such that for every x, y, z ∈ X, we have

(i) d(x, y) =  if and only if x = y;
(ii) d(x, y) = d(y, x);

(iii) d(x, z) ≤ b[d(x, y) + d(y, z)].
In this case, the pair (X, d) is called a b-metric space.

There exist many examples in the literature (see [–]) showing that the class of b-
metrics is effectively larger than that of metric spaces.

The notions of convergence, compactness, closedness and completeness in b-metric
spaces are given in the same way as in metric spaces. For works on fixed point theory
in b-metric spaces, we refer to [–] and the references therein.

Definition . ([]) Let ψ : [,∞) → [,∞) be a given function. We say that ψ is a com-
parison function if it is increasing and ψn(t) → , n → ∞, for any t ≥ , where ψn is the
nth iterate of ψ .
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In [, ], several results regarding comparison functions can be found. Among these
we recall the following.

Lemma . If ψ : [,∞) → [,∞) is a comparison function, then
(i) each iterate ψk of ψ , k ≥ , is also a comparison function;

(ii) ψ is continuous at zero;
(iii) ψ(t) < t for any t > ;
(iv) ψ() = .

The following concept was introduced in [].

Definition . Let b ≥  be a real number. A mapping ψ : [,∞) → [,∞) is called a
b-comparison function if

(i) ψ is monotone increasing;
(ii) there exist k ∈N, a ∈ (, ) and a convergent series of nonnegative terms

∑∞
k= vk

such that

bk+ψk+(t) ≤ abkψk(t) + vk

for k ≥ k and any t ≥ .

The following lemma has been proved.

Lemma . ([, ]) Let ψ : [,∞) → [,∞) be a b-comparison function. Then
(i) the series

∑∞
k= bkψk(t) converges for any t ≥ ;

(ii) the function sb : [,∞) → [,∞) defined by

sb(t) =
∞∑

k=

bkψk(t), t ≥ 

is increasing and continuous at .

Lemma . ([]) Any b-comparison function is a comparison function.

Throughout this paper, for b ≥ , we denote by �b the set of b-comparison functions.

Definition . Let (X, d) be a b-metric space with constant b ≥ , and let T : X → X be a
given mapping. We say that T is an α-ψ contraction if there exist a b-comparison function
ψ ∈ �b and a function α : X × X →R such that

α(x, y)d(Tx, Ty) ≤ ψ
(
d(x, y)

)
for all x, y ∈ X. (.)

2 Main results
Let T : X → X be a given mapping. We denote by Fix(T) the set of its fixed points; that
is,

Fix(T) = {x ∈ X : x = Tx}.
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For b ≥  and ψ ∈ �b, let �b
ψ be the set defined by

�b
ψ =

{
σ ∈ (,∞) : σψ ∈ �b

}
.

We have the following result.

Proposition . Let (X, d) be a b-metric space with constant b ≥ , and let T : X → X be a
given mapping. Suppose that there exist α : X × X →R and ψ ∈ �b such that T is an α-ψ
contraction. Suppose that there exists σ ∈ �b

ψ and for some positive integer p, there exists
a finite sequence {ξi}p

i= ⊂ X such that

ξ = x, ξp = Tx, α
(
Tnξi, Tnξi+

) ≥ σ –, n ∈N, i = , . . . , p – , x ∈ X. (.)

Then {Tnx} is a Cauchy sequence in (X, d).

Proof Let ϕ = σψ . By the definition of �b
ψ , we have ϕ ∈ �b. Let {ξi}p

i= be a finite sequence
in X satisfying (.). Consider the sequence {xn}n∈N in X defined by xn+ = Txn, n ∈N. We
claim that

d
(
Trξi, Trξi+

) ≤ ϕr(d(ξi, ξi+)
)
, r ∈N, i = , . . . , p – . (.)

Let i ∈ {, , . . . , p – }. From (.), we have

σ –d(Tξi, Tξi+) ≤ α(ξi, ξi+)d(Tξi, Tξi+) ≤ ψ
(
d(ξi, ξi+)

)
,

which implies that

d(Tξi, Tξi+) ≤ ϕ
(
d(ξi, ξi+)

)
. (.)

Again, we have

σ –d
(
Tξi, Tξi+

) ≤ α(Tξi, Tξi+)d
(
T(Tξi), T(Tξi+)

) ≤ ψ
(
d(Tξi, Tξi+)

)
,

which implies that

d
(
Tξi, Tξi+

) ≤ ϕ
(
d(Tξi, Tξi+)

)
. (.)

Since ϕ is an increasing function (from Lemma .), from (.) and (.), we obtain

d
(
Tξi, Tξi+

) ≤ ϕ(d(ξi, ξi+)
)
.

Continuing this process, by induction we obtain (.).
Now, using the property (iii) of a b-metric and (.), for every n ∈N, we have

d(xn, xn+) = d
(
Tnx, Tn+x

)

≤ bd
(
Tnξ, Tnξ

)
+ bd

(
Tnξ, Tnξ

)
+ · · · + bpd

(
Tnξp–, Tnξp

)
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=
p–∑

i=

bi+d
(
Tnξi, Tnξi+

)

≤
p–∑

i=

bi+ϕn(d(ξi, ξi+)
)
.

Thus we proved that

d(xn, xn+) ≤
p–∑

i=

bi+ϕn(d(ξi, ξi+)
)
, n ∈N,

which implies that for q ≥ ,

d(xn, xn+q) ≤
n+q–∑

j=n

bj–n+d(xj, xj+)

≤
n+q–∑

j=n

bj–n+
p–∑

i=

bi+ϕj(d(ξi, ξi+)
)

=


bn–

p–∑

i=

bi+
n+q–∑

j=n

bjϕj(d(ξi, ξi+)
)

≤ 
bn–

p–∑

i=

bi+
∞∑

j=n

bjϕj(d(ξi, ξi+)
)
.

Since b ≥ , using Lemma .(i), we obtain


bn–

p–∑

i=

bi+
∞∑

j=n

bjϕj(d(ξi, ξi+)
) →  as n → ∞.

This proves that {xn} is a Cauchy sequence in the b-metric space (X, d). �

Our first main result is the following fixed point theorem which requires the continuity
of the mapping T .

Theorem . Let (X, d) be a complete b-metric space with constant b ≥ , and let T : X →
X be a given mapping. Suppose that there exist α : X × X → R and ψ ∈ �b such that T
is an α-ψ contraction. Suppose also that (.) is satisfied. Then {Tnx} converges to some
x∗ ∈ X. Moreover, if T is continuous, then x∗ ∈ Fix(T).

Proof From Proposition ., we know that {Tnx} is a Cauchy sequence. Since (X, d) is a
complete b-metric space, there exists x∗ ∈ X such that

lim
n→∞ d

(
Tnx, x∗) = .

The continuity of T yields

lim
n→∞ d

(
Tn+x, Tx∗) = .

By the uniqueness of the limit, we obtain x∗ = Tx∗, that is, x∗ ∈ Fix(T). �
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In the next theorem, we omit the continuity assumption of T .

Theorem . Let (X, d) be a complete b-metric space with constant b ≥ , and let T : X →
X be a given mapping. Suppose that there exist α : X × X → R and ψ ∈ �b such that T
is an α-ψ contraction. Suppose also that (.) is satisfied. Then {Tnx} converges to some
x∗ ∈ X. Moreover, if there exists a subsequence {Tγ (n)x} of {Tnx} such that

max
{
α
(
Tγ (n)x, x∗),α

(
x∗, Tγ (n)x

)} ≥ 
 ∈ (,∞), n large enough,

then x∗ ∈ Fix(T).

Proof From Proposition . and the completeness of the b-metric space (X, d), we know
that {Tnx} converges to some x∗ ∈ X.

Suppose now that there exists a subsequence {Tγ (n)x} of {Tnx} such that

max
{
α
(
Tγ (n)x, x∗),α

(
x∗, Tγ (n)x

)} ≥ 
 ∈ (,∞), n large enough. (.)

Since T is an α-ψ contraction, we have

α
(
Tγ (n)x, x∗)d

(
Tγ (n)+x, Tx∗) ≤ ψ

(
d
(
Tγ (n)x, x∗)), n ∈N

and

α
(
x∗, Tγ (n)x

)
d
(
Tγ (n)+x, Tx∗) ≤ ψ

(
d
(
Tγ (n)x, x∗)), n ∈N.

Thus we have

max
{
α
(
Tγ (n)x, x∗),α

(
x∗, Tγ (n)x

)}
d
(
Tγ (n)+x, Tx∗) ≤ ψ

(
d
(
Tγ (n)x, x∗)), n ∈N.

From (.), we get


d
(
Tγ (n)+x, Tx∗) ≤ ψ

(
d
(
Tγ (n)x, x∗)), n large enough. (.)

On the other hand, using the property (iii) of a b-metric, we get

d
(
Tγ (n)+x, Tx∗) ≥ 

b
d
(
x∗, Tx∗) – d

(
x∗, Tγ (n)+x

)
, n ∈N. (.)

Now, (.) and (.) yield




(

b

d
(
x∗, Tx∗) – d

(
x∗, Tγ (n)+x

)
)

≤ ψ
(
d
(
Tγ (n)x, x∗)), n large enough.

Letting n → ∞ in the above inequality, using Lemma . and Lemma .(ii) and (iv), we
obtain

 ≤ 


b
d
(
x∗, Tx∗) ≤ ψ() = ,

which implies that d(x∗, Tx∗) = , that is, x∗ ∈ Fix(T). �
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We provide now a sufficient condition for the uniqueness of the fixed point.

Theorem . Let (X, d) be a b-metric space with constant b ≥ , and let T : X → X be a
given mapping. Suppose that there exist α : X × X →R and ψ ∈ �b such that T is an α-ψ
contraction. Suppose also that

(i) Fix(T) 	= ∅;
(ii) for every pair (x, y) ∈ Fix(T) × Fix(T) with x 	= y, if α(x, y) < , then there exists

η ∈ �b
ψ and for some positive integer q, there is a finite sequence {ζi(x, y)}q

i= ⊂ X such
that

ζ(x, y) = x, ζq(x, y) = y, α
(
Tnζi(x, y), Tnζi+(x, y)

) ≥ η–

for n ∈N and i = , . . . , q – .
Then T has a unique fixed point.

Proof Let ϕ = ηψ ∈ �b. Suppose that u, v ∈ X are two fixed points of T such that
d(u, v) > . We consider two cases.

Case : α(u, v) ≥ . Since T is an α-ψ contraction, we have

d(u, v) ≤ α(u, v)d(Tu, Tv) ≤ ψ
(
d(u, v)

)
.

On the other hand, from Lemma . and Lemma .(iii), we have

ψ
(
d(u, v)

)
< d(u, v).

The two above inequalities yield a contradiction.
Case : α(u, v) < . By assumption, there exists a finite sequence {ζi(u, v)}q

i= in X such
that

ζ(u, v) = u, ζq(u, v) = v, α
(
Tnζi(u, v), Tnζi+(u, v)

) ≥ η–

for n ∈N and i = , . . . , q – . As in the proof of Proposition ., we can establish that

d
(
Trζi(u, v), Trζi+(u, v)

) ≤ ϕr(d
(
ζi(u, v), ζi+(u, v)

))
, r ∈N, i = , . . . , q – . (.)

On the other hand, we have

d(u, v) = d
(
Tnu, Tnv

)

≤
q–∑

i=

bi+d
(
Tnζi(u, v), Tnζi+(u, v)

)

≤
q–∑

i=

bi+ϕn(d
(
ζi(u, v), ζi+(u, v)

)) →  as n → ∞ (by Lemma .).

Then u = v, which is a contradiction. �
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3 Particular cases
In this section, we deduce from our main theorems several fixed point theorems in
b-metric spaces.

3.1 The class of ψ -type contractions in b-metric spaces
Definition . Let (X, d) be a b-metric space with constant b ≥ . A mapping T : X → X
is said to be a ψ-contraction if there exists ψ ∈ �b such that

d(Tx, Ty) ≤ ψ
(
d(x, y)

)
for all x, y ∈ X. (.)

Theorem . Let (X, d) be a b-metric space with constant b ≥ , and let T : X → X be
a given mapping. Suppose that there exists ψ ∈ �b such that T is a ψ-contraction. Then
there exists α : X × X →R such that T is an α-ψ contraction.

Proof Consider the function α : X × X →R defined by

α(x, y) =  for all x, y ∈ X. (.)

Clearly, from (.), T is an α-ψ contraction. �

Corollary . ([]) Let (X, d) be a complete b-metric space with constant b ≥ , and let
T : X → X be a given mapping. If T is a ψ-contraction for some ψ ∈ �b, then T has a
unique fixed point. Moreover, for any x ∈ X, the Picard sequence {Tnx} converges to this
fixed point.

Proof From Lemma ., we have

d(Tx, Ty) ≤ d(x, y) for all x, y ∈ X,

which implies that T is a continuous mapping. From Theorem ., T is an α-ψ contrac-
tion, where α is defined by (.). Clearly, for any x ∈ X, (.) is satisfied with p =  and
σ = . By Theorem ., {Tnx} converges to a fixed point of T . The uniqueness follows
immediately from (.) and Theorem .. �

Corollary . Let (X, d) be a complete b-metric space with constant b ≥ , and let T : X →
X be a given mapping. Suppose that

d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X

for some constant k ∈ (, /b). Then T has a unique fixed point. Moreover, for any x ∈ X,
the Picard sequence {Tnx} converges to this fixed point.

Proof It is an immediate consequence of Corollary . with ψ(t) = kt. �

3.2 The class of rational-type contractions in b-metric spaces
.. Dass-Gupta-type contraction in b-metric spaces
Definition . Let (X, d) be a b-metric space with constant b ≥ . A mapping T : X → X
is said to be a Dass-Gupta contraction if there exist constants λ,μ ≥  with λb +μ <  such
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that

d(Tx, Ty) ≤ μd(y, Ty)
 + d(x, Tx)
 + d(x, y)

+ λd(x, y) for all x, y ∈ X. (.)

Theorem . Let (X, d) be a b-metric space with constant b ≥ , and let T : X → X be a
given mapping. Suppose that T is a Dass-Gupta contraction. Then there exist ψ ∈ �b and
α : X × X →R such that T is an α-ψ contraction.

Proof From (.), for all x, y ∈ X, we have

d(Tx, Ty) – μd(y, Ty)
 + d(x, Tx)
 + d(x, y)

≤ λd(x, y),

which yields

(

 – μ
d(y, Ty)( + d(x, Tx))
( + d(x, y))d(Tx, Ty)

)

d(Tx, Ty) ≤ λd(x, y), x, y ∈ X, Tx 	= Ty. (.)

Consider the functions ψ : [,∞) → [,∞) and α : X × X →R defined by

ψ(t) = λt, t ≥  (.)

and

α(x, y) =

⎧
⎨

⎩

 – μ
d(y,Ty)(+d(x,Tx))
(+d(x,y))d(Tx,Ty) , if Tx 	= Ty,

, otherwise.
(.)

Since  ≤ λb < , then ψ ∈ �b. On the other hand, from (.) we have

α(x, y)d(Tx, Ty) ≤ ψ
(
d(x, y)

)
for all x, y ∈ X.

Then T is an α-ψ contraction. �

Corollary . Let (X, d) be a complete b-metric space with constant b ≥ , and let T : X →
X be a given mapping. If T is a Dass-Gupta contraction with parameters λ,μ ≥  such that
λb + μ < , then T has a unique fixed point. Moreover, for any x ∈ X, the Picard sequence
{Tnx} converges to this fixed point.

Proof Let x be an arbitrary point in X. If for some r ∈ N, Trx = Tr+x, then Trx will be
a fixed point of T . So we can suppose that Trx 	= Tr+x for all r ∈ N. From (.), for all
n ∈N, we have

α
(
Tnx, Tn+x

)
=  – μ

d(Tn+x, Tn+x)( + d(Tnx, Tn+x))
( + d(Tnx, Tn+x))d(Tn+x, Tn+x)

=  – μ > .

On the other hand, from (.) we have

( – μ)–ψ(t) =
λ

 – μ
t, t ≥ .
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From the condition λb + μ < , clearly we have ( – μ)–ψ ∈ �b, which is equivalent to
( – μ)– ∈ �b

ψ . Then (.) is satisfied with p =  and σ = ( – μ)–. From the first part of
Theorem ., the sequence {Tnx} converges to some x∗ ∈ X.

Suppose that x∗ is not a fixed point of T , that is, d(x∗, Tx∗) > . Then

Tn+x 	= Tx∗, n large enough.

From (.), we have

α
(
x∗, Tnx

)
=  – μ

d(Tnx, Tn+x)( + d(x∗, Tx∗))
( + d(Tnx, x∗))d(Tn+x, Tx∗)

, n large enough.

On the other hand, using the property (iii) of a b-metric, we have

d
(
Tn+x, Tx∗) ≥ 

b
d
(
x∗, Tx∗) – d

(
x∗, Tn+x

)
> , n large enough.

Thus we have

α
(
x∗, Tnx

) ≥  – μ
d(Tnx, Tn+x)( + d(x∗, Tx∗))

( + d(Tnx, x∗))( 
b d(x∗, Tx∗) – d(x∗, Tn+x))

, n large enough.

Since

lim
n→∞  – μ

d(Tnx, Tn+x)( + d(x∗, Tx∗))
( + d(Tnx, x∗))( 

b d(x∗, Tx∗) – d(x∗, Tn+x))
= ,

we have

α
(
x∗, Tnx

)
>




, n large enough.

By Theorem ., we deduce that x∗ ∈ Fix(T), which is a contradiction. Thus Fix(T) 	= ∅.
For the uniqueness, observe that for every pair (x, y) ∈ Fix(T) × Fix(T) with x 	= y, we

have α(x, y) = . By Theorem ., x∗ is the unique fixed point of T . �

If b = , Corollary . recovers the Dass-Gupta fixed point theorem [].

.. Jaggi-type contraction in b-metric spaces
Definition . Let (X, d) be a b-metric space with constant b ≥ . A mapping T : X → X
is said to be a Jaggi contraction if there exist constants λ,μ ≥  with λb + μ <  such that

d(Tx, Ty) ≤ μ
d(x, Tx)d(y, Ty)

d(x, y)
+ λd(x, y) for all x, y ∈ X, x 	= y. (.)

Theorem . Let (X, d) be a b-metric space with constant b ≥ , and let T : X → X be
a given mapping. Suppose that T is a Jaggi contraction. Then there exist ψ ∈ �b and α :
X × X →R such that T is an α-ψ contraction.

Proof From (.), for all x, y ∈ X with x 	= y, we have

d(Tx, Ty) – μ
d(x, Tx)d(y, Ty)

d(x, y)
≤ λd(x, y),
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which yields

(

 – μ
d(x, Tx)d(y, Ty)
d(x, y)d(Tx, Ty)

)

d(Tx, Ty) ≤ λd(x, y), x, y ∈ X, Tx 	= Ty. (.)

Consider the functions ψ : [,∞) → [,∞) and α : X × X →R defined by

ψ(t) = λt, t ≥  (.)

and

α(x, y) =

⎧
⎨

⎩

 – μ
d(x,Tx)d(y,Ty)
d(x,y)d(Tx,Ty) , if Tx 	= Ty,

, otherwise.
(.)

Since λb < , we have ψ ∈ �b. From (.), we have

α(x, y)d(Tx, Ty) ≤ ψ
(
d(x, y)

)
for all x, y ∈ X.

Then T is an α-ψ contraction. �

Corollary . Let (X, d) be a complete b-metric space with constant b ≥ , and let T :
X → X be a continuous mapping. If T is a Jaggi contraction with parameters λ,μ ≥  such
that λb + μ < , then T has a unique fixed point. Moreover, for any x ∈ X, the Picard
sequence {Tnx} converges to this fixed point.

Proof Let x be an arbitrary point in X. Without loss of generality, we can suppose that
Trx 	= Tr+x for all r ∈N. From (.), for all n ∈N, we have

α
(
Tnx, Tn+x

)
=  – μ

d(Tnx, Tn+x)d(Tn+x, Tn+x)
d(Tnx, Tn+x)d(Tn+x, Tn+x)

=  – μ > .

On the other hand, from (.), for all t ≥ , we have

( – μ)–ψ(t) =
λ

 – μ
t.

Since λb + μ < , we have ( – μ)–ψ ∈ �b, that is, ( – μ)– ∈ �b
ψ . Then (.) is satisfied

with p =  and σ = ( – μ)–. By the first part of Theorem ., {Tnx} converges to some
x∗ ∈ X. Since T is continuous, by the second part of Theorem ., x∗ is a fixed point of T .
Moreover, for every pair (x, y) ∈ Fix(T) × Fix(T) with x 	= y, we have α(x, y) = . Then, by
Theorem ., x∗ is the unique fixed point of T . �

If b = , Corollary . recovers the Jaggi fixed point theorem [].

3.3 The class of Berinde-type mappings in b-metric spaces
Definition . Let (X, d) be a b-metric space with constant b ≥ . A mapping T : X → X
is said to be a Berinde-type contraction if there exist λ ∈ (, /b) and L ≥  such that

d(Tx, Ty) ≤ λd(x, y) + Ld(y, Tx) for all x, y ∈ X. (.)
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Theorem . Let (X, d) be a b-metric space with constant b ≥ , and let T : X → X be
a given mapping. If T is a Berinde-type contraction, then there exist α : X × X → R and
ψ ∈ �b such that T is an α-ψ contraction.

Proof From (.), we have

d(Tx, Ty) – Ld(y, Tx) ≤ λd(x, y) for all x, y ∈ X,

which yields

(

 – L
d(y, Tx)

d(Tx, Ty)

)

d(Tx, Ty) ≤ λd(x, y), x, y ∈ X, Tx 	= Ty. (.)

Consider the functions ψ : [,∞) → [,∞) and α : X × X →R defined by

ψ(t) = λt, t ≥ 

and

α(x, y) =

⎧
⎨

⎩

 – L d(y,Tx)
d(Tx,Ty) , if Tx 	= Ty,

, otherwise.
(.)

Since λb < , then ψ ∈ �b. From (.), we have

α(x, y)d(Tx, Ty) ≤ ψ
(
d(x, y)

)
for all x, y ∈ X.

Then T is an α-ψ contraction. �

Corollary . Let (X, d) be a complete b-metric space with constant b ≥ , and let T :
X → X be a given mapping. If T is a Berinde-type contraction with parameters λ, L ≥ 
such that  < λb < , then for any x ∈ X, the Picard sequence {Tnx} converges to a fixed
point of T .

Proof Let x be an arbitrary point in X. Without loss of generality, we can suppose that
Trx 	= Tr+x for all r ∈N. From (.), for all n ∈ N, we have

α
(
Tnx, Tn+x

)
=  – L

d(Tn+x, Tn+x)
d(Tn+x, Tn+x)

= .

Then (.) holds with σ =  and p = . From the first part of Theorem ., the sequence
{Tnx} converges to some x∗ ∈ X.

Suppose now that x∗ is not a fixed point of T , that is, d(x∗, Tx∗) > . Then

Tn+x 	= Tx∗, n large enough.

From (.), we have

α
(
Tnx, x∗) =  – L

d(x∗, Tn+x)
d(Tn+x, Tx∗)

, n large enough.
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Using the property (iii) of a b-metric, we have

d
(
Tn+x, Tx∗) ≥ 

b
d
(
x∗, Tx∗) – d

(
x∗, Tn+x

)
> , n large enough.

Thus we have

α
(
Tnx, x∗) ≥  – L

d(x∗, Tn+x)

b d(x∗, Tx∗) – d(x∗, Tn+x)

, n large enough.

Since

lim
n→∞  – L

d(x∗, Tn+x)

b d(x∗, Tx∗) – d(x∗, Tn+x)

= ,

then

α
(
Tnx, x∗) >




, n large enough.

By Theorem ., we deduce that x∗ ∈ Fix(T), which is a contradiction.
Thus x∗ is a fixed point of T . �

If b = , Corollary . recovers the Berinde fixed point theorem [].
Note that a Berinde mapping need not have a unique fixed point (see [], Exam-

ple .).

Corollary . Let (X, d) be a complete b-metric space with constant b ≥ , and let T :
X → X be a given mapping. Suppose that there exists a constant k ∈ (, /b(b + )) such
that

d(Tx, Ty) ≤ k
(
d(x, Tx) + d(y, Ty)

)
for all x, y ∈ X. (.)

Then, for any x ∈ X, the Picard sequence {Tnx} converges to a fixed point of T .

Proof At first, observe that from (.), for all x, y ∈ X, we have

d(Tx, Ty) ≤ λd(x, y) + Ld(y, Tx),

where

λ =
kb

 – kb
and L =

kb
 – kb

·

With the condition k ∈ (, /b(b + )), we have  < λ < /b and L ≥ . Then T is a Berinde-
type contraction. From Corollary ., if x ∈ X, then {Tnx} converges to a fixed point
of T . �

If b = , Corollary . recovers the Kannan fixed point theorem [].



Samet Fixed Point Theory and Applications  (2015) 2015:92 Page 13 of 17

Corollary . Let (X, d) be a complete b-metric space with constant b ≥ , and let T :
X → X be a given mapping. Suppose that there exists a constant k ∈ (, /b) such that

d(Tx, Ty) ≤ k
(
d(x, Ty) + d(y, Tx)

)
for all x, y ∈ X. (.)

Then, for any x ∈ X, the Picard sequence {Tnx} converges to a fixed point of T .

Proof From (.), we have

d(Tx, Ty) ≤ λd(x, y) + Ld(y, Tx),

where

λ =
kb

 – kb and L =
k(b + )
 – kb ·

With the condition k ∈ (, /b), we have  < λ < /b and L ≥ . Then T is a Berinde-type
contraction. From Corollary ., if x ∈ X, then {Tnx} converges to a fixed point of T .

�

If b = , Corollary . recovers the Chatterjee fixed point theorem [].

3.4 Ćirić-type mappings in b-metric spaces
Definition . Let (X, d) be a b-metric space with constant b ≥ . A mapping T : X → X
is said to be a Ćirić-type mapping if there exists λ ∈ (, /b) such that for all x, y ∈ X, we
have

min
{

d(Tx, Ty), d(x, Tx), d(y, Ty)
}

– min
{

d(x, Ty), d(y, Tx)
} ≤ λd(x, y). (.)

Theorem . Let (X, d) be a b-metric space with constant b ≥ , and let T : X → X be a
given mapping. If T is a Ćirić-type mapping with parameter λ ∈ (, /b), then there exist
α : X × X →R and ψ ∈ �b such that T is an α-ψ contraction.

Proof Consider the functions ψ : [,∞) → [,∞) and α : X × X →R defined by

ψ(t) = λt, t ≥  (.)

and

α(x, y) =

⎧
⎨

⎩

min{, d(x,Tx)
d(Tx,Ty) , d(y,Ty)

d(Tx,Ty) } – min{ d(x,Ty)
d(Tx,Ty) , d(y,Tx)

d(Tx,Ty) }, if Tx 	= Ty,

, otherwise.
(.)

From (.), we have

α(x, y)d(Tx, Ty) ≤ ψ
(
d(x, y)

)
for all x, y ∈ X, (.)

which implies that T is an α-ψ contraction. �
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Corollary . Let (X, d) be a complete b-metric space with constant b ≥ , and let T :
X → X be a continuous mapping. If T is a Ćirić-type mapping with parameter λ ∈ (, /b),
then for any x ∈ X, the Picard sequence {Tnx} converges to a fixed point of T .

Proof Let x ∈ X be an arbitrary point. Without loss of generality, we can suppose that
Trx 	= Tr+x for all r ∈N. From (.), for all n ∈ N, we have

α
(
Tnx, Tn+x

)
= min

{

,
d(Tnx, Tn+x)

d(Tn+x, Tn+x)
,

d(Tn+x, Tn+x)
d(Tn+x, Tn+x)

}

– min

{
d(Tnx, Tn+x)

d(Tn+x, Tn+x)
,

d(Tn+x, Tn+x)
d(Tn+x, Tn+x)

}

= min

{

,
d(Tnx, Tn+x)

d(Tn+x, Tn+x)

}

.

Suppose that for some n ∈ N, we have

α
(
Tnx, Tn+x

)
=

d(Tnx, Tn+x)
d(Tn+x, Tn+x)

.

In this case, from (.) and (.), we have

d
(
Tnx, Tn+x

) ≤ λd
(
Tnx, Tn+x

)
.

This implies (from the assumption Trx 	= Tr+x for all r ∈ N) that λ ≥ , which is a con-
tradiction. Then

α
(
Tnx, Tn+x

)
=  for all n ∈N.

Then (.) is satisfied with p =  and σ = . By Theorem ., we deduce that the sequence
{Tnx} converges to a fixed point of T . �

If b = , Corollary . recovers Ćirić’s fixed point theorem [].

3.5 Edelstein fixed point theorem in b-metric spaces
Another consequence of our main results is the following generalized version of Edelstein
fixed point theorem [] in b-metric spaces.

Corollary . Let (X, d) be a complete b-metric space with constant b ≥ , and
ε-chainable for some ε > ; i.e., given x, y ∈ X, there exist a positive integer N and a se-
quence {xi}N

i= ⊂ X such that

x = x, xN = y, d(xi, xi+) < ε for i = , . . . , N – . (.)

Let T : X → X be a given mapping such that

x, y ∈ X, d(x, y) < ε �⇒ d(Tx, Ty) ≤ ψ
(
d(x, y)

)
(.)

for some ψ ∈ �b. Then T has a unique fixed point.
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Proof It is clear from (.) that the mapping T is continuous. Now, consider the function
α : X × X →R defined by

α(x, y) =

⎧
⎨

⎩

, if d(x, y) < ε,

, otherwise.
(.)

From (.), we have

α(x, y)d(Tx, Ty) ≤ ψ
(
d(x, y)

)
for all x, y ∈ X.

Let x ∈ X. For x = x and y = Tx, from (.) and (.), for some positive integer p, there
exists a finite sequence {ξi}p

i= ⊂ X such that

x = ξ, ξp = Tx, α(ξi, ξi+) ≥  for i = , . . . , p – .

Now, let i ∈ {, . . . , p – } be fixed. From (.) and (.), we have

α(ξi, ξi+) ≥  �⇒ d(ξi, ξi+) < ε

�⇒ d(Tξi, Tξi+) ≤ ψ
(
d(ξi, ξi+)

) ≤ d(ξi, ξi+) < ε

�⇒ α(Tξi, Tξi+) ≥ .

Again,

α(Tξi, Tξi+) ≥  �⇒ d(Tξi, Tξi+) < ε

�⇒ d
(
Tξi, Tξi+

) ≤ ψ
(
d(Tξi, Tξi+)

) ≤ d(Tξi, Tξi+) < ε

�⇒ α
(
Tξi, Tξi+

) ≥ .

By induction, we obtain

α
(
Tnξi, Tn+ξi+

) ≥  for all n ∈N.

Then (.) is satisfied with σ = . From Theorem ., the sequence {Tnx} converges to a
fixed point of T . Using a similar argument, we can see that condition (ii) of Theorem .
is satisfied, which implies that T has a unique fixed point. �

3.6 Contractive mapping theorems in b-metric spaces with a partial order
Let (X, d) be a b-metric space with constant b ≥ , and let  be a partial order on X. We
denote

� =
{

(x, y) ∈ X × X : x  y or y  x
}

.

Corollary . Let T : X → X be a given mapping. Suppose that there exists ψ ∈ �b such
that

d(Tx, Ty) ≤ ψ
(
d(x, y)

)
for all (x, y) ∈ �. (.)
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Suppose also that
(i) T is continuous;

(ii) for some positive integer p, there exists a finite sequence {ξi}p
i= ⊂ X such that

ξ = x, ξp = Tx,
(
Tnξi, Tnξi+

) ∈ �, n ∈N, i = , . . . , p – . (.)

Then {Tnx} converges to a fixed point of T .

Proof Consider the function α : X × X →R defined by

α(x, y) =

⎧
⎨

⎩

, if (x, y) ∈ �,

, otherwise.
(.)

From (.), we have

α(x, y)d(Tx, Ty) ≤ ψ
(
d(x, y)

)
for all x, y ∈ X.

Then the result follows from Theorem . with σ = . �

Corollary . Let T : X → X be a given mapping. Suppose that
(i) there exists ψ ∈ �b such that (.) holds;

(ii) condition (.) holds.
Then {Tnx} converges to some x∗ ∈ X. Moreover, if

(iii) there exist a subsequence {Tγ (n)x} of {Tnx} and N ∈ N such that
(
Tγ (n)x, x∗) ∈ �, n ≥ N ,

then x∗ is a fixed point of T .

Proof We continue to use the same function α defined by (.). From the first part of
Theorem ., the sequence {Tnx} converges to some x∗ ∈ X. From (iii) and (.), we
have

α
(
Tγ (n)x, x∗) = , n ≥ N .

By the second part of Theorem . (with 
 = ), we deduce that x∗ is a fixed point
of T . �

The next result follows from Theorem . with η = .

Corollary . Let T : X → X be a given mapping. Suppose that
(i) there exists ψ ∈ �b such that (.) holds;

(ii) Fix(T) 	= ∅;
(iii) for every pair (x, y) ∈ Fix(T) × Fix(T) with x 	= y, if (x, y) /∈ �, there exist a positive

integer q and a finite sequence {ζi(x, y)}q
i= ⊂ X such that

ζ(x, y) = x, ζq(x, y) = y,
(
Tnζi(x, y), Tnζi+(x, y)

) ∈ �

for n ∈N and i = , . . . , q – .
Then T has a unique fixed point.
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Observe that in our results we do not suppose that T is monotone or T preserves order
as it is supposed in many papers (see [–] and others).
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