
Aleomraninejad et al. Fixed Point Theory and Applications  (2015) 2015:102 
DOI 10.1186/s13663-015-0348-8

R E S E A R C H Open Access

Common fixed point of multifunctions on
partial metric spaces
S Mohammad Ali Aleomraninejad1, Inci M Erhan2*, Marwan A Kutbi3 and Masoumeh Shokouhnia4

*Correspondence:
inci.erhan@atilim.edu.tr
2Department of Mathematics, Atilim
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Abstract
In this paper, some multifunctions on partial metric space are defined and common
fixed points of such multifunctions are discussed. The results presented in the paper
generalize some of the existing results in the literature. Several conclusions of the
main results are given.
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1 Introduction
The notion of a partial metric space (PMS) was introduced by Matthews [] in  (see
also []). The PMS is a generalization of the usual metric space in which d(x, x) is no longer
necessarily zero. Recently, many authors have focused on the PMS and its topological
properties(see for example [–]). Partial metric spaces have extensive application po-
tential in the research area of computer domains and semantics (see [–]).

A partial metric is a function p : X × X → [,∞) satisfying the following conditions:
(a) p(x, y) = p(y, x) (symmetry),
(b) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y) (equality),
(c) p(x, x) ≤ p(x, y) (small self-distances),
(d) p(x, y) ≤ p(x, z) + p(y, z) – p(z, z) (triangularity),

for all x, y, z ∈ X. Then (X, p) is called a partial metric space.
Each partial metric p on X generates a T topology τp on X with a base of the family of

open p-balls {Bp(x, ε) : x ∈ X, ε > }, where

Bp(x, ε) =
{

y ∈ X : p(x, y) < p(x, x) + ε
}

,

for all x ∈ X and ε > . For a partial metric p on X, the function dp : X × X → [,∞) given
by

dp(x, y) = p(x, y) – p(x, x) – p(y, y)

is a (usual) metric on X. Another metric on X induced by p is defined in [] as d(x, y) =
p(x, y) whenever x �= y and d(x, y) =  whenever x = y.

Some topological concepts and basic results on a PMS are defined as follows.
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A sequence {xn}n≥ in a PMS (X, p) converges to x ∈ X if and only if p(x, x) = limn→∞ p(x,
xn).

A sequence {xn}n≥ is called a Cauchy sequence if and only if limn,m→∞ p(xn, xm) exists
and is finite.

A PMS (X, p) is said to be complete whenever every Cauchy sequence {xn}n≥ in X con-
verges to a point x with respect to τp, that is, p(x, x) = limn,m→∞ p(xn, xm).

Lemma . ([]) Let (X, p) be a partial metric space. Then:
(i) A sequence {xn}n≥ is Cauchy in a PMS (X, p) if and only if {xn}n≥ is Cauchy in the

metric space (X, dp).
(ii) A PMS (X, p) is complete if and only if the metric space (X, dp) is complete. Moreover,

lim
n→∞ dp(x, xn) =  ⇐⇒ p(x, x) = lim

n→∞ p(x, xn) = lim
n,m→∞ p(xn, xm).

An interesting property of partial metric spaces is the nonuniqueness of limits of se-
quences. To emphasize this property we consider the following example.

Example . Let X = [,∞) and define a partial metric p on X as

p(x, y) = max{x, y}.

Consider the sequence {xn} = { + 
n }. Notice that

lim
n→∞ p(xn, ) = lim

n→∞ max

{
 +


n

, 
}

= lim
n→∞  +


n

= .

Also

lim
n→∞ p(xn, ) = lim

n→∞ max

{
 +


n

, 
}

= lim
n→∞  = .

Moreover, for any a ≥  we have

lim
n→∞ p(xn, a) = a.

In what follows, we introduce the notions, notations, and assumptions used in the dis-
cussion. Throughout this paper, we suppose that (X, p) is a partial metric space. We denote
the family of all nonempty subsets of X by X , the family of all closed subsets of X by C(X)
and the family of all closed and bounded subsets of X by CB(X). The partial Hausdorff
distance Hp on CB(X) was introduced by Aydi et al. [] as follows:

Hp(A, B) = max
{

sup
a∈A

p(a, B), sup
b∈B

p(b, A)
}

, ()

for all A, B ∈ CB(X), where

p(x, A) = inf
a∈A

p(x, a). ()
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Let T : X → X be a multi-valued function (multifunction). We denote the set of fixed
points of T by F(T), i.e.,

F(T) = {x ∈ X : x ∈ Tx}. ()

Lemma . ([]) Let (X, p) be a partial metric space, A ⊆ X, and x ∈ X. Then x ∈ A if and
only if p(x, A) = p(x, x).

In , Aydi et al. [] proved the following fixed point theorem on partial metric space.

Theorem . Let (X, p) be a complete partial metric space and T : X → CB(X) a multi-
function. Suppose that there exist k ∈ (, ) such that

Hp(Tx, Ty) ≤ kp(x, y), ()

for all x, y ∈ X. Then T has a fixed point.

Some fixed point theorems for multifunctions on metric space are given next (see
[, , ]).

Theorem . Let (X, d) be a complete metric space and T : X → CB(X) a multifunction.
Assume that there exists r ∈ [, ) such that


 + r

d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ rd(x, y), ()

for all x, y ∈ X. Then T has a fixed point.

Theorem . Let (X, d) be a complete metric space and T : X → C(X) a multifunction.
Assume that there exist a, b, c ∈ [, ) such that a + b + c <  and

( – b – c)
 + a

d(x, Tx) ≤ d(x, y) ()

implies

H(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty), ()

for all x, y ∈ X. Then T has a fixed point.

The aim of this paper is to provide a new, more general condition for the multifunction
T which guarantees the existence of its fixed point. Our results generalize some of the
existing ones.

In what follows, we consider two classes of functions, namely, R and R as defined below.

Definition . Let R be the set of all continuous functions g : [,∞) → [,∞), satisfying
the conditions:

(i) g(t, t, t, t, t) < t, for all t ∈ [,∞),
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(ii) g is subhomogeneous, i.e., g(αx,αx,αx,αx,αx) ≤ αg(x, x, x, x, x), for all
α ≥ ,

(iii) if xi, yi ∈ [,∞), xi ≤ yi for i = , . . . ,  we have g(x, x, x, x, x) ≤ g(y, y, y, y, y).
Let R be the set of all continuous function g : [,∞) → [,∞) satisfying the following

conditions:
(a) g(t, t, t, t, t) < t, for all t ∈ [,∞),
(b) g is subhomogeneous,
(c) if xi, yi ∈ [,∞), xi ≤ yi for i = , . . . ,  we have g(x, x, x, x, x) ≤ g(y, y, y, y, x),
(d) for all  ≤ a ≤ x, g(x, x, x, x – a, a) = g(x, x, x, x, ).

Remark . It is easy to see that if g ∈ R, then g(, , , , ) = h ∈ (, ). Indeed, if g ∈ R,
the conditions (i) and (ii) give

g(t, t, t, t, t) ≤ tg(, , , , ) < t, ()

which implies g(, , , , ) = h ∈ (, ). In addition, if g ∈ R, then by a similar argument
we observe that g(, , , , ) = h ∈ (, )

Examples of functions from both classes are given below.

Example . The function g(x, x, x, x, x) = k max{xi}
i= for k ∈ (, 

 ) is in class R.

Example . The function g(x, x, x, x, x) = k max{x, x, x, x+x
 } for k ∈ (, ) belongs

to R.

The following results are quite trivial.

Proposition . If g ∈ R and u, v ∈ [,∞) are such that

u ≤ max
{

g(v, u, v, u, v), g(v, u, v, v + u, v)
}

, ()

then u ≤ hv, where h = g(, , , , ).

Proof From (iii) it is clear that g(v, u, v, u, v) ≤ g(v, u, v, v + u, v) and hence u ≤ max{g(v, u, v,
u, v), g(v, u, v, v + u, v)} = g(v, u, v, v + u, v). If v < u, then

u ≤ g(v, u, v, v + u, v) ≤ g(u, u, u, u, u) ≤ ug(, , , , ) = hu < u,

which is a contradiction. Thus u ≤ v, which implies

u ≤ g(v, u, v, v + u, v) ≤ g(v, v, v, v, v) ≤ vg(, , , , ) = hv. �

Proposition . If g ∈ R and u, v ∈ [,∞) are such that

u ≤ max
{

g(v, u, v, u + v, ), g(v, u, v, u, v)
}

, ()

then u ≤ hv where h = g(, , , , ).



Aleomraninejad et al. Fixed Point Theory and Applications  (2015) 2015:102 Page 5 of 11

Proof Let max{g(v, u, v, u + v, ), g(v, u, v, u, v)} = g(v, u, v, u + v, ). If v < u, then (d) implies

u ≤ g(v, u, v, v + u, ) ≤ g(u, u, u, u, ) ≤ ug(, , , , ) = ug(, , , , ) = hu < u,

which is a contradiction. Thus u ≤ v, and hence,

u ≤ g(v, u, v, v + u, ) ≤ g(v, v, v, v, ) ≤ vg(, , , , ) = vg(, , , , ) = hv.

Let max{g(v, u, v, u + v, ), g(v, u, v, u, v)} = g(v, u, v, u, v). If v < u, then

u ≤ g(v, u, v, u, v) ≤ g(u, u, u, u, u) ≤ ug(, , , , ) = hu < u.

This contradicts our assumption, that is, we should have u ≤ v. Then

u ≤ g(v, u, v, u, v) ≤ g(v, v, v, v, v) ≤ vg(, , , , ) = hv,

which completes the proof. �

2 Main results
We state and proof our main results in this section.

Lemma . Let (X, p) be a partial metric space and T , S : X → C(X) be two multifunc-
tions. Suppose that there exist α ∈ (,∞) and g ∈ R ∪ R such that αp(x, Tx) ≤ p(x, y) or
αp(y, Sy) ≤ p(x, y) implies

Hp(Tx, Sy) ≤ g
(
p(x, y), p(y, Sy), p(x, Tx), p(x, Sy), p(y, Tx)

)
, ()

for all x, y ∈ X. Then for every x ∈ F(T) ∪ F(S) we have p(x, x) = .

Proof Without loss of generality, we can suppose that x ∈ Tx. Then p(x, Tx) = p(x, x) and
hence

p(x, Sx) ≤ Hp(Tx, Sx) ≤ g
(
p(x, x), p(x, Sx), p(x, Tx), p(x, Sx), p(x, Tx)

)

≤ g
(
p(x, x), p(x, Sx), p(x, x), p(x, Sx), p(x, x)

)
. ()

By using Proposition . if g ∈ R or Proposition . if g ∈ R, we have

p(x, x) ≤ p(x, Sx) ≤ hp(x, x).

However, since h <  we have p(x, x) = . �

Lemma . Let (X, p) be a partial metric space and T , S : X → C(X) be two multifunc-
tions. Suppose that there exist α ∈ (,∞) and g ∈ R ∪ R such that αp(x, Tx) ≤ p(x, y) or
αp(y, Sy) ≤ p(x, y) implies

Hp(Tx, Sy) ≤ g
(
p(x, y), p(y, Sy), p(x, Tx), p(x, Sy), p(y, Tx)

)
,

for all x, y ∈ X. Then F(T) = F(S).
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Proof If x ∈ Tx, then p(x, Tx) = p(x, x) =  by Lemma .. Hence,

p(x, Sx) ≤ Hp(Tx, Sx) ≤ g
(
p(x, x), p(x, Sx), p(x, Tx), p(x, Sx), p(x, Tx)

)

≤ g
(
p(x, x), p(x, Sx), p(x, x), p(x, Sx), p(x, x)

)

≤ g
(
, p(x, Sx), , p(x, Sx), 

)
. ()

By using Proposition . whenever g ∈ R or Proposition . in case g ∈ R, we have
p(x, Sx) ≤ h = , and thus x ∈ F(S). Thus, F(T) ⊆ F(S). Similarly, we can show that
F(S) ⊆ F(T), which completes the proof. �

In what follows, we state our main existence result.

Theorem . Let (X, p) be a complete partial metric space and T , S : X → C(X) be two
multifunctions. Suppose that there exist g ∈ R ∪ R and α ∈ (, ), such that α(h + ) ≤ 
where h = g(, , , , ) if g ∈ R and h = g(, , , , ) if g ∈ R. Suppose also that αp(x, Tx) ≤
p(x, y) or αp(y, Sy) ≤ p(x, y) implies

Hp(Tx, Sy) ≤ g
(
p(x, y), p(y, Sy), p(x, Tx), p(x, Sy), p(y, Tx)

)
, ()

for all x, y ∈ X. Then F(T) = F(S) and F(T) is nonempty.

Proof By Lemma . we already have F(T) = F(S). Fix arbitrary  > r > h and x ∈ X and
choose x ∈ Tx such that αp(x, Tx) < p(x, x). Then by the hypothesis of the theorem
and condition (iii) or (c) in Definition ., respectively, we have

p(x, Sx) ≤ Hp(Tx, Sx) ≤ g
(
p(x, x), p(x, Sx), p(x, Tx), p(x, Sx), p(x, Tx)

)

≤ g
(
p(x, x), p(x, Sx), p(x, x), p(x, Sx), p(x, x)

)

≤ g
(
p(x, x), p(x, Sx), p(x, x), p(x, x) + p(x, Sx) – p(x, x), p(x, x)

)

≤ g
(
p(x, x), p(x, Sx), p(x, x), p(x, x) + p(x, Sx), p(x, x)

)
,

where obviously p(x, Sx) ≤ p(x, x) + p(x, Sx) – p(x, x) due to triangle inequality in
PMS. Suppose that g ∈ R. Since

p(x, Sx) ≤ g
(
p(x, x), p(x, Sx), p(x, x), p(x, x) + p(x, Sx), p(x, x)

)
,

then, by Proposition ., we have

p(x, Sx) ≤ hp(x, x) < rp(x, x). ()

Now let g ∈ R. Since

p(x, Sx) ≤ g
(
p(x, x), p(x, Sx), p(x, x), p(x, x) + p(x, Sx) – p(x, x), p(x, x)

)
,

and obviously  ≤ p(x, x) ≤ p(x, x) + p(x, Sx), we let a = p(x, x) and employ condition
(d) in Definition . to get

p(x, Sx) ≤ g
(
p(x, x), p(x, Sx), p(x, x), p(x, x) + p(x, Sx), 

)
.
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Now by Proposition ., we have

p(x, Sx) ≤ hp(x, x) < rp(x, x). ()

We choose a number μ such that infy∈Sx p(x, y) = p(x, Sx) < μ < rp(x, x). Thus there
exists x ∈ Sx such that p(x, x) < μ < rp(x, x). Since αp(x, Sx) < p(x, x), by using ()
and the properties of the function g we have

p(x, Tx) ≤ Hp(Sx, Tx) ≤ g
(
p(x, x), p(x, Tx), p(x, Sx), p(x, Tx), p(x, Sx)

)

≤ g
(
p(x, x), p(x, Tx), p(x, x), p(x, x) + p(x, Tx) – p(x, x), p(x, x)

)

≤ g
(
p(x, x), p(x, Tx), p(x, x), p(x, x) + p(x, Tx), p(x, x)

)
.

Now, if g ∈ R, using Proposition . and mimicking the proof of () we obtain

p(x, Tx) ≤ hp(x, x) < rp(x, x). ()

If g ∈ R, letting a = p(x, x) we get

p(x, Tx) ≤ g
(
p(x, x), p(x, Tx), p(x, x), p(x, x) + p(x, Tx) – p(x, x), p(x, x)

)

≤ g
(
p(x, x), p(x, Tx), p(x, x), p(x, x) + p(x, Tx), 

)
,

and hence Proposition . yields

p(x, Tx) ≤ hp(x, x) < rp(x, x). ()

In a similar way, we can choose x ∈ Tx such that

p(x, x) < rp(x, x) < rp(x, x). ()

By continuing this process, we obtain a sequence {xn}n≥ in X such that

xn– ∈ Txn–, xn ∈ Sxn–, ()

which satisfies

p(xn, xn+) ≤ rnp(x, x). ()

Then p(xn, Txn) ≤ hp(xn–, xn) and p(xn–, Sxn–) ≤ hp(xn–, xn–).
If xm = xm+ for some m ≥  where m = k, then

p(xk , xk) ≤ p(xk , Txk) ≤ p(xk , xk+) = p(xk , xk),

so p(xk , Txk) = p(xk , xk), and hence xk ∈ Txk . Thus T and S have a fixed point. If m =
k +  in a similar way we find that T and S have a fixed point.
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Suppose that xn �= xn+, for all n ≥ . Repeated application of the triangle inequality im-
plies

p(xn, xn+m) ≤ p(xn, xn+) + p(xn+, xn+) + · · · + p(xn+m–, xn+m)

≤ rnp(x, x) + rn+p(x, x) + · · · + rn+m–p(x, x)

≤ rnp(x, x)
(
 + r + r + · · · + rm–)

≤ rn

 – r
p(x, x).

Then we get

lim
n→∞ p(xn, xn+m) → ,

and hence {xn}n≥ is a Cauchy sequence in (X, p). Regarding Lemma ., {xn}n≥ is also a
Cauchy sequence in (X, dp). Since (X, p) is a complete partial metric space, by Lemma .,
(X, dp) is also complete. Thus {xn}n≥ converges to a limit, say, x ∈ X, that is,

lim
n→∞ dp(xn, x) = . ()

Notice that Lemma . yields

p(x, x) = lim
n→∞ p(xn, x) = lim

n,m→∞ p(xn, xm) = . ()

Now, we claim that for each n ≥  one of the relations

αp(xn, Txn) ≤ p(xn, x) or αp(xn+, Sxn+) ≤ p(xn+, x) ()

holds. If for some n ≥  we have αp(xn, Txn) > p(xn, x) and αp(xn+, Sxn+) > p(xn+, x)
then

p(xn, xn+) ≤ p(xn, x) + p(x, xn+)

< αp(xn, Txn) + αp(xn+, Sxn+)

≤ αp(xn, xn+) + αhp(xn, xn+).

This results in α(h + ) > , which contradicts the initial assumption. Hence, our claim is
proved. Observe that by the assumption of the theorem, for each n ≥  we have either

Hp(Txn, Sx) ≤ g
(
p(xn, x), p(x, Sx), p(xn, Txn), p(xn, Sx), p(x, Txn)

)

or

Hp(Sxn+, Tx) ≤ g
(
p(xn+, x), p(x, Tx), p(xn+, Sxn+), p(xn+, Tx), p(x, Sxn+)

)
.

Therefore, one of the following cases holds.
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Case (i). There exists an infinite subset I ⊆N such that

p(xn+, Sx) ≤ Hp(Txn, Sx)

≤ g
(
p(xn, x), p(x, Sx), p(xn, Txn), p(xn, Sx), p(x, Txn)

)
,

for all n ∈ I .
Case (ii). There exists an infinite subset J ⊆N such that

p(xn+, Tx) ≤ Hp(Sxn+, Tx)

≤ g
(
p(xn+, x), p(x, Tx), p(xn+, Sxn+), p(xn+, Tx), p(x, Sxn+)

)
,

for all n ∈ J .
In Case (i), we get

p(x, Sx) ≤ p(x, xn+) + p(xn+, Sx)

≤ p(x, xn+) + g
(
p(xn, x), p(x, Sx), p(xn, Txn), p(xn, Sx), p(x, Txn)

)

≤ p(x, xn+)

+ g
(
p(xn, x), p(x, Sx), p(xn, xn+), p(xn, x) + p(x, Sx) – p(x, x), p(x, xn+)

)
,

for all n ∈ I . Continuity of g implies

p(x, Sx) ≤ g
(
, p(x, Sx), ,  + p(x, Sx) – , 

)
. ()

Now by using Propositions . and ., we have p(x, Sx) = , and thus x ∈ Sx.
In Case (ii), we have

p(x, Tx) ≤ p(x, xn+) + p(xn+, Tx)

≤ p(x, xn+) + g
(
p(xn+, x), p(x, Tx), p(xn+, Sxn+), p(xn+, Tx), p(x, Sxn+)

)

≤ p(x, xn+)

+ g
(
p(xn+, x), p(x, Tx), p(xn+, xn+),

p(xn+, x) + p(x, Tx) – p(x, x), p(x, xn+)
)
,

for all n ∈ J . Since g is continuous, we obtain

p(x, Tx) ≤ g
(
, p(x, Tx), ,  + p(x, Tx) – , 

)
. ()

Again, by using Propositions . and ., we have p(x, Tx) = , which gives x ∈ Tx. This
completes the proof. �

The following results are consequences of Theorem ..

Theorem . Let (X, p) be a complete partial metric space and T : X → C(X) be a mul-
tifunction. Suppose that there exist α ∈ (, ) and g ∈ R with h = g(, , , , ) such that
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α(h + ) ≤  and αp(x, Tx) ≤ p(x, y) implies

Hp(Tx, Ty) ≤ g
(
p(x, y), p(y, Ty), p(x, Tx), p(x, Ty), p(y, Tx)

)
, ()

for all x, y ∈ X. Then T has a fixed point.

Corollary . Theorem . introduced in [] is a special case of Theorem ..

Proof Define g ∈ R by g(x, x, x, x, x) = kx. �

Now we provide the partial metric versions of Theorems . and ..

Theorem . Let (X, p) be a complete partial metric space and T : X → CB(X) be a mul-
tifunction. Assume that there exists r ∈ [, ) such that


 + r

p(x, Tx) ≤ p(x, y) implies Hp(Tx, Ty) ≤ rp(x, y), ()

for all x, y ∈ X. Then T has a fixed point.

Proof Define g ∈ R by g(x, x, x, x, x) = rx. Let α = 
+r . Since h = r and α( + h) ≤ , by

using Theorem ., T has a fixed point. �

Theorem . Let (X, p) be a complete partial metric space and T : X → C(X) be a multi-
function. Assume that there exist a, b, c ∈ [, ) such that a + b + c <  and

( – b – c)
 + a

p(x, Tx) ≤ p(x, y) implies

Hp(Tx, Ty) ≤ ap(x, y) + bp(x, Tx) + cp(y, Ty).
()

Then T has a fixed point.

Proof Define g ∈ R by g(x, x, x, x, x) = ax + cx + bx. Let α = –b–c
+a . Since h = a + b + c

and α( + h) ≤ , by Theorem ., T has a fixed point. �
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